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Comparison of melting in three and two dimensions: Microscopy of colloidal spheres
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Digital imaging is used to study the instantaneous particle positions and trajectories of highly

charged monodisperse 0.3-pm-diam polystyrene spheres in water suspension. We find that a three-
dimensional fcc crystal near a smooth glass wall melts abruptly into a layered Auid as a function of
the in-plane sphere density parallel to the wall. In contrast, a single two-dimensional layer of the
identical colloid confined between two smooth glass walls exhibits a gradual two-stage melting tran-
sition in which there are separate divergences of translational and orientational order.

I. INTRODUCTION

A.. Predictions of melting in two and three dimensions

Freezing and melting are basic physical phenomena
that are yet to be thoroughly understood theoretically.
Evidence for the universal geometrical nature of the melt-
ing transition comes from computer simulations and ex-
periments. A system of hard spheres was discovered in
simulations almost three decades ago' to have a first-
order crystal-fluid transition that is very similar to the
melting transitions of real substances. This brought
about a revival of the van der Waals picture of liquids in
which it is assumed the dominant influence on the local
structural arrangements of molecules in a liquid is their
short-range nearly-hard-sphere-like repulsive interac-
tions. The structure factor S(q) of dense fiuids is very
similar to that of the hard-sphere system near freezing; in
particular for many three-dimensional (3D) liquids
Verlet's rule holds: the value of S(q =q,„)at the first
peak is between 2.8 and 3.1 just before freezing. In the
3D crystal before melting, Lindemann's criterion ap-
pears to hold nearly universally as well: the crystal melts
when the root-mean-square displacements of atoms about
their equilibrium positions become larger than about
0. 1a, where a is the interatomic separation.

Theories of melting or freezing can be loosely cate-
gorized into three types: (i) those that address the ab-
solute instability of the solid (basically Lindemann's
criterion) —for example, a shear instability in self-
consistent phonons; (ii) those that introduce the spon-
taneous generation of lattice defects that eventually cause
enough disorder to melt the solid —for example, disloca-
tions, disclinations, ' or grain boundaries; and (iii)
those that introduce density waves as order-parameter
modes in a fluid to obtain freezing criteria similar to
Verlet's rule. It has been pointed out by Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY) that
a two-dimensional (2D) crystal is considerably more un-
stable with respect to fluctuations such as topological lat-
tice defects than its 3D analog. Their prediction of two
continuous melting transitions for a 2D crystal instead of
the single well-known first-order transition in 3D has

generated much controversy, experimental search, and
computer simulations for the last decade and a half. '

The two transitions they predict are caused by the
separate disappearance of first, the translational, and
then later, the orientational order parameters of the sys-
tem. The separate phase into which the 2D triangular
crystal first melts in the KTHNY scenario has been
called the "hexatic, " as it has short-range translational
order accompanied by long-range slow algebraic decay of
sixfold orientational order. The hexatic then melts into
an ordinary isotropic fluid for which there is an exponen-
tial decay of translational and orientational order on the
same distance scale. An excellent review of the many
consequences of this elegant theory is given by Nelson. "

Until recently, little or no consensus existed from ex-
periments or computer simulations' for the existence of
continuous melting transitions in 2D or the existence of a
hexatic phase in systems of spherically symmetric
particles —although tilted hexatics, in which the tilt and
orientation of long rod molecules in the plane are cou-
pled, have been well established in 3D layered' and more
recently 2D (Ref. 13) liquid crystals. In this paper we
contrast the melting of a model experimental system of
highly charged submicron spheres in a colloidal suspen-
sion rigidly confined to 2D with the melting of the same
system in 3D near a smooth wall. We show that there is
a qualitative difference in the nature of the melting transi-
tion determined by dimensionality alone in this system-
all other experimental parameters remaining constant.

B. Monodisperse colloids as a model system

Monodisperse latex spheres are a fascinating model ex-
perimental system. They have been used as a model con-
densed matter system for more than a decade. ' They
can be obtained with diameter and sphericity dispersions
as small as 1%, ' and comparable corresponding surface
charge uniformities. The sphere-sphere interactions are
in general complex, as they include van der Waals, hard
sphere, screened Coulomb, and many-body hydrodynam-
ic contributions. ' The experimental 3D phase diagram
of the colloids' is qualitatively similar to that found' for
a molecular dynamics simulation of hard spheres in-
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teracting with Yukawa potentials with an effective sphere
charge much smaller than the actual titratable charge.
For our purposes here, at the sphere densities and
charges relevant to this experiment, the repulsive
screened Coulomb and indirect hydrodynamic interac-
tions are the most important. The sphere-glass wall in-
teraction is also very important. It is predominantly
repulsive at the sphere-wall separations of the experiment
because of the positive image charges of the spheres as
well as dissociated OH groups on the glass surface,
charged with the same sign as the surface sulfate groups
on our spheres.

A few years ago' we began studying in detail the melt-
ing transition of a 2D layer of uniform submicron spheres
in colloidal suspension by the use of digital imaging. In-
stead of simply relying on snapshots of the colloid struc-
ture or diffraction from the 2D system, ' we set out to
make use of the power of direct imaging of individual
particle motions and also topological lattice defects in
both space and time. Since that time there have been a
number of other similar imaging studies of melting of sin-
gle layers of slightly larger colloidal spheres. ' We
chose to study melting of submicron spheres for several
reasons. As in simulations, it is possible to create a sub-
strate that is perfectly smooth on the colloidal scale, un-
like the case in atomic experiments where the modulation
of a graphite substrate, for example, is unavoidable and
can have very large effects on the orientational order and
phase diagram of a rare gas overlayer. We note that a
smooth, hard substrate is also the limit of most theoreti-
cal models of wetting as well. It is also possible to
confine the spheres rigidly into a plane between two
parallel plates so that out-of-plane motions and second-
layer promotion are entirely avoided near melting. These
could have a drastic effect on the melting transition.

In a colloid experiment, one can also alleviate many of
the problems with computer simulations associated with
insufficient equilibration times or periodic boundary con-
ditions by studying a small portion of a much larger sys-
tem, and allowing the entire system of Quid, crystal, and
reservoir to come to statistical equilibration in direct con-
tact. If the latex spheres are comparable in size to —1

LMm, they exhibit Brownian motion and thus have a true
thermodynamic temperature unlike larger particles
used for analog simulations such as ball bearings. Also,
the relevant time and length scales for both individual
particle motion and equilibration are reasonably accessi-
ble in the laboratory with optical-video microscopy for
colloidal particles of this size in water suspension. In
these digital imaging experiments we essentially use the
colloid as an "analog" molecular dynamics computer in
which the particles obey Brownian dynamics with repul-
sive interactions.

A summary of our earlier experiments on the melting
of 2D colloidal layers is given in Murray and Wenk. In
these 2D experiments we used colloidal spheres of diame-
ter d =0.305 pm and surface charge -2X10 electrons
per sphere with a size uniformity of -2%. the bulk fcc-
bcc phase transition takes place in that fully ionized col-
loid at a nearest-neighbor separation distance of
a =(2.97+0.1)d in the fcc crystal. The 2D layer melting

was studied in contact with a bulk reservoir somewhat
denser than the fcc-bcc transition density for fully deion-
ized spheres. The 2D melting transition was observed at
a =(2.5+0.05)d. Using the fcc-bcc phase boundary at
the limit of no added salt to map onto the Yukawa phase
diagram of Robbins et al. ,

' we obtain an estimate of the
effective charge and effective screening length of these
spheres as Z*-750 electrons and A, -0.29 pm, respec-
tively, at the fcc-bcc transition in the bulk. This, of
course, only give a very rough estimate of the screened
Coulomb interaction between spheres as the mapping
onto the Yukawa phase diagram is a gross
oversimplification. However, it is helpful to make a com-
parison between this lower charged colloid and the col-
loid used in the present 2D and 3D melting experiments.

In the new experiments described here, we use colloidal
spheres of the same diameter and size uniformity as in
the earlier experiments, but with a titratable charge
roughly five times higher. The bulk fcc-bcc phase transi-
tion is observed at a fcc nearest-neighbor separation of
a =(4.4+0.09)d with no added salt, which is close to the
density of the 3D reservoir in contact with our 2D sam-
ple. The 2D melting transition takes place in the new ex-
periments at a =(4.3+0.05)d—an in-plane density
roughly a third that of the earlier experiments. Again,
mapping as before on the Yukawa phase diagram in the
limit of no added salt for the 3D fcc-bcc transition, we
obtain a rough estimate for the effective charge per
sphere and screening length of Z* —1000 electrons and
A, -0.35 pm, respectively, at this density. For the 2D ex-
periments, the newer colloid has a somewhat longer-
ranger interaction than the old. We estimate the screen-
ing parameter A to be roughly 2.93 for the new colloid
and roughly 3.49 for the old colloid in the 2D crystal just
before melting. Here A =a, /A, , with a, =n3o, computed
for a unit cell of the system of the 2D layer and image
charge layers.

The paper is organized as follows: In Sec. II we sum-
marize the experimental and data analysis procedures
that are common to the 3D and 2D melting experiments.
In Sec. III, we describe the 3D experimental geometry
and then present the results of the melting of a 3D fcc
crystal near a smooth glass surface as a function of in-
plane sphere density. We find that the crystal melts
abruptly into a layered fluid along a density gradient
parallel to the glass surface. In Sec. IV, we compare the
3D situation of Sec. III with the melting of a 2D layer of
the identical colloid: by bringing a second smooth glass
surface parallel and close to the first we create a single
layer confined between the glass walls. The in-plane den-
sity of this layer is varied by changing the spacing be-
tween the plates. By inducing a shallow wedge between
the plates we create a density gradient parallel to the
glass comparable in magnitude to that of the three-
dimensional case. As a function of in-plane sphere densi-
ty we find a much more gradual melting transition in
which there are separate divergences of translational and
orientational order. In Sec. V we make a detailed com-
parison between these two melting experiments in which
only the dimensionality of the sample is charged. We
summarize the differences and similarities observed in the
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crystals near melting, the fluids near freezing, and the in-

termediate region between the two phases. We compare
our 2D melting results with our earlier measurements on
a different colloid and those published by other groups.
We also discuss some remaining open questions and
directions for future experiments and analysis.

The goal of our study is the comparison by direct
imaging of a 3D and a 2D situation in which the sample
and smooth walls are otherwise identical and only the
dimensionality of the sample changes. We will concen-
trate in this paper on the imaging of the first layer of the
3D sample next to the glass surface and postpone the de-
tailed study of the density profile of the 3D sample per-
pendicular to the glass and our conclusions from this ex-
perirnent on the possible melting mechanism in 3D for fu-
ture publications.

II. EXPERIMENTAL

A. Sample cell and handling

Details of the colloid handling procedures, construc-
tion, and arrangement of the cell used to contain the col-
loid are given elsewhere. ' A gold and epoxy plated
copper cell contains the colloid. In the center of the cell
on the top and the bottom are two opposing parallel glass
windows, the distance between which can be changed
from 0 to 0.1 cm by the use of three differential microrne-
ters. The viewing region between the windows is the thin
region of the cell. It is surrounded by several 70-pm
mesh nylon bags containing H and OH ion-exchange
resin. The top cell window is an optical flat onto which is
glued a smooth cover slip facing the colloid. The bottom
cell window is a single 150-pm-thick cover slip epoxied
into a flange. Cover slips are used because they have no
scratches on the 0.1-pm scale which tend to align the col-
loid as have optical flats. Surrounding this thin region is
a 100-cc annulus of 3D crystalline colloid in intimate
contact with both the ion-exchange resin and the thin re-
gion. Because the cover slip glued on the top window is
smaller in diameter than the viewing region we can easily
equilibrate and image a thick sample out from under the
top cover slip and a thin sample directly under the cover
slip. These thick and thin regions are in direct contact
with each other and can be imaged at the same time.

The cell is sealed from contact with air to avoid con-
tamination with carbonate ions and regulated to a tem-
perature of 29+0. 1'C to minimize differential thermal
expansion effects. When the distance between the two
opposing cover slips is greater than —10 pm the cell is
opened to atmospheric pressure via a 3-m-long vertical
tube continuously flushed from the top with Ar gas to
minimize the bowing of the bottom ce11 window due to
atmospheric pressure fluctuations.

Varying the system temperature is not particularly use-
ful in these colloid imaging experiments. In general, rais-
ing the system temperature results in an unknown and
uncontrolled influx of additional screening charges into
the solution due to the activated nature of the ionic disso-
ciation constants of the walls of the container, the
spheres themselves, or anything else in contact with the

solution. For this reason, all of our experiments are car-
ried out at a few degrees above room temperature with
the colloid in direct contact with ion-exchange resin. The
resin is used in order to minimize extra salt concentra-
tions, unknown ion gradients, and accompanying large
unknown changes in effective Coulomb screening lengths.
Sphere density is used as the experimental variable as it is
intrinsically more controllable.

In order to obtain a reproducible, gradual change of
3D sphere density in our cell without an externally im-

posed osmotic pressure change we make use of the very
slow diffusion coefficient of the spheres in water com-
pared to that of the screening ions, at least five orders of
magnitude faster. If we impose a density gradient of the
colloid in the cell in our filling procedure, the counterions
will come into equilibration with the colloidal sphere den-
sity gradient within about a day, whereas the density gra-
dient of the spheres would take about a year to disappear.
In the study of 3D melting near a glass wall we probe
along existing 3D density gradients parallel to the wall
after about a month's equilibration after the cell is filled.
In the 2D experiment we impose a density gradient in the
single colloid layer that is comparable to that of the 3D
case by creating a very small wedge angle between the
two confining glass plates. '

B. Digital video microscopy

The 3D crystal grows with the highest density face
([111] for fcc) at the smooth glass surface. Once the
colloid has equilibrated for a month in the cell with an
imposed density gradient along y, it is probed by imaging
through the bottom window in the x-y plane a small
volume of size Ax Xhy Xhz =59X46X0.4 pm or
-45X35X1 spheres. The imaging is done in the thin
viewing region with the 140X, numerical aperture 1.3, oil
immersion objective of an inverted Reichart optical mi-

croscope. An incoherent Xe arc lamp with three ir-uv
blocking filters and a broad blue-green notch filter is used
as the excitation source using Kohler illumination. The
smaller dimension hy of the digitized area in the plane of
the window is set parallel to the macroscopic density gra-
dient along y. The extent of the sample with an in-plane
density n within +1% is at least 35X450 spheres. The
depth of focus of the objective is +0.2 pm and the
penetration depth of the light in the z direction, deter-
mined by the exponential loss of image contrast as one
steps the focus through well ordered crystalline layers,
is roughly 7 layers (-7 pm). The imaging optics are ex-
actly the same for the 2D experiment.

We use a standard video camera and video frame
grabber ' to digitize several snapshots at several positions
along the imposed density gradient in the ce11. The
snapshots are separated by a time interval of 0.05 sec,
sufficiently short that we can easily resolve the movement
of individual spheres. In this paper we will concentrate
on the real-space imaging of the first layer of spheres
parallel to the glass surface. We have previously shown
that a 3D colloidal fluid is layered near a smooth surface
with a density profile very similar to its first layer in-

plane pair correlation function. The width of the first
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layer is quite sharp in the fluid near freezing and our task
of imaging the spheres in the fluid is simplified consider-
ably by this boundary condition.

gb(r)

where %'(r)=e ' '"' is the bond orientational order pa-
rameter at the center of the bond at r making angle 8
with respect to the x axis, M is the total number of bonds
in the field, the parentheses imply an azimuthal average,
and gb(r) is the bond center pair correlation function.
For the translational order parameter correlational func-
tion go(r) we use a slightly modified form

gG(r)= (2)

where the translational order parameter at the particle
center r is qlG(r) =e ' ",6 is a reciprocal lattice vector,
N is the total number of particles in the field, the
parentheses imply and azimuthal average, and g (r) is the
pair correlation function of particle centers.

In order to obtain limiting thermodynamic behavior of
these functions and thus the limiting spatial and temporal
behavior, we would need to average our correlation func-
tions over many (10 —10 ) images displaced from each
other either in space by a distance larger than the corre-
lation length or in time by an interval longer than the
correlation time. Also we would need to compute the
functions over several decades in distance (not presently
available in our images but existing in our system) in or-
der to determine the difference between exponential and
algebraic envelopes to the curves. For this reason we do
not wish to emphasize in detail the fits to exponents to
the calculated correlation functions for a single image.
However, trends in the data are certainly apparent and
meaningful.

In order to categorize the topological defects in the im-

ages, we determine the nearest neighbors in each
snapshot by performing a Voronoi polyhedron analysis
on the positions of all sphere centers. This procedure
uniquely locates the disclinations or nonsixfold coordi-
nated spheres in the layer. We make use of a fast sweep-
line algorithm invented by Fortune to do the Voronoi

C. Data analysis

The centers of spheres are located digitally to +1 pixel
accuracy as described in detail elsewhere. The
particle-center locations in snapshots are used to deter-
mine in-plane density, translational correlation functions,
structure factors, and orientational correlation functions
making use of fast Fourier transforms and an array pro-
cessor as described in Murray and Wenk. The in-plane
density n is expressed in reduced units of inverse particle
diameters squared. The pair correlation function g(r) is
standard and we use for the orientational correlation
function the quantity

analysis and to compute the Delaunay triangulation of
each image of sphere centers. The Delaunay triangula-
tion is the dual of the Voronoi polyhedra for a set of
points in the plane and is a unique triangulation that
maximizes the minimum angles of all triangles. We use
this to determine and plot the nearest-neighbor bonds of
each sphere in an image and to obtain disclination statis-
tics. Once the particle centers are located in a series of X
snapshots spaced apart by an interval 5t, we use a
straightforward algorithm to link each particle with itself
in successive frames and use this to plot the individual
particle trajectories for the time N5t.

III. RESULTS—3D

We made seven 3D melting runs over a period of two
months after first waiting a month for the screening ions
to equilibrate after the insertion of a new colloid to the
cell. In these runs we took advantage of naturally occur-
ring density gradients parallel to the glass windows a
month after the cell was filled and shaken from side to
side. We will only discuss the imaging of the first layer
next to the glass here postponing the detailed description
of the density profile of the system in the z direction, per-
pendicular to the glass wall, for future publications. We
found the changes in in-plane density from the crystal to
the fluid to be consistent from run to run at about 5% but
the lowest density crystal just before melting varied from
run to run by as much as 5% in in-plane density. This in-
dicates that the screening length is not constant in vastly
different regions of the 2-cm diameter viewing region of
the cell. All of the 3D runs exhibited an abrupt interface.
We will discuss the results of one of these runs here. In
this run we digitized five images separated by 0.05 sec at
each of nine different locations along the direction y of
the density gradient. A particle in the dense fluid would
diffuse about 0.2a in -0. 1 sec, if the diffusion in the sol-
vent were unhindered by collisions. The first and last
images are separated by 290 pm but typically the centers
of successive digitized images are separated by 20 pm
along y in the transition region so that there is significant
overlap between the fields of successive images, as will be
evident from the figures.

A. Experimental geometry-density gradient
along smooth interface

A blow up schematic of the 3D sample geometry in the
y-z plane is depicted in Fig. 1 in which is also shown a
typical instantaneous position of the crystal-melt inter-
face and the relative size of the digitized image along y.
The total thickness t of the colloid for these runs was ad-
justed by opening the cell outside of the very thin region
used for the 2D experiment to 500 pm so that t -500 lay-
ers along z. The 3D colloid runs were performed at the
same time —within days —as the 2D runs separated by
-0.3-0.5 cm from the central 2D region. As mentioned
earlier, the [111] hexagonal face of the fcc crystal nu-
cleates at the highly charged glass surface. Actually, we
find the crystal does not favor fcc ( ABCABC. . . ) stack-
ing until it has attained a thickness of -ten layers. Be-
tween one and ten layers the crystal appears to have a
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FIG. 1. Geometry (not to scale) of the 3D imaging experi-
ment. The smooth glass surface is in the x-y plane with the im-
posed sphere density gradient along y. Here a schematic cross
section of the instantaneous 3D crystal-fluid interface is depict-
ed in the y-z plane. Solid circles represent ordered spheres and
open circles represent those that are disordered from their crys-
talline positions. The intersection of the imaging volume
6x X5y X5z=59X46X0.4 pm in the y-z plane containing
roughly 1800 spheres in the first layer of colloid next to the glass
wall is also marked. The N-layer crystal nucleates at the glass
wall (N=1) and grows in thickness to N=5 layers on the
right-hand side of an image containing the crystal-fluid interface
in the first layer at left.

packing sequence closer to that of HCP ( AB AB. . . ),
often with a great deal of shear between layers and con-
siderable stacking disorder. The triangular symmetry of
the layers is on average maintained. From widths of
truncated crystal diffraction rods observed with incident
laser light along the [111]axis, projected onto a screen on
the top window, we can set an upper limit of less than
1% for the possible density gradients that could exist in
the z direction (perpendicular to the glass wall) on the
crystal side of the melt interface. We observe in the crys-
tal near melting a rather high fraction of -O. 8% hops of
particles between the first and second layers within 0.05
sec.

We typically observe a rather steep and abrupt inter-
face in this colloid in the y-z plane: a new crystalline lay-
er grows in on top of the lower one roughly every 7—8
nearest-neighbor spacings farther from the interface in
the layer just below, as depicted schematically in Fig. 1.
The interface also appears rather flat on average in the x
direction in the x-y plane although small wavelength fluc-
tuations in this direction are large and we have not stud-
ied them carefully. These fluctuations cause an apparent
tilt in the microscopic interface in the x-y plane in this
run as will be evident from the figures. It is quite abrupt
along y in the x-y plane as we will show in the following
sections.

B. First layer: snapshots, trajectories, and defects

Delaunay triangulations for instantaneous particle
configurations at various densities near melting, corre-

FIG. 2. Delaunay triangulations of snapshots containing in-
stantaneous particle positions for the 3D run. The center of
each particle in the image is at a vertex with nearest neighbor-
bonds shown by the lines. Defects in the topology of the lattice,
or particles that are not sixfold coordinated, are highlighted by
having their near neighborhoods shaded. Tic marks on the bor-
ders of each snapshot are separated by 20 pixels, or 2.4 pm.
Top (a) in-plane density n =0.0599 just into crystal; bottom (b)
n =0.0587 just into intermediate region. Note the relatively
sharp interface between order and disorder on the left-hand side
of (b).

sponding to center separations of 20 pm between images,
are shown in Figs. 2 and 3. In these figures each particle
center is represented by a vertex and the lines emanating
from it are the bonds to its nearest neighbors. The
nearest neighborhoods of nonsixfold coordinated spheres
are shaded in order to reveal the instantaneous defect
structure. The sharp melt interface is particularly evi-
dent in Figs. 2(b) and 3(a), with most of the defects
clustered on the lower left-hand side of each image. In
Fig. 4 are plotted the trajectories of all particles at the lo-
cation corresponding to Fig. 2(b), for a duration of 0.2
sec. This figure also shows an abrupt boundary between
fluidlike and solidlike regions. In Fig. 5 is plotted the
percent crystal fraction of various snapshots taken
through the transition region determined by eye from the
images in Figs. 2—4. To within experimental accuracy we
find the fraction of crystal to be linear in the transition
region, implying an abrupt interface over several minutes
duration.
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FIG. 4, Individual particle trajectories in five time steps
separated by 0.05 sec for n =0.0587 in the 3D run in the inter-
mediate density region very close to the crystal. The final posi-
tions of the particles are depicted by solid circles. On the right-
hand side of the image the majority of particles oscillate about
their equilibrium positions. Note the sharp interface at left be-
tween these movements characteristic of the crystal and more
fluidlike trajectories at bottom left. Compare these trajectories
with an instantaneous configuration of spheres at this density in
Fig. 2(b).

FIG. 3. Delaunay triangulations of snapshots containing in-
stantaneous particle positions for the 3D run. The center of
each particle in the image is at a vertex with nearest-neighbor
bonds shown by the lines. Defects in the topology of the lattice,
or particles that are not sixfold coordinated, are highlighted by
having their near neighborhoods shaded. Tick marks on the
borders of each snapshot are separated by 20 pixels, or 2.4 pm.
Top (a} in-plane density n =0.0578 in the intermediate region;
bottom (b) n =0.0571 lower-density intermediate region just be-
fore fluid. The sharp interface between order and disorder is
still visible here.

2. Static correlation functions in the JPrst layer

In Fig. 7 are plotted the static pair correlation func-
tions g(r) and the static orientational correlation func-
tions g6(r) for a number of snapshots in the run. The
translational correlation length g [determined from fits to
g (r) of an exponential decay envelope multiplied by the
pair correlation function of a broadened perfect triangu-
lar crystal] ' is marked by arrows on both plots for each

1. In plane de-nsity in the jirst layer

In Fig. 6 is plotted the average in-plane density n (in
units of inverse diameters squared) determined by count-
ing spheres in snapshots as a function of the image center
location along y. In the figure the error bars in n are esti-
mates of possible experimental errors due to problems
counting spheres close to the image edges, while the error
bars in y depict the size of the image, 45 pm, along y.
The sharp changes of slope between the densities marked
n, =0.0555 and nb =0.0598 in the figure are another in-
dication of the abruptness of the melt interface. Also, not
shown in the figure, the average densities in the "crystal"
and "liquid" regions for n, & n & nb are found to be very
close to what is expected from extrapolations of the
slopes of the crystal and liquid far from the interface, re-
spectively.
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FIG. 5. Percent crystal fraction for the images in the 3D run
at various densities obtained from observation of instantaneous
defects and particle trajectories. The line from 0% at n, to
100% at nI, is a guide to the eye but also a reasonable fit to the
crystal fraction of each image. Estimates of errors are roughly
the size of the plotted symbols.
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FIG. 6. In-plane density n vs position y along the density gra-
dient for the 3D run. Error bars in y {abscissa) depict the extent
of the digitized images while those in n (ordinate) depict an esti-
mate of counting errors due to edge effects. Dashed lines are a
guide to the eye. Note the sharp breaks in slope at n, and nb

marking the extent of the intermediate region between crystal
and fluid.
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FIG. 8. Instantaneous orientational correlation functions
g6(r) for two densities in the intermediate region for the 3D run.
(a) top curve: n =0.0587; (b) bottom curve: n =0.0578. Curve
(a) is displaced upwards by a multiplicative factor of 10 for clar-
ity. The arrow for each curve represents the value of the
translational correlation length f at each density. Note the
sharp breaks in each curve very close to g. Curves al and a2 are
exponential fits to the slope of curve (a) for r & g and r & g, with
decay lengths 4g and (,=1.0$, respectively. Curves bl and b2
are exponential fits to the slope of curve (b) for r & ( and r & g,
with decay lengths 3.2g and $6=0.89/, respectively.
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density. This translational correlation length grows as a
function of n. Of interest in these plots is the behavior of
the orientational correlation function with n. For densi-
ties n &nb in the crystal it is constant. For densities
n (n, in the Quid it decays exponentially fast with an
orientational correlation length ps= (. For n, & n & nb in

nb
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FIG. 7. Top: instantaneous pair correlation functions g {r)
for the 3D run. Successive curves at successive densities a—f are
displaced upwards for clarity. Bottom: instantaneous orienta-
tiona1 correlation functions g6(r) for the same densities as
marked. These are not displaced vertically. The arrows for
each curve mark the spatial correlation length g at that density
determined by fitting g(r) to an exponentially decaying en-
velope. The densities for the curves are as follows: (a) fluid at
n =0.0560; (b) fluid at n =0.0561; (c) intermediate region at
n =0.0571; (d) intermediate region at n =0.0578; {e) intermedi-
ate region at n =0.0587; (f) crystal at n =0.0599.
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FIG. 9. Solid diamonds and solid lines: translational correla-
tion length g in units of nearest-neighbor distances "a," for the
3D run, determined by fits to exponentially decaying envelopes
of g (r) calculated from instantaneous snapshots of particle posi-
tions at each density. Open circles and dashed line: orientation-
al correlation length (6 for the same images in the same units
determined from exponential fits to g6(r) for r & g. The lines are
a guide to the eye and the highest plotted points for $6 are lower
bounds. The extent of the intermediate region between crystal
and fluid is marked by the arrows at n, and nb.
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FIG. 10. Concentration c& in percent of n-fold coordinated
particles in instantaneous images in the 3D run vs density with
2&N &9. Solid diamonds: c6X1 (ordered particles); small

solid circles: e7 X3; open circles: c5 X3; open squares c8 X 10;
open triangles: e3 X10. The extent of the intermediate region
between crystal and Auid is marked by the arrows at n, and nb.

the intermediate region there is a break in gb(r) which
occurs at r =g. This is shown more clearly in Fig. 8,
along with fits to exponential decays for both r &g and
r & g. For r & g the exponential decay length gb is com-
parable to g. This is shown in Fig, 9, in which the two
correlation lengths g and gb are plotted versus n For.
r & g in the density region n, & n & nb, the slower decay
in space of gs(r) in Figs. 7 and 8 is a refiection of the
crystalline portion at the right of each image.

3. Defect statistics in the firs layer

In Fig. 10 are plotted the concentrations of N-fold-
coordinated spheres for the 3D melting run versus densi-

ty expressed as a percent of the total number of spheres
and computed for the center 75% of each image to avoid

FIG. 12. Delaunay triangulations of snapshots containing in-

stantaneous particle positions for the 2D run. The center of
each particle in the image is at a vertex with nearest-neighbor
bonds shown by the lines. Defects in the topology of the lattice,
or particles that are not sixfold coordinated, are highlighted by
having their near neighborhoods shaded. Tic marks on the bor-

ders of each snapshot are separated by 20 pixels, or 2.4 pm.
Top (a) in-plane density n =0.0606 just into the crystal; Bottom
(b) n =0.0590 just into the intermediate region. Compare the
more gradual interface in 2D with the sharp transition in 3D of
Fig. 2.

-&8OO SPHERES

TO 30
RESERVOiR

edge effects. We will discuss these defect statistics and
the arrangements of defects shown in Figs. 2 and 3 in
comparison to those of the 2D run in Sec. V.

65

rad IV. RESULTS—2D

A. Experimental geometry-density gradient along wedge

75d-
=386 t

g qadi

it

FIG. 11. Schematic of the experimental geometry for the 2D
run (not to scale). The imposed density gradient of particles in

the y direction is induced by a small wedge angle n~ —5 X 10
radians between two smooth glass plates. The angle a„along x
is set to be as small as possible. The particles are confined rigid-

ly in the x-y plane by the repulsive particle-wall potential until
the plates are separated by -9 diameters which is beyond the
plate separation at melting of -7.5 diameters. The imaging
volume in the x-y plane is shown. It is centered in z at the focus
on the 2D layer.

In Fig. 11 is shown a blowup of the present experimen-
tal 2D geometry. The largest wedge angle between the
glass walls (and therefore the major density gradient in
the system) is along y. Melting of the 2D layer is ob-
served at a nearest-neighbor sphere separation a-4.4d
and distance between the glass ~alls t =7.5d, consider-
ably before any out-of-plane motion is measurable. We
begin to measure out-of-plane motion at the +0.05 pm
level (+5%%uo of the 3D vertical layer spacing along z)
about 750 pm from the liquid-crystal boundary in y when
a = —3.8 diameters, and t =8.9 diameters. Therefore, to
good approximation the spheres are rigidly confined to
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the plane through the 2D melting transition. The im-
posed density gradient along y due to the wedge corre-
sponds to a change of sphere density of roughly +1% per
image (of size -35 sphere separations) along the wedge.
The wedge angle is better than a factor of 5 smaller in the
x direction in the plane perpendicular to the wedge. The
wedge topology is mapped out in detail with the optical
microscope on a -50X 50-pm grid both before and after
an experimental run. The runs are taken at a position xo
that corresponds to an inflection point in the plate sepa-
ration (and sphere density) along x. Successive images
are digitized at positions xo,y for up to 15 different y
values separated by 20—25 pm. During each run, which
takes approximately one half hour, the wedge does not
change to within our experimental accuracy of
—1 X 10 radians.

As the system is in direct contact with both thermal
and particle reservoirs, constant chemical potential and

temperature are maintained along the wedge in equilibri-
um. The major disadvantage in using a wedge geometry
for this experiment is the imposed density gradient on the
spheres in the direction of the wedge. This is the same
geometry used in our earlier runs with a colloid with
much different charge. ' ' The density gradient would
smear out a density jump associated with a first-order
melting transition by our accuracy in measuring the den-
sity variation across an image. %'e have a gradient of
similar magnitude in the 3D experiment described in the
previous section and in that case have no diSculty ob-
serving a sharp density jump at the transition (see Fig. 8).
The 2D crystal nearby would also serve as an orientation
boundary condition for a possible hexatic phase in direct
contact. The density gradient will produce on average
one-half extra free dislocation per image with a Burgers
vector perpendicular to the gradient. Of course, this is
also the case for the three-dimensional density gradient
and so is effectively identical in our "control" experi-
ment.

The major advantage of the wedge geometry is that all
phases can be equilibrated in parallel in the experiment.
There are two time scales for equilibration: Initial equili-
bration of gradients in the screening ion density with the
ion-exchange resin takes place in roughly a month.
Afterwards, any small adjustment made in the wedge will
drive the system out of equilibrium. In our experience, it
then requires roughly 10—20 h to return to a consistent
set of density of transitions, correlation lengths, and de-
fect statistics. ' In the present set of experiments we
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FIG. 13. Delaunay triangulations of snapshots containing in-
stantaneous particle positions for the 2D run. The center of
each particle in the image is at a vertex with nearest-neighbor
bonds shown by the lines. Defects in the topology of the lattice,
or particles that are not sixfold coordinated, are highlighted by
having their near neighborhoods shaded. Tic marks on the bor-
ders of each snapshot are separated by 20 pixels, or 2.4 pm.
Top (a) in-plane density n =0.0569 in the intermediate region;
bottom (b) n =0.0563 lower-density intermediate region just be-
fore the fluid. Compare the 2D situation with that in 3D in Fig.
3.

FIG. 14. Individual particle trajectories in five time steps
separated by 0.05 sec for n =0.0590 in the 2D run in the inter-
mediate density region very close to the crystal. The final posi-
tions of the particles are depicted by solid circles. Here, the rna-

jority of particles oscillate about their equilibrium positions in
relatively ordered regions and in-plane correlated hopping at
the edges of the ordered regions takes place due to defect
motion. Note the absence of an obvious sharp interface be-
tween clumped fluidlike motions and crystalline oscillations
here in 2D in comparison with that of the 3D intermediate re-
gion of Fig. 4. Compare these trajectories with the instantane-
ous defect structure at this density in Fig. 12(b).
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FIG. 15. In-plane density n vs position y along the density
gradient for the 2D run. Error bars in y (abscissa) depict the ex-
tent of the digitized images while those in n (ordinate) depict an
estimate of counting errors due to edge effects. Dashed lines are
a guide to the eye. Note the much smaller breaks in slope at n,
and n2 marking the extent of the intermediate region between

crystal and fluid in comparison to the 3D case of Fig. 6.
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FIG. 17. Instantaneous orientational correlation functions

g6(r) for two densities in the intermediate region for the 2D run.

(a) top curve: n =0.0569; (b) bottom curve n =0.0563. Curve a

is displaced upwards by a multiplicative factor of 10 for clarity.
The arrow for each curve represents the value of the transla-
tional correlation length g at each density. Note that there are
less obvious breaks in the curves at r-g compared to the 3D
case in Fig. 8. Curves al and a2 are algebraic and exponential
fits to the curve (a) with exponent F6=0. 15 and orientational
decay length g~= 5.9$, respectively. Curves bl and b2 are alge-

braic and exponential fits to the curves (b) with exponent
g6=0. 25 and orientational decay length g, =6.7g, respectively.

p 1„W»=,
0 100 200

r ( pixels )

a--
1111i

300

gs(r)
0.1 .

I I I I
f

I I I I
t

I I I I
)

I I I I
)

I I I I
)

I I I I

1.0—
— —f

e
d

made ten 2D melting runs over a period of four months
all showing consistent densities of transition to within
2%. They were equilibrated for more than 24 h after an
adjustment was made to the wedge. We will present the
results from one of these runs. The range covered in y
along the density gradient is 240 pm, and five successive
frames separated by 0.05 sec were taken at 12 locations
along the gradient separated by 20 pm.

B. Snapshots, trajectories, and defects

Q 0$ I I I I I I I l I 1 I I . L I I I I I JL III III I Llll~ll & I

0 100 200 300
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FIG. 16. Top: instantaneous pair correlation functions g (r)
for the 2D run. Successive curves at successive densities a—f are
displaced upwards for clarity. Bottom: instantaneous orienta-
tional correlation functions g6(r) for the same densities as
marked. These are not displaced vertically. The arrows for
each curve mark the spatial correlation length ( for each densi-

ty determined by fitting g(r) to an exponentially decaying en-

velope. The densities for the curves are as follows: (a) fluid at
n =0.0519, (b) fluid at n =0.0535, (c) intermediate region at
n =0.0563, (d) intermediate region at n =0.0569, (e) intermedi-
ate region at n =0.0590, (f) crystal at n =0.0606.

In Figs. 12 and 13 are shown the Delaunay triangula-
tions of various snapshots for densities through the melt-
ing transition for the 2D run. These are to be contrasted
with Figs. 2 and 3 for the 3D run. In Fig. 14 are plotted
the trajectories of all the individual particles for the
period 0.2 sec at a density n =0.0590 just below freezing
corresponding to that of Fig. 4 for the 3D case. It is im-
mediately obvious from these instantaneous particle posi-
tions and trajectories that the melting transition is much
more gradual in 2D than it is in 3D, although it occurs at
nearly the same in-plane density. There is no obvious
two phase separation in the 2D case and the defects in
the intermediate region —Figs. 12 and 13—are for the
most part more isolated in small clusters and are not as
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FIG. 18. Solid diamonds and solid lines: translational corre-
lation length g in units of nearest-neighbor distances a for the
2D run determined by fits to exponentially decaying envelopes
of g (r) calculated from instantaneous snapshots of particle posi-
tions at each density. Open circles and dashed line: orientation-
al correlation length $6 for the same images in the same units
determined from exponential fits to g6(r). The lines are a guide
to the eye and the highest plotted points for g6 are lower
bounds. The extent of the intermediate region is defined here to
be between n& and n2 at which there are large increases in the
orientational and translational correlation lengths, respectively.
Compare this behavior with that of the 3D case in Fig. 9.
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clumped together as in the lower left hand side "liquid"
portion of the 3D snapshots in the intermediate region
between all fluid and all crystal in Figs. 2 and 3. We will
discuss the defect statistics and compare them to those of
the 3D case in Sec. V.

1. In-plane density

The gradual nature of the transition in 2D is demon-
strated by the very small changes of slope evident in the
plot of in-plane density versus position along the gradient
shown in Fig. 15. This behavior can be contrasted with
the 3D case of Fig. 6. The 2D slope changes occur close
to the densities n, and n2 defined in the next section.

2. Static correlation functions

In Fig. 16 are plotted the instantaneous pair correla-
tion functions g(r) and the instantaneous orientational
correlation function g6(r) for several images at represen-
tative densities in the 2D run near melting. These are to
be contrasted with the analogous plots for the 3D run
shown in Fig. 7. On the left hand column of Fig. 16 the
trend with increasing density of the pair correlation g (r)
for the 2D case does not differ appreciably from that of
the in-plane g (r) for the 3D case in Fig. 7. On the figure
the translational correlation length g is marked by arrows
for each curve. This translational correlation length for
2D grows similarly to the in-plane translational correla-
tion length in 3D except that the high density 2D fluid is
more highly correlated than the 3D in-plane counterpart
and the 2D crystal is less ordered in comparison to the
3D crystal. We will discuss this further in Sec. V. The
orientational correlation functions, however, show a
qualitatively different behavior as the dimensionality
changes. Although g6(r) exhibits a few long wavelength
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FIG. 19. Correlation function of the translational order pa-
rameter e ' " at G =Go the first reciprocal lattice vector for the
2D intermediate region just after melting at n =0.0590. Top (a)
plotted on a log-log scale; bottom (b) plotted on a log scale in
the ordinate only. The best fits to exponential (solid line) and
algebraic (dashed line) decay are also shown. Neither curve fits
the data for r )200 pixels, but the exponential decay is a better
fit for r &200 pixels. Here the exponential decay length is 100
pixels, or 8.9a, and the best fit exponent is g = 1.5.

oscillations due to the fluctuations in the —1800 particle
snapshot there is no obvious break in slope at g in 2D as
there is in 3D (Fig. 8). The curves in 2D can be fit with a
single exponential decay or algebraic decay as shown in
Fig. 17. Of course, much more averaging over many un-
correlated snapshots and a longer distance range is need-
ed to average out the long wavelength oscillations due to
fluctuations for a correct statistical limit fit to our
curves.

In Fig. 18 are plotted the translational and orientation-
al correlation lengths g and g6 for the 2D run, where g
and g6 are defined in exactly the same way from g (r) and
g6(r), respectively, as in 3D. These correlation lengths
can be compared directly to their 3D counterparts in Fig.
9. From the comparison of the translational and orienta-
tional correlation lengths fro the 2D and 3D experiments
in these two figures it is clear that the 2D case does ex-
hibit an intermediate region between fluid and crystal in
which the orientational order is higher than the transla-
tional order. As in our earlier 2D experiments with a
different colloid, ' ' we use as the definitions for the
transition densities n, and n2 for the fluid-intermediate
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boundary and the intermediate-crystal boundary, respec-
tively, the midpoint densities between which g6 and ( in-
crease dramatically. The fa11off'of ( for n &0.061 in the
2D compressed crystal is due to the beginnings of out-of-
plane motion and incipient frustration caused by the
nearby two layer crystal which has square symmetry in
plane. "

We can make contact with the intermediate region of
the 2D experiment and the hexatic phase of KTHNY
theory providing some of the predictions of the theory
can be tested. In particular, the hexatic phase should
demonstrate exponential decay of the translational order
and much slower algebraic decay of the orientational or-
der. In Fig. 17, we show that a reasonable fit of algebraic
decay to gs(r) just into the intermediate region at n,
yields an exponent g6-0.25+0.05 in good agreement
with the KTHNY prediction of —„while gG(r) at this
density, shown in Fig. 19, does appear to be best fit by
fast exponential decay. However, at a density higher by
1%,just into the 2D crystal, we observe quite slow decay
of translational order that can be fit with algebraic decay
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FIG. 21. Concentration cz in percent of n-fold coordinated
particles in instantaneous images in the 2D run vs density with
2&% &9. Solid diamonds: c6X1 (ordered particles); small
solid dots: c7 X 3; open circles: c& X 3; open squares c8 X 10;
open triangles: c3 X10. The extent of the intermediate region
between crystal and fluid is marked by the arrows at n

&
and n2.

Compare with the 3D case in Fig. 10.

gG(r)-r G as shown in Fig. 20. The Halperin-Nelson
prediction "for rtG at melting is
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where cr =A„!(A, t+t, 2)tc„)is the 2D Poisson's ratio of the
crystal at the melting temperature, with A, tt and )Mtt the
Lame coefficients for the triangular lattice. Stability cri-
teria for the solid impose limits on the 2D Poisson's ratio
and thus the decay exponents rtG. For the limit of o =1
the largest go= —,

' and for cr =0 the smallest go will be —,'.
We find at n ~ n2, gG =go=0. 35~0.05, gG =1.0

I

+0.05, where ~G, ~
=&3Go, and riG =1.2+0.05, where

2

IGpl=2Go. Best fit algebraic decay curves for these
translational correlation functions in the crystal just
above melting are plotted in Fig. 20. We find an excellent
agreement with the KTHNY prediction for not only the
value of go at the limit of stability of the crystal, but also
the G dependence of gG. Taking these three values to-
gether and using the expression for the predicted power
law decay of Eq. 3, we obtain a "best fit" value for go of
0.327+0.025 just before melting. A best algebraic fit to
g(r) at this density just at melting yields a decay ex-
ponent of 0. 120.05, in excellent agreement with our ear-
lier 2D melting runs using a different colloid' with impli-
cations that qo is also near —,

' for the earlier runs using
lower charged colloid.

3. Defect statistics

FIG. 20. Correlation function of the translational order pa-
rameter e ' " for the 2D crystal just before melting at
n =0.0606. Top (a) G =Go, the first reciprocal lattice vector;
center (b) ~G, ~=&3GO,' bottom (c): ~Gz~=2Go. The top and
center curves are displaced vertically by multiplicative factors
10 and 10, respectively, for clarity. Also shown are plots of
the best fit algebraic decay r for the separate data curves.
From top to bottom the exponents are go=0. 3, q, =1.0„and
g2= 1.2.

In Fig. 21 are plotted the concentrations of X-fold
coordinated spheres for the 2D melting run versus densi-

ty expressed as a percent of the total number of spheres
and computed for the center 75% of each image to avoid
edge effects. These can be directly compared to those in
the first layer of the 3D sample in Fig. 10. The first thing
to note is that the 2D Auid is considerably more ordered
than its 3D counterpart with over 80% sixfold coordina-
tion in 2D contrasted with 67% in the first 3D layer.
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The 2D crystal is less ordered with 95% sixfold coordina-
tion at melting versus 98% in 3D. This is also obvious
from the plots of correlation functions in Figs. 7 and 16.

V. CONCLUSIONS

A. Comparison of melting in 2 and 3D: this experiment

directional particle hopping ' as observed at higher
density. It is much more ordered than its 3D counter-
part: 80% sixfold coordinated with a spatial correlation
length of -4a at freezing. The defects are clustered into
strings which are percolated across the image in a
snapshot of particle locations. However, the "ordered"
regions in an instantaneous configuration are larger
(-4a) than their 3D counterparts.

1. Crystal near melting 3. Intermediate region

The first layer next to the glass wall of the 3D crystal
near melting has triangular symmetry and is 98% sixfold
coordinated with isolated small defect clusters —that are
usually tightly bound dislocation pairs and triples. The
translational correlation length, defined in a fit to an ex-
ponential decay to g(r), is -90a. There are -0.5% va-

cancies, defined as vertices in the Delaunay triangulation
with nearest neighborhoods that can accommodate an
additional 0.8—1.2 particle. The region near melting
ranges from one to five layers thick at the glass surface
with FCC stacking preferred only after ten layers. There
are -0.8% hops to and from the first and second layers
of crystal in 0.05 sec.

In comparison, the 2D crystal near melting also has
triangular symmetry but the spheres are rigidly confined
to the plane. It is less ordered than its 3D counterpart
with 95% sixfold coordination and a translational corre-
lation length of 30-40a. The defects also occur as isolat-
ed dislocation pairs and triples. There are roughly the
same percentage of vacancies, -0.5% as in the first layer
of the 3D crystal. Because individual particles are rigidly
confined to the plane and cannot take advantage of hop-
ping to and from the second layer as in 3D, there is no-
ticeably more correlated directional particle hopping in
plane (see Figs. 4 and 14 for a comparison of particle tra-
jectories just into the intermediate region). This correlat-
ed in-plane hopping is directly associated with defect
motion as has been noted in our earlier experi-

The spatial dependence of the instantane-
ous translational correlation function gG(r) is found to be

consistent with algebraic decay r . At melting,
go-0. 33 and gG-6 which is in excellent agreement
with KTHNY predictions.

2. Fluid near freezing

The 3D fluid near freezing is layered with density
profile perpendicular to the wall very similar to its in-
plane g(r) and considerable exchange of particles be-
tween layers. The first layer at freezing is 67% sixfold
coordinated with spatial correlation length -2a and de-
fects highly clumped into large clusters that are linked to-
gether in such a way as to completely encircle small
"ordered" regions —in other words —nearly grain-
boundarylike. The defects are percolated across a region
the size of our images in an instantaneous snapshot of
particle configurations.

In contrast, the 20 Quid near freezing is rigidly
confined to the plane and so still exhibits correlated

In the 3D system, there is a clear change of slope in the
density versus position along the gradient at two average
densities defining the intermediate region between fluid
and crystal: n, & n & nb. The extent of the region
(nb n,—)/nl, —5%. The intermediate region exhibits
clear phase separation with two phases with densities
very close to the extrapolated values for the crystal and
fluid. The trajectories and defects in the two regions
resemble those in the two phases mentioned above. The
translational correlation length g varies between —5 and
18a in this region. The orientational correlation function
has a definite change in slope at r =(. For r )g, the
orientational correlation length (6=(.

In contrast, for the 2D intermediate region n, & n & n2
the change of slope in density versus position along the
gradient is much less obvious than in 3D. The extent of
the region is larger in density (nz n, )Inz—-8%. There
is also no obvious phase separation in the instantaneous
snapshots of particle locations or their trajectories com-
pared to 3D. The defects are clustered mostly into
strings which are still isolated from each other for the
most part. The string length grows as the density is
lowered from the crystal at n2 to the fluid at n&. These
strings percolate across the image very close to the fluid
boundary at n = n &. The defect clusters occasionally
have a net Burgers vector but are more often composed
of paired dislocations. The incidence of unpaired disloca-
tions, or defect clusters with net Burgers vector that is
not equal and opposite to any within the image, increases
gradually by roughly an order of magnitude as the densi-

ty is lowered within the intermediate region. More pre-
cise numbers must await more averaging over many im-

ages to obtain better statistics. The translational correla-
tion length g varies from 4 to 18a similar to the 3D case.
The orientational correlation function g6(r) does not ex-
hibit a sharp break at r =g but does oscillate slowly in
these instantaneous configurations. If one smoothes out
the oscillations, g6(r) is fit moderately well either to a
slow algebraic decay with exponent varying from —0.25
to —0.05 or an exponential decay with correlation length
varying from 10 to 200a as n varies from n, to n2.

B. Comparison of this 2D run to other 2D melting runs
in wedge geometry

In comparison to our seven earlier 2D melting runs in
wedge geometry using colloidal spheres with identical di-
ameter but lower charge, ' ' ' ' we observe in this new
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2D experiment remarkable consistency in the behavior of
g(r), g6(r), the translational, and orientational correla-
tion lengths and also the defect configurations and statis-
tics in instantaneous images as the density is varied from
the fluid through the intermediate phase and on into the
crystal. Of course, the densities of transition n, and nz
are in this new set of runs about a factor of 3 smaller.
For the higher charged colloid with a larger screening pa-
rameter in the present experiments, the extent of the in-
termediate region is about a factor of two larger (8% in
density versus 4% in density for the earlier runs). This
allows us to obtain better density resolution and relative-
ly smaller gradients across the images in the present ex-
periments. For both sets of experiments, our fits to alge-
braic decay for the orientational correlation function are
in good agreement with the decay exponent g6-0. 25 at
the intermediate region-fluid boundary. For the new ex-
periments, we calculated the translational correlation
function gG(r) in the crystal just at melting and obtained
excellent agreement with the KTHNY prediction of alge-
braic decay with power gG-G, and a value of go-3
within experimental accuracy. If we fit the pair correla-
tion function with an algebraic decay, we obtain an ex-
ponent at melting of 0. 1+0.05 for both colloids with the
implication that both crystals become unstable at qo near
one third.

Tang et al. have performed an isothermal expansion
experiment using charged colloidal spheres of diameter 1

JMm between smooth glass plates. Depending on initial
plate separation, they find melting at a -4-6d in two
runs in which the plates were separated at 0.7 and 3.5
pm/min. The larger size of their spheres enables them to
obtain a smaller density gradient in their images (also
about 2000 spheres at melting) but limits the ratio of
screening length to diameter or the screening parameter
4 =a/A. to a considerably larger value compared to those
of our two experiments. This comes about because the
largest screening length k one can obtain at room temper-
ature in water is 0.7 JMm due to H-OH dissociation equi-
librium. If we take this limiting screening length for
their experiment —clearly a gross overestimate —then
their screening parameter is A &&6—9 for their two runs.
This can be compared to estimates of our screening pa-
rameter: for this run A —3 and A-3. 5 for our earlier ex-
periments. The implications of this may be that the 1-pm
spheres of Tang et al. are closer to the hard sphere limit
in comparison to our 0.3-pm spheres which have a
longer-range interaction potential. This is probably
relevant to the driving mechanism for melting in the two
systems as we see a factor of 2 increase in the extent of
the intermediate region between our two experiments at
A =3 and A =3.5.

As Tang et al. scan density with time in their experi-
ments, they have an opportunity to watch defects evolve
in time in the same region of the sample as the density is
driven through melting. This is in contrast to our
method of effectively maintaining —10 slightly different
density samples along our wedge in equilibrium measur-
ing defect statistics and other things of interest for all
samples in parallel. If one obtains good statistics in ei-
ther experiment, the system were in thermodynamic equi-

librium, and the wedge angle and the rate of separation of
the plates were small, the methods should in principle
produce identical answers as to the nature of the defects
and melting on identical samples.

The major drawbacks to the two experiments are
different: for the wedge a density gradient will always ex-
ist. This gradient could in principle round off any sharp
first-order transition and also will by necessity add a
small free-dislocation density background in the crystal.
It is unclear to what extent the boundary conditions (den-
sities differing by about 20%%uo of the density difference be-
tween crystal and isotropic fluid on opposing sides of
each separate -35 particle image) will affect the nature
of melting. It is hard to believe that this boundary condi-
tion will drive a more continuous KTHNY phase transi-
tion in the same manner as a sixfold oriented sub-
strate. "' As to whether the rounding effects will be
severe enough to completely obliterate any signature of a
first-order phase transition, we have a counterexample in
the 3D experiment described in this paper.

For the expansion experiment, one has to worry about
whether the expansion is really adiabatic or whether the
system is being driven out of equilibrium. This could be
important, as we find ' ' a mechanical equilibration
time of -10—20 h for our system which is roughly the
time needed for a dislocation to climb over a correlation
length near melting. " This is considerably longer than
the 20 min —7 h period over which Tang et al. swept the
entire density range from high-density crystal to low-
density fluid. One might expect that the equilibration
times for the two experiments scale to first order like the
Stokes diffusion coefficient for the spheres —1/d so that
the equilibration times for 1-pm spheres could be as long
as several days.

Tang et al. observe in their experiment using iso-
thermal expansion of a 2D layer of 1-pm diameter
spheres a similar behavior in g(r) and g6(r) to that
shown in Fig. 16. They also observe between 80% and
96% sixfold coordination in the intermediate region that
has longer-range orientational order than translational
order in their experiment. By fits to these correlation
functions they obtain estimates for g6 at the
intermediate-fluid boundary very close to —,'. During their
sample expansion, they observe only minute changes of
slope in the density with time as the system passes
through the intermediate region boundaries. These ob-
servations are in excellent agreement with both our 2D
melting experiments, and also consistent with KTHNY
predictions for melting. The extent of their intermediate
region varies with expansion time but is roughly 10%%uo in
density for their slow expansion run.

However, the results of our 2D experiments are in
disagreement in several important respects. First, the
translational correlation length of their crystal just after
freezing is very small —8a (in comparison to that in our
experiments of -30a) and hangs at that value during ex-
pansion for —30% variation in density. Second, their de-
fect distribution in the intermediate region appears to be
more clumped and less uniformly distributed than ours.
They interpret their results in terms of a first-order
grain-boundary driven transition with an intermediate
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two phase region that curiously exhibits many of the pre-
dicted properties of a hexatic. A similar argument has
recently been made about the results of big simulations of
over 10 2D Lennard-Jones particles: that somehow the
two phase region in 2D exhibits a novel possibly fractally
interconnected structure that is inhomogeneous down to
the scale of an interparticle spacing yet contains an orien-
tational transition that is quite KTHNY-like. The argu-
ment that the melting transition is first order in the simu-
lations is based on phase boundaries determined by free-
energy expansions for much smaller 2D Lennard-Jones
systems.

Tang et al. argue that the transition they observe must
not be consistent with KTHNY as (i) they observe small
grain-boundarylike structures and defect clumping that
resembles two phase coexistence in the intermediate re-
gion, and (ii) they never observe directly unbinding of
dislocation pairs or disclination pairs. Instead they see a
complicated structure of highly clumped disclinations
with the number of disclinations increasing roughly
linearly as density is increased through the intermediate
region. We have a diScult time identifying grain-
boundarylike loops in the high-density intermediate re-
gion of either of our two different colloids in any of our
17 different experimental runs (for example see Figs. 12
and 13), so this may be a distinct difference between our
experiments and those of Tang et al. However, we be-
lieve that the renormalization group picture of the
KTHNY theory cannot be taken too literally when one
examines the microscopic defects of a system.

The renormalized defects that eventually unbind due to
screening by intervening overlapping defect pairs are
theoretically at infinite distance scales. If one could
define an effective renormalized Burgers vector (or dis-
clinicity) in a real experiment on a set of expanding dis-
tance scales, then one may then perhaps hope to see these
large distance scale objects gradually unbinding as the
system undergoes two separate Kosterlitz-Thouless tran-
sitions. While one observes the microscopic defects of
the system, however, one observes all of the intervening
dislocation pairs that are renormalized out of the
KTHNY theory. As it is favorable energetically for these
dislocations (and disclinations) to bind together" and
perhaps even arrange into arrays, it can be expected that
the microscopic arrangement will be quite complicated,
overlapping, and clumped. The exact microscopic ar-
rangement of defects also may differ depending on micro-
scopic details such as the ratio of defect core energies
compared to interaction energies in the system. ' If this
ratio favors grain-boundary formation before the
KTHNY dislocation pair unbinding can take place then
a first-order transition may intervene. But the resulting
first-order transition and the two-phase region may be
greatly affected by the nearby Kosterlitz-Thouless transi-
tion. One might hope to learn something about defect
pair unbinding on average in a statistical sense by making
a statistical study of the microscopic defects. We be-
lieve the best method of ascertaining whether a KTHNY
melting transition occurs in a specific experiment is to
measure as many universal predictions of the theory as
possible including dynamics and temperature depen-

dences of exponents. Nevertheless, the microscopic pic-
ture afforded by these imaging experiments is fascinating
in its own right.

C. Summary

We observe separate divergences in orientational and
translational correlations in our 2D experiment and a
very gradual melting transition in contrast to the same
system in 3D which exhibits an abrupt classical first or-
der melting transition. The static exponents governing
the algebraic decay of translational and orientational
correlations at the two separate transitions in 2D are in
excellent agreement with our earlier experiments and also
the KTHNY predictions. The microscopic defect ar-
rangements and particle trajectories are quite different in
the 2D and 3D systems. While the microscopic defect ar-
rangements in our 2D system are remarkably consistent
with our earlier experiments using a different colloid
through the melting transition at a vastly different densi-
ty, they appear to be considerably less clumped into loop
structures than those of Tang et al. in their expansion ex-
periment.

The defects in our 2D experiments grow from isolated
dislocation pairs and triples in the crystal into still longer
three or four dislocation pair strings usually of unit width
in the high-density intermediate region. As the particle
density is lowered through the intermediate region, the
strings grow in number and length and finally begin to
touch each other just at the intermediate region-fluid
boundary. In the high-density fluid, they resemble
grain-boundarylike loops percolating through our im-
ages. The intermediate region between crystal and isotro-
pic fluid is in our 2D experiments either a hexatic or a
two-phase region greatly affected by the nearby KTHNY
transition. Without thermodynamic measurements, mea-
surements of the predicted values of the elastic constants
near the transitions" andior temperature dependences of
exponents we cannot be absolutely certain that the sys-
tern is undergoing a KTHNY transition. However, the
defect arrangements mentioned above are inconsistent
with a standard two-phase region similar to the one we
observe in 3D and are quite consistent with what we
would expect for a complicated microscopic picture of
the hexatic.

Some open questions remain for future study. (i) Why
are the defect densities and arrangements so similar
throughout melting in the two 2D 0.3-pm sphere colloid
experiments with different charge and screening parame-
ters? (ii) Why are the disclination densities similar but
the defect arrangements more clumped in the expansion
experiment on 1-pm spheres of Tang et al. ? (iii) What is
the driving mechanism for the 3D melting we observe
near a smooth wall? (iv) How does the layering of the 3D
fluid near the wall change with increasing density near
melting? (v) What does the freezing of the second or
third or nth layer of the 3D crystal look like? (vi) How is

melting or freezing affected in 2D or 3D by a modulated
substrate? (vii) What are the thermodynamics and dy-
namics of the hexatic/intermediate regions? (viii) At
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what values of relevant parameters does one observe
KTHNY or first-order melting in real experimental 2D
crystals? (ix) How does diffusion differ in a 2D fiuid and
a 3D layered Quid?

Clearly, digital imaging experiments on colloidal
spheres have opened up a fascinating area of research to
detailed study of such questions with excellent prospects
of obtaining answers in the near future.
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