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Quantum Hall eff'ect in a self-similar system
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Hall conductivity is calculated for a self-similar system (Sierpitisky gasket) in magnetic fields

to probe the transport properties specific to quasicrystalline systems. We have found anomalously

large fluctuations in the Hall conductivity arising from a hierarchy of interference of wave func-

tions.

The interest in quasicrystals' with unusual symmetry
has been heightened by recent advances both in preparing
single-phase quasicrystalline alloys and in fabricating sub-
micrometer semiconductor structures. In the physics of
quasicrystals, a most important problem is the identifi-
cation of observable properties specific to this class of
structures. One such property has been identified as large
quantum fluctuations in electrical conductivity in the
two-dimensional Fibonacci structure or Penrose tiling. A
similar study has also been done on one-dimensional sys-
tems. ' Here we report an unusual structure in the quan-
tum fluctuation in the Hall conductivity in a two-
dimensional self-similar system.

Although a quasicrystal is characterized by several
features, including strange local symmetries (fivefold in
the Penrose tiling and icosahedral in the three-dimen-
sional quasicrystal) and recursive construction (self-
similarity), it is conceivable that some of the electronic
properties are essentially the consequence of self-
similarity alone. In fact, Ninomiya has pointed out that
the Fibonacci lattice can be constructed by introducing
progressively larger scale modulations in real space, so
that its electronic energy spectrum may be understood as
arising from multiple band folding with hierarchical
Bragg reflections. This accounts for the singular energy
spectrum in quasicrystals and in almost periodic (or
Harper) systems. 6 Thus it is an interesting problem to
identify the effect of self-similarity on the electronic-
transport properties.

Here we consider the Sierpinsky gasket in magnetic
fields as a simple system with an explicit self-similarity for
studying the Hall conductivity. The electronic structure
of the tight-binding system on (triangular) Sierpinsky
gaskets has been studied by a number of authors, and re-
sults have been obtained for the energy spectrum in mag-
netic fields H, ' and for the wave functions in the ab-
sence "' and in the presence ' of H.

Here we study the Hall conductivity for two reasons:
(i) The quantum Hall efl'ect is a sensitive probe of the
electronic structure in two-dimensional systems; and (ii)
the Hall conductivity is well defined even for finite sys-
tems unlike the longitudinal conductivity or transmission
coefficients, for which the decay rate of the wave function
(Lyapunov exponent) has to be defined with care for sys-
tems with singular spectra. The quantum Hall effect in
self-similar systems is particularly interesting, since it has
been shown that the Hall conductivity reflects the topolo-
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FIG. 1. Tight-binding lattice on a Sierpinsky gasket in the
third generation with 512 sites. Solid circles represent atomic
sites, which are connected by the nearest-neighbor transfer.

gy (dependence on the phase twist in the boundary condi-
tion) of the wave function, ' '5 so that the hierarchical in-
terference of wave functions in self-similar systeins is ex-
pected to have a drastic effect there. Semiclassically, the
Hall conductivity reflects the curvature of the dispersion
relation within the effective-mass approximation. Quan-
tum mechanically, however, the problem is rather that of
the nature of Landau-quantized electrons in a multiply
folded band with many band extrema and saddle points.

We consider a lattice on the square Sierpinsky gasket
up to the third generation with 512 sites (Fig. 1), and take
the tight-binding Hamiltonian,

W

8 gt;exp i H (r;xr) —i A (r; —r) c;tc,e . e
2hc ' ' hc

where c;t creates a state at r;, the transfer energy t;J
—1

for nearest-neighbor (ij ) and zero otherwise, and H is the
magnetic field. For usual lattices, the original tight-
binding band coalesces into p Landau levels when
H q/p, where H is the magnetic flux, in units of the
magnetic-flux quantum &0 ch/e, contained within the
unit cell of the crystal. ' For the Sierpinsky gasket we
specify H by the magnetic flux penetrating the smallest
cell in Fig. 1.

We employ periodic boundary conditions to exclude
edge states. Specifically, we take the generalized periodic
boundary condition. This may be thought of as looking at
either the Bloch states with a wave number k (e/
hc)(A„,Ar) for a periodic system in which the finite sys-
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tern (of size L) is considered as a unit cell, or as the states
on a torus with two external Aharonov-Bohm fluxes

(P,P«) (L&„LA«), where A (A„A«) is the vector
potential. The electronic states are a doubly periodic
function of (A„,A«) with period rtro/L.

We have numerically calculated all the eigenenergies
and wave functions as well as the Hall conductivity ox«

from the Kubo formula for each value of A for a given H
In Fig. 2(a) we show a result for o„«at T=O against the
Fermi energy EF (the highest energy of the occupied
states) for H —,

' with A 0. The result shows that o„«
has anomalously large fluctuations as EF is varied.

When averaged over A, the Hall conductivity is ex-
pressed as
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where u'(A) is the ath eigenstate, and & J ) repre-
sents an inner product. This quantity gives an integer,
which is a topological invariant (first Chem character) in
terms of differential geometry. ' ' ' The integral corre-
sponds to the Hall conductivity for filled bands when EF
lies in a gap. The result' for (cr,«) against the number of
occupied electrons shows that the fluctuation in the Hall
conductivity is still large even for the averaged (cr„«).
More specifically, if we plot the contribution of each state
to (cr,«) against the eigenstate number in Fig. 2(b), a re-
markable behavior emerges in the Hall conductivity in
which progressively larger values of (cr,«) appear at larger
intervals of eigenstate number. We can characterize this
behavior in Fig. 3(a) by looking at the autocorrelation of
the fluctuation, F(ha) (cr,«(a)o,«(ts+ba)), where
( ) represent an average over the eigenstates and
o„«(a) is the contribution of the ath eigenstate to (o„«).
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FIG. 2. (a) Hall conductivity cr «of the system described in

Fig. I is plotted against EF (the highest energy of the occupied
state) for H —,

' with A 0. (b) The contribution of each state
to the Hall conductivity averaged over (A„A«) and &cr,'«),
against the eigenstate number a.

FIG. 3. The autocorrelation function, &cr «(a)o «(a+ha)),
for (a) the Sierpinsky gasket with H —, and (b) a typical dis-

order system on a 24x 24 square lattice with a periodic bound-

ary condition for 0» and the distribution width of 0.5 in the
site energies.
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The correlation has strong structures which do not decay
with ha in contrast to the behavior in usual disordered
quantum Hall systems on a square lattice with periodic
boundary conditions [Fig. 3(b)]. A similar feature in the
fluctuation autocorrelation is also obtained for o„~(A
=o).

We can indeed visualize these large fluctuations as com-
ing from the interference of the wave functions on various
length scales, which makes the Landau quantization frus-
trated. Figure 4(a) depicts a typical dependence of cr„~ on
A for a given eigenstate. It is seen that cr„~ as a function
of boundary condition, or A, fluctuates in a singular and
somewhat self-similar manner. The wave function itself
has a complex dependence on A, reflecting the multiple
interference of the wave function, and we can see this
[Fig. 4(b)] from the phase' (argument of a;jao) of a
coefficient a; relative to that of a reference site (i 0)
when we expand an eigenstate as

u'(A) -gag(A)c, '(0) .
J

For the second-generation Sierpinsky gasket (with 64
sites), the result for cr„~ has a much less wild dependence
on EF or on A, which indicates that the interference effect
grows rapidly with the number of generations of the self-
similarity.

Thus, unusually large quantum fluctuations in the Hall
conductivity are shown to be an observable property of a
self-similar system. In other words, the mesoscopic ef-
fect, which is usually considered for disordered systems
and comes from the interference of wave functions scat-
tered by impurities, appears in self-similar systems with
interference superposed on various length scales and can
be probed by the Hall effect. ' The fluctuation in the Hall
conductivity is shown to change drastically when the value
of H is varied (down to 2', in this study) in the self-
similar system. This is reasonable, since the interference
should be sensitive to the magnetic length (cx:H '~ ).
When H is varied continuously, we can expect a large
magnetic fingerprint in the Hall effect in a finite self-
similar system.

For an infinite self-similar system, the Hall conductivity
is expected to be singular with the energy spectrum con-
forming a Cantor set. In real situations, however, there is
always some cutoff lengths, such as the inelastic or phase-
coherence lengths, or the domain size over which the fa-
bricated sample realizes self-similarity. Thus the hierar-
chy would be truncated at a finite level.

In addition, randomness, if present in the system, will
interfere with the effect arising from self-similarity. The
effects of temperature and disorder on the conductivity
fluctuation and its scaling properties should be relevant in
real systems. For disordered quantum Hall systems with
usual band structures, the fluctuations in the Hall con-
ductivity and its scahng properties have been studied.
The result shows that, although the root-mean-square
fluctuation, Ba„~, is of the order of e /h in accordance
with the universal conductance fluctuation, Bo„~ decreases
sharply as the averaged Hall conductivity approaches a

FIG. 4. An example of the (A„A~) dependence of (a) o,~
and (b) the phase of the wave function at a particular site
tr; (20, 19) here] relative to that of a reference site [r; (0,0)]
is shown for an eigenstate (128th eigenstate here) for H

quantized Hall plateau near an integer Landau-level
filling. This correlation is specific to quantum Hall sys-
tems, in which the fluctuation is dominated by the locali-
zation of states due to disorder, with the localization
length being a continuous function of energy within a
broadened Landau level. In the present case, by contrast,
the crystal structure gives rise to a complicated quantum
Hall effect in the disorder-free limit, which in turn makes
the scaling properties peculiar, since the introduction of
disorder exerts different effects on the different stages of
the hierarchy. This problem will be discussed elsewhere.

Another problem for self-similar systems is the follow-
ing. It has been suggested that some of the eigenstates
in quasicrystals are critical (borderline between localized
and extended), or multifractal to be precise. It is an in-
teresting problem to consider whether critical states can
carry Hall current in the thermodynamic limit. For disor-
dered quantum Hall systems there is an indication that
they can, since the Kubo-formula approach shows that a
Landau level carries a nonzero Hall current in the quan-
tum (H Oo) limit, while the current-carrying delocal-
ized states, which exist at the center of the broadened
Landau level in this limit, are shown to be fractal.
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