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We present the first exact results of the ground-state energy in the two-dimensional Hubbard
model on a 4x4 cluster for several values of U and fillings. The behavior of the binding energy of
two holes as a function of U is discussed together with some analytical results in limiting cases.
The analysis of the hole-hole correlation function allows one to determine the range of values of U

where binding might be seen.

An open question in the field of strongly correlated elec-
tron systems is whether an effective attraction between
quasiparticles can be induced by purely repulsive (Cou-
lombic) interactions.! This problem has attracted more
and more interest since the conjecture that the basic prop-
erties of high-temperature superconductors (HTSC) can
be understood in terms of interacting electrons in a (rigid)
two-dimensional (2D) lattice.? One of the simplest and
most popular models which embodies such a picture is the
Hubbard model (HM) on a square lattice, defined by the
Hamiltonian

H= —t( Z) cj-"*c,-"+ uX ni'nt, 1)
i,j),o i

where ¢ (=1 in the following) represents the nearest-
neighbor hopping energy and U > 0 the on-site Coulomb
repulsion. This model has been extensively studied by
analytical methods® and numerical simulations.* Both
approaches have shown that the HM is a Mott insulator
at half-filling (i.e., one electron per site) with antiferro-
magnetic ordering induced by the nesting property of the
Fermi surface. More controversial is the behavior of the
HM in the low-doping regime (i.e., at filling v < 1) which
is relevant to HTSC.? The main question is whether the
holes, injected in the system upon doping, experience an
effective attraction mediated by their interaction with the
antiferromagnetic background. The tendency of holes to
bind in pairs has been studied analytically by approximate
methods®® and numerically by exact diagonalization,®
mainly in the strong-coupling limit of the HM (the so-
called ¢-J model). Specifically, the binding energy A of
two holes is defined as

A=E2+Eo_2E1, (2)

where E, is the ground-state energy of the system with n
holes. In the thermodynamic limit, the ground-state ener-
gy per site E(V,N;)/N, depends on the number of elec-
trons NV and the number of sites N, only through the filling
v=N/N;. If we neglect the O(1) finite-size corrections in
the total [i.e., O(V;)] energy of the system, we find that

1 8%(E/N;)
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Equation (3) would imply that the binding energy always
vanishes in the thermodynamic limit and is asymptotically
positive, being proportional to the bulk modulus, which is
positive due to thermodynamic stability. This is, of
course, the case at U =0. A finite (negative) value of A at
infinite volume can only result if the O(1) corrections in
the n-hole energies E, do not cancel exactly in Eq. (2).
At large volumes, these finite-size terms eventually over-
whelm the bulk contributions which scales to zero accord-
ing to Eq. (3).

In the ¢-J model, numerical results indicate that A is
negative in a 4x4 lattice® for J > 0.1. Nevertheless, this
result is not conclusive since a finite-size scaling of the
binding energy is hampered by the prohibitive difficulty of
extending the diagonalization approach to larger systems.
Should A approach a finite, negative value in the thermo-
dynamic limit, it would imply the presence of an attractive
effective interaction between holes. Such an attraction
could, in turn, imply either the formation and uniform
condensation of Cooper pairs, or else, phase separation be-
tween a hole-rich and a hole-deficient region. The Cooper
pair regime is believed to occur in the negative U HM,’
where a real attraction between electrons is present in the
system. Conversely, recent speculations® suggest that
phase separation is present in some region of the phase di-
agram of the 7-J model. While the occurrence of phase
separation can be proved rigorously’ for a sufficiently
large value of J/t, no proof is available for the more in-
teresting J < ¢ case. Based on small-size energy studies, it
has been impossible so far to argue unambiguously for ei-
ther of these conclusions.

Another independent probe of possible binding between
holes is the hole-hole correlation function

—————<’"°’;’R) , ()
u

1+h(R)=
where mg=[1—n'(R)1[1 —n!(R)] is the hole density
operator, and u? is the uncorrelated value of (momg) cor-
responding to the same number of holes, defined by the re-
quirement that X g0k (R) =0.
The aim of this Rapid Communication is threefold: (i)
to present the first exact results of the binding energy
AU) in the HM on a 4x4 lattice; (ii) to discuss its
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asymptotic behavior for larger systems in the two limiting
cases U =0 and U =oo; and (iii) to compare the physical
picture emerging from the study of the binding energy to
that coming from the hole-hole correlation function A(R).

Exact diagonalization in small clusters has shown that
in the parameter region of the #-J model where binding
seems to be present (i.e., where A <0) the hole-hole
correlation function h(R) is monotonic and positive at
short distance,® supporting the presence of an effective at-
traction between holes. However, a previous analysis ' of
the HM in a 4 x4 lattice at intermediate coupling (U=4)
suggests repulsive hole correlations, even if an indepen-
dent estimate'! of the binding energy A shows attraction.
In order to analyze this apparent contradiction in more
depth, we have investigated the dependence of A on the
coupling U by exact diagonalization of the HM on a 4x4
cluster. Since, in weak coupling, the typical magnetic
correlation length*® & =#vr/Espw (where v is the Fer-
mi velocity and Espw~U/2 is the spin-density-wave gap)
decreases roughly as 1/U, a study of A as a function of U
may give some information on the size dependence of the
binding energy. '?

Exact diagonalization of the Hamiltonian (1) has been
carried out by fully exploiting the symmetries of the lat-
tice,'* thereby reducing the dimension of the Hilbert
space from about 165%10° to a few million. Such a
reduction of the Hilbert space allows the implementation
of the standard Lanczos method on a supercomputer in
order to obtain the lowest eigenstate. Independent runs
have been carried out in each of the 20 irreducible repre-
sentations of the symmetry point group'® of the 4x4 lat-
tice with periodic boundary conditions. In such a way we
have identified the representations which provide the
lowest energy. A full description of the method, together
with an extensive survey of the results will be published
elsewhere.

In Table I the ground-state energies of the 4x4 lattice

at v=1% 13, and {¢ are given for values of U up to

TABLE I. Ground-state energy of the Hubbard model in the
4x4 cluster for several values of U and fillings v=1¢, 1+, and
it . The binding energy A [see Eq. (2)] is also quoted. The es-
timated error is, at most, in the last figure.

U i i i A
1 —20.79272 —21.08996 —21.39283 —5.63x107}
2 —18.01757 —18.58505 —19.17135 —1.88x1072
3 —15.63666 —16.45364 —17.30003 —2.94x10 "2
4 —13.62185 —14.66524 —15.74459 —3.60x10"?
6 —10.55222 —11.96700 —13.42123 —3.94x1072
8 —8.46887 —10.14724 —11.86883 —4.32x1072
10 =17.02900 —8.89301 —10.80701 —5.00%10 2
12 —5.99222 —7.99376 —10.05147 —5.62x1072
16 —4.61186 —6.80729 —9.06557 —6.28x1072
20 —=3.73990 —6.06801 —8.46144 —6.53x1072
24 —3.14144 —5.56692 —8.05975 —6.73x107?
28 —2.706 18 —5.20647 -7.77669 —6.99x10?
32 —2.37589 —4.93556 —7.56832 —7.31x107?
40 —1.908 42 —4.55695 —7.28588 —8.04x107?
50 —1.53078 —4.25663 -7.07718 —9.47x1072
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U=50. At half-filling the ground state is totally sym-
metric for all U in agreement with a theorem by Lieb.'4
The one-hole state is sixfold degenerate with total
momenta (*#/2, = 7/2), (0,n), (x,0), respectively, in
agreement with previous findings in the 7-J model. The
two-hole system presents a level crossing of states of
different symmetry. For U < Up~3 the ground state is
sixfold degenerate: A doublet of states of momentum
(n,7) and p rotational symmetry, and a quartet of states
with momentum (=% /2, * n/2). For U > Uy the ground
state is threefold degenerate: a state of momentum (0,0)
and d,2_,: symmetry and a doublet of states with momen-
tum (0,7) and (n,0). This confirms the results of an in-
dependent calculation'® where an almost degeneracy was
found at U =4.

In Fig. 1 we show the binding energy A as a function of
U for both the 4x4 lattice (@) and the 2x2 “lattice” (0).
These results show that binding of holes is present in both
systems. In the 4Xx4 case, it actually increases with U up
to U=50. However, at very large U, A(U) changes its
sign and, at U =00, it saturates at the value® Aw~1.32,
while Aw =4(2 —+/2) ~2.34 for the 2% 2 cluster. Compar-
ing our results with previous Monte Carlo calculations on
the same system,'! we find a binding energy at U=4
which is three times smaller. Therefore, we conclude that
the statistical error was underestimated in Ref. 11.

A distinctive feature of the curves shown in Fig. 1 is the
presence of an abrupt change in the trend of A(U) be-
tween the “small-coupling regime,” where A is negative,
and the “large-U” region, where A quickly becomes large
and positive. The characteristic value of U where this
transition occurs is strongly dependent on the size of the
system. It is tempting to relate this behavior to the early
saturation of the one-hole energy towards the value
E=—4implied by the Nagaoka theorem.!®> A rough es-
timate of the magnitude of the coupling U above which
the one-hole ground state becomes ferromagnetic, shows
that it is asymptotically proportional to the number of
sites N;. In fact, a variational bound in the spin- & sub-
space can be obtained by means of the state

||V>-C(I)|V’H> ,

0.3

1/U

FIG. 1. Binding energy A [see Eq. (2)] as a function of 1/U.
The lines are only guides to the eye.
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where |yy) is the ground state of the Heisenberg model
and Q is the largest momentum in the Brillouin zone, i.e.,
(n,n). A straightforward calculation shows that, for
sufficiently large systems, the energy of the ferromagnetic
state is variationally worse than that of |y) for U
<U.=aN,, where a is of order unity. Therefore, the
Nagaoka mechanism which dominates the structure of the
one-hole ground state in the U — oo limit becomes rapidly
irrelevant at fixed U for increasing lattice size. At U =oo,
where double occupations are strictly forbidden, it is pos-
sible to analyze in detail how the binding energy scales
with the size of the system. In this limit, from strong cou-
pling expansion, it is known that the ground-state energy
at half-filling E¢ vanishes as 1/U, while the energy of one
hole approaches the Nagaoka limit £, = —4. Let us now
evaluate the energy E; of two holes for U=o0. Let us

|

-E;< X
R\.R7R3,R,

where E ycp is the ground-state energy of Hucs.

In conclusion, we have obtained two bounds (Eycs
< E,=<Egr) which tend to a common value: Epcp
=FEsr=—8, implying A—0 at U=oo for infinite
volume. In the case of the 4x4 lattice, the previous in-
equalities give'® —7.57 < E; < —6, consistently with the
exact result® £, = —6.678. Note that E is strictly larger
than the theoretical lower bound, implying that the spin
configuration is not able to optimize the phases of the hole
hopping. The above analysis shows that the large positive
value of A at U =oo in the 4 X4 lattice is a finite-size effect
which scales to zero for larger systems. Unfortunately,
the previous analysis cannot be generalized to finite U
where the problem of finite-size corrections is still open.

It is interesting to compare our findings with the results
of the exact diagonalization of the ten-site cluster by Oga-
ta and Shiba.'” The overall behavior of the binding ener-
gy as a function of U is quite similar to the one we find,
being characterized by a large positive value at U=o0
(Ax=2) and a vanishing limit for U— 0. The main
difference in A(U) is related to the weak coupling regime
where the ten-site cluster shows a positive A, probably re-
lated to the closed-shell nature of the U =0 half-filled sys-
tem. However, also in the ten-site cluster, A(U) attains
negative (i.e., attractive) values in a range of couplings
about U~10. Notice that, in moving from the smaller
(2x2) to the larger (4x4) systems, the position of the
minimum of A(U) shifts towards the strong-coupling lim-
it.

In the regime where the physical properties of the HM
are faithfully represented by the z-J Hamiltonian, a sim-
ple argument suggests the formation of domains around
the hole where the antiferromagnetism is frustrated,® e.g.,
a Nagaoka ferromagnetic polaron. The size £ of these
domains can be estimated by minimizing the sum of the
magnetic energy due to frustration (~£2/U) and the ki-
netic energy due to confinement (~1/£2). The resulting
size & is of the order of U'*. Therefore, we expect that
finite-size effect are relevant both in the weak-coupling re-
gime (where £~1/U) and in strong coupling (where
E~U'"%), in agreement with our previous analysis of
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consider a spin-polarized state of the kind
lwse) "ck‘.ck'zlk]cl! o).

Choosing k; and k; at the corner of the Brillouin zone, we
have the “spinless fermions’ variational bound
E,<Esg=—8+0(/N;).

In order to obtain a lower bound, let us write the exact
round state |y;) as a linear superposition of states
R\,R>) characterized by the position R;,R; of the two

holes: |y2) =Xg, r,0(R1,R2)|R|,Ry). The matrix ele-

ments (R,,R3|H|R3,R4) vanish unless the pairs (R,,R)

(R3,R4) have one coincident site and the others are

nearest neighbors. Overestimating all the nonvanishing

matrix elements by one, we obtain the matrix elements of

a Hamiltonian Hycp describing a system of two hard-core

bosons. Hence we can write

|6(R1,R2)||6(R3,R)I(R1,R2|Hucs|R3,Rs) < — Encs=8+0(1/N;) ,

f
these two limits.

In Fig. 2 we plot the hole-hole correlations ~(R) as a
function of the distance for the ground state of the two-
hole system at different values of the interaction U. Since
h(R) is not necessarily isotropic, we take an “angular”

0.4
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FIG. 2. Hole-hole correlations [see Eq. (4)] in the ground
state of the HM at v=1¢. The solid line refers to the state of
zero momentum, while the dashed line corresponds to the state
of momentum (r,0).
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average over all sites with the same distance |R|. In Fig.
2 the correlations in the state of total momentum (0,0) are
shown (solid line) together with those of the states of mo-
menta (0,7) and (x,0) (dashed line). This is the ground
state only for U > Uy~ 3.

From these data we notice the presence of a repulsive
core around the hole for every U. This is not the case of
the 7-J model where, for J > 0.1, a nearest-neighbor at-
tractive correlation has been found.® The repulsive core is
likely to be of kinematic origin, being present also in the
free electron limit. At large coupling (U =40) the behav-
ior of h(R) suggests repulsion between holes, notwith-
standing that the binding energy at the same U is negative
(A~ —0.08) and relatively large. In this regime, howev-
er, the calculation of the antiferromagnetic order parame-
ter shows that antiferromagnetism is considerably frus-
trated by the presence of the holes suggesting that the
whole 4 x4 cluster has to be identified with a single bag.
At intermediate coupling (U =8-16) the hole-hole corre-
lations in Fig. 2 show some attractive feature at next-
nearest-neighbor distance. This is, in fact, the most
promising range of couplings for the occurrence of bind-
ing, as previously discussed. In the weak-coupling limit
the correlation function still shows a hump at next-
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nearest-neighbor distance. Note, however, that a similar
trend can be found also in the “uncorrelated” U =0 case,
suggesting that the positiveness of the correlation function
is not a direct consequence of an effective attractive in-
teraction between holes.

In conclusion, we have reported the first exact data on
two different probes of binding between holes in the HM.
Although our results show some evidence in favor of an
effective attraction, one should keep in mind that finite-
size effects can be relevant in a small lattice. The most
favorable range of the coupling constant for the oc-
currence of binding seems to be U~16-20. Further
analysis of this region would be quite valuable for a
clarification of this issue. A proper finite-size scaling
based on accurate Monte Carlo data on larger lattices
would definitively indicate whether the binding we find is
a genuine effect which persists in the thermodynamic lim-
it.
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