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Finite-size-scaling study of the simple cubic three-state Potts glass:
Possible lower critical dimension d 3
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For small lattices with linear dimension L ranging from L 3 to L 8 we obtain the distribu-

tion function P(q) of the overlap q between two real replicas of the three-state Potts-glass model

with symmetric nearest-neighbor interaction with a Gaussian distribution. A finite-size-scaling

analysis suggests a zero-temperature transition to occur with an exponentially diverging correla-
tion length (so-exp(C/T ). This implies that d 3 is the lower critical dimension.

With an improved understanding' of Ising spin glasses,
the Potts-glass model is receiving more attention. The
Potts glass is not only a model for anisotropic orientation-
al glasses, but may also provide a first step towards model-
ing the glass transition of structural glasses. Indeed there
exist2 intriguing analogies between the mean-field theory
of the Potts-glass and the mode-coupling approach to the
glass transition. Furthermore, the mean-field theory of the
Potts glass differs markedly from the mean-field theory
of the spin glass. s s In addition, many features of short-
range spin glasses differ qualitatively from the mean-
field predictions. It is therefore interesting to ask about
the properties of short-range Potts glasses: to what extent
they are different from spin glasses and from mean-field
predictions. A question of paramount importance is the
value of the lower critical dimension dt, below which the
transition is at zero temperature. For Ising spin glasses dt
lies between 2 and 3, " so a finite-temperature transition
occurs in d 3 but not for d 2, while for vector spin
glasses dt = 4, so T, 0 even for d 3. For isotropic
orientational glasses the transition is also believed' to
occur at T 0 in d 3, whereas for Potts glasses the situa-
tion is less clear. This Rapid Communication attempts to
determine whether T, is finite or not for the three-state
Potts glass in d 3 dimensions by combining Monte Carlo
simulations with a finite-size scaling analysis. Further de-
tails of the analysis are given in Ref. 13. The model Ham-
iltonian is given by
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where the s; are equal to any of the set of p basis vectors,
S', with the property that (S') =1 and S'S~

—1/(p —1) if a&P. Here we specialize to the case of
p 3. The sites i lie on a simple cubic lattice with W I.
sites and the sum is over all nearest-neighbor pairs (i,j )
An energy J;J is gained if the neighboring sites (i,j ) are in

the same state. Each J;J is a quenched random variable
drawn from a symmetric Gaussian distribution. We fol-
low the usual normalization of the interactions in the
Potts model by setting [JJ],„p/(p —1), where [.. . ],„
denotes a bond average. In these units the mean-field

N

q"'(t) -—g s,",(to+ t)s; 2(to+I ),
i 1

(2)

where p and v refer to components of the Potts vectors. In
order to avoid unnecessarily long relaxation times and to
obtain good statistics, it is necessary that the order param-
eter q be invariant under global symmetries of the Hamil-
tonian. Hence we define q(t) by

q(t)- g[q""(t)]' '", (3)

which is clearly invariant under simultaneous rotations of
all the vectors in either replica. The order parameter dis-
tribution is then calculated from

P(q) - P b(q q(t))—1

&m av

(4)

where N denotes the number of measurements per-
formed.

To check whether the equilibration time to is sufficient
for the system to be in equilibrium, we used the technique
developed by one of us' for spin glasses. Namely, in ad-
dition to computing P(q) from the overlap between two
replicas, we also compute a distribution P(q) obtained
from the overlap between the configurations of a single re-

transition temperature is given by T, F Kz/p, where z is
the coordination number. For the present case of z 6,
p 3 this gives T, " 0.8165. Periodic boundary condi-
tions are applied in all directions to avoid surface effects.

As in earlier finite-size scaling studies of spin glasses'
we analyze the order parameter distribution P(q) and its
moments. The order parameter is defined in terms of the
overlap between the configurations of two copies (repli-
cas) of the system with identical interactions and no cou-
pling between them. After dropping to sweeps for equili-
bration and running for an additional t sweeps, where
t ~ tn, for measurement, we compute the instantaneous
mutual overlap between the configurations of the replicas
defined by
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plica at times tp and 2tp. More precisely we compute

N

q" '(t p) —P s( (tp)s;"(2t p),

and the distribution P(q) is defined by

P(q) - [b(q —q(tp) )]„,
where q(tp) [P„,,lq""(tp)] ] '/ . As discussed in Ref. 10
P(q) and P(q) should agree only if the simulation is long
enough that both give the equilibrium result. Runs where
the answers disagreed by more than the estimated errors
were, therefore, discarded.

The dramatically increasing relaxation times limited
our simulations to rather small lattices of linear sizes
ranging from L 3 to L 8. For the biggest size, 4 x 106
Monte Carlo steps (MCS) were needed at the lowest tem-
perature (T 0.3), where we discarded tp 2x106 MCS
for equilibration. Between times tp and 2tp typically a few
hundred measurements were performed. The number of
samples in the configurational average varied between 400
and 500.

We now focus on the finite-size behavior of the mo-
ments (q") fq"P(q)dq, where we note that &q2& is sim-

ply related to the spin-glass susceptibility by gsG
N(q ) N 'P;/[(s; s/) j],„, where ( )z denotes a

statistical-mechanics average for a given bond configura-
tion. The standard finite-size scaling assumption is

(qn) ~L n(d -2+g)/-2f (L (/v(T T ) ) (5)

where ri describes the decay of correlations at T„v is the
correlation-length exponent, and the f„are scaling func-
tions. Equation (5) implies that the power of L in front of
the scaling function cancel for the "renormalized cou-
pling" gL defined by'P"

gL 3 —2 g(L' "(T—T,)) .
&q'&

( 2)2
(6)

As defined, gL 0 as L ~ above T, because in this
limit the 4 components q"" have independent Gaussian
fiuctuations, and gL ~ 1 as L ~ below T„since
&q & (q ) in this limit. Hence, data for gL for different
sizes should intersect at T,. This provides a convenient
method for locating the transitian temperature. As writ-
ten, Eq. (5) is appropriate for cases where the spin-glass
correlation length gsa diverges with a power of (T—T,),
where a finite T, would indicate a situation with d & d(,
while T, 0 would indicate d & d(, i.e.,

case one should reexpress Eq. (6) as

gL g(L/&sa(T) )

and similarly

Zsa L ~g(L/(sa(T) ) . (10)
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The first step in analyzing the data is to search for T,
from the intersection of the curves for gL for different
sizes. Our results for gL are plotted in Fig. 1 from which
it is clear that T, must either be zero or very low com-
pared with the mean-field value of 0.8165. In fact, it
seems clear that the data cannot merge for T & 0.15 so T,
must be less than this value and, hence, we can improve on
the upper bound of T, &0.23 given in Ref. 17. Since it
would be a coincidence for T, to be nonzero yet extremely
small compared with T, ", Fig. 1 already suggests that
T, 0. Further evidence for this will be presented below.

Assuming that T, is zero we need to distinguish wheth-
er there is a power law or exponential divergence of gsa
and @so as T 0. To do so we have chosen a procedure
which does not enforce the asymptotic form for gsa in
Eqs. (7) and (8), but rather tries to obtain it from the
data itself. To do this we determine the value of
gaa(T)=gsa(oo, T) for each temperature by extrapola-
tion, and a characteristic length l(T) by requiring that the
data for @so(L,T)/gsa(T) collapses onto a single curve
when plotted against L/l(T). We obviously use the nor-
malization that @so(L,T)/gsa(T) 1 as L/l(T)
but the overall normalization of l(T) is arbitrary. Finite-
size scaling tells us, however, that l(T) is proportional to
gsa(T) whatever choice is made for the normalization.
The result of this analysis is plotted in Fig. 2 while Fig.
3(a) shows a log-log plat of the obtained values of
ln[l(T)] against T. The scaling of the data in Fig. 2
clearly works well, particularly bearing in mind that a

4sG
(T T, ) ', d&d(, —

T ', d &d(!. (7)
0.0—

0.2 O.t 0.6

(so-exp(CT ), d d(, (8)

where McMillan's scaling theory' predicts cr 2. Note
that for all cases, gsa is related to (sa by gsa-g)r, ".
Note also that for d ~ d(, one has ri 2 —d if the ground
state is nondegenerate. ' To allow for this more general

In addition, we wish to consider the possibility that the
system is at its lower critical dimension, in which case the
correlation length diverges exponentially, i.e.,

FIG. 1. Reduced cumulant gL plotted vs T for different lat-
tice sizes. These results were obtained from Monte Carlo runs
with up to 4X106 MCS (for L-8 at T 0.3) and typically an
average over 400-500 bond configurations were performed.
Note that gI is defined such that gL 0 in the disordered
phase, gL- 1 in a phase with nonzero order parameter, while
curves for gL for different sizes should intersect at a critical
point.



FINITE-SIZE-SCALING STUDY OF THE SIMPLE CUBIC. . . 6883

1.0- 300—

Vl

I—

c9
V)

08-
07-

0.5-
0.4—

03-

o T-04
T =0.5
T =0.6
T =P.7

+ T=08

2.00—

1.50-

1.00-

0.75-

02-
C

01-
I

s s s s l s s s s I s s s ~ I s s s s I s s s s I

1 2 3 4 5

0.50-
~ ~

0, 30
s s I s s ~ s I I s I s I ~ I s I

0.50 0.75 1.00

FIG. 2. Scaling plot of gsG(L, T)/@so(T) against the scaled
variable L(T)ll(T). Here @so(T) has been adjusted to get the
fit and the characteristic lengths l(T) are fit parameters. 20-

linear rather than a logarithmic scale is used. The results
for the characteristic length l(T) in Fig. 3(a) are con-
sistent with the behavior in Eq. (8) expected at the lower
critical dimension and the slope of —1.97 is very close to
the theoretical value —2. Figure 3(b) is a log-log plot of
gsG against l(T) The slo.pe, which should equal 2 —

rl, is
found to be 1.5 and so ri 0.5.

As noted above, one expects rl
—1 if T, 0 and the

ground state is nondegenerate. Since rl is very different
from this we conclude that the ~round state is degenerate
as for a Potts antiferromagnet. '

Clearly our results cannot rule out a very small but
finite T„but this seems less likely than the picture
presented above of an exponential divergence at T 0 im-

plying that 3 is the lower critical dimension for the Potts
glass. A recent domain wall calculation' finds T, 0 for
the J distribution in three dimensions, but T, & 0 for
the Gaussian model. However, in both cases the value
found for the zero-temperature exponent is very small.
Hence, given the small sizes studied, we believe that their
results are consistent with di 3 for both distributions and
are therefore consistent with our conclusions.

To conclude, we have shown that the behavior of the
Potts glasses in three dimensions is different from that of
Ising spin glasses. Whereas the latter have a finite transi-
tion temperature with power-law divergencies, data for
the Potts glass at intermediate temperatures fits much
better the hypothesis that T, 0 with exponential diver-
gencies as T 0. It would be very valuable to test for
these differences experimentally.
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FIG. 3. Log-log plot of In[i(T)] vs T. The straight line has

slope —1.97, close to the value of —2 expected for a system at
its lower critical dimension. (b) Log-log plot of gsQ(T) vs l(T).
l(T) is proportional to ($Q(T), so the slope should be 2 —

ri, in-

dependent of the value of the lower critical dimension. From the
data we find the slope to be 1.5. This is to be contrasted with the
value of three expected if T, 0 and the ground state is nonde-

generate. Hence we infer that this model has a highly degen-
erate ground state.
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