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Kosterlitz-Thouless transition in the two-dimensional quantum XY model
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Convincing numerical evidence is obtained via extensive quantum Monte Carlo simulations on

square lattices as large as 96x96 that the spin-2 LY model undergoes a Kosterlitz-Thouless

phase transition at kT, /J=0. 350(4). Correlation length and in-plane susceptibility diverge at T,
precisely according to the form predicted by Kosterlitz and Thouless for the classical XY model.
The specific heat increases very rapidly near T, and exhibits a peak around kT/J=0. 45.

It is well known now that the two-dimensional (2D)
classical (planar) XY model undergoes Kosterlitz-
Thouless (KT) (Ref. 1) transition at kT, /J=0. 898,
characterized by exponentially divergent correlation
length and in-plane susceptibility. The transition, due to
the unbinding of vortex-antivortex pairs, is weak; the
specific heat has a finite peak above T, .

Does the 2D quantum XY model go through a phase
transition? If yes, what is the type of the transition? This
is a longstanding problem in statistical physics. The
answers are relevant to a wide class of 2D problems such
as magnetic insulators, superfluidity, melting, and possibly
to the recently discovered high-T, superconducting transi-
tion. Physics in two dimensions is characterized by large
fluctuations. Changing from the classical model to the
quantum model, additional quantum fluctuations (which
are particularly strong in the case of spin —,

' ) may alter
the physics significantly. A direct consequence is that the
already weak KT transition could be washed out com-
pletely.

The quantum XY model was first proposed in 1956 to
study the lattice quantum fluids. Later, high-temperature
series studies raised the possibility of a divergent suscep-
tibility for the 2D model. For the classical planar model,
the remarkable theory of Kosterlitz and Thouless' provid-
ed a clear physical picture and correctly predicted a num-

ber of important properties. However, much less is known
about the quantum model. In fact, it has been controver-
sial. Using a large-order high-temperature expansion,
Betts and co-workers suggested a second-order transition
at kT,/J=0. 39 for spin —,'. Later, real-space renormal-
ization-group analysis was applied to the model with con-
tradictory and inconclusive results. De Raedt et al. then
presented an exact solution and Monte Carlo simulation,
both based on the Suzuki-Trotter transformation with
small Trotter number m. Their results, both analytical
and numerical, supported an Ising like (second--order)
transition at the Ising point

kT, /J= —,
' ln(1+ J2) =0.567,

with a logarithmically divergent specific heat. Loh, Scala-
pino, and Grant' simulated the system with an improved
technique. " They found that the specific-heat peak
remains finite and argued that a phase transition occurs at
T, =0.4-0.5 by measuring the change of the "twist ener-
gy" from the 4 x 4 lattice to the 8 x 8 lattice. The

dispute'2 between De Raedt and Lagendijk, and Loh,
Scalapino, and Grant, centered on the importance of using
a large Trotter number m and the global updates in

small-size systems, which move the system from one sub-
space to another. Recent attempts to solve this problem
still add fuel to the controversy. ' '

The key to pin down the existence and the type of tran-
sition is a study of correlation length and in-plane suscep-
tibility because their divergences constitute the most
direct evidence of a phase transition. These quantities are
much more difficu to measure and large lattices are re-
quired in order to avoid finite-size effects. These key
points are lacking in previous works, and are the focus of
our study. In this Rapid Communication, we report a
simulation on much bigger lattices with much better
statistics. Due to the algorithmic advances'5 and exten-
sive use of the parallel supercomputer, '6 we are able to
measure spin correlations and thermodynamic quantities
accurately on very large lattices (96x96). We report
convincing evidence that a phase transition does occur at
finite temperature in the extreme quantum case, spin- & .
At the transition point, kT, /J=0. 350+ 0.004, the corre-
lation length and susceptibility diverge exactly according
to the form of Kosterlitz-Thouless' [see Eq. (3)l.

The quantum XYmodel

H =g s,"s,"+s,'s,',
tij &

where (ij) goes over all the nearest-neighbor pairs on the
square lattice and S; is the spin operator, is simulated by
the quantum Monte Carlo method (see Ref. 15 for
details). We performed high-statistics simulations at
T 0.41-0.7. We started at T=0.7. As T is lowered, we
systematically increase the lattice size to satisfy L 4g at
every T, so that finite-size effects in our calculation are
very small. A similar procedure was used successfully for
the classical XY model. Over 95% of CPU time is spent
on lattices 64x64 and 96x96 at four temperatures. We
did two sufficiently long runs at every T. For example, at
T =0.41 we run 2x 420000 sweeps.

We emphasize that the systematic error in our results,
due to the finite value of d, r =1/mT, is very small. The er-
ror is of the order of (hr) and is independent of
volume. "' We used a large m =24 at all T, so that
h, r ~ 0.1 for the temperature range we studied. This is in

contrast with De Raedt etal. who used h, r —1 and Loh
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et al. ' who used Ar 0.25 (which appears to be reason-
able). Additional support comes from our experience with
the Heisenberg model, ' where at two temperatures
(T =0.3 and 0.35) correlation lengths measured on large
lattices with m =24 and 48 agree well within error (see
Table I there).

Our main focus is to compute the spin-correlation func-
tion

C(r)-, g(S&S&„&4

and in-plane susceptibility

S 2+ Sy 2 2L2= y 2 L2
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where L is the linear size of the system. At large r, C(r)
has the asymptotic form F(r) Ar "e "~~, where g is the
correlation length and ri is the algebraic exponent. In
practice, we fit to C(r) F(r)+F(L —r) to incorporate
the boundary reflection. The fits to this form are excel-
lent, as shown in Fig. 1. The best fits for g and g are listed
in Table I.

As shown in Figs. 2 and 3, g,g increase very fast as T is
lowered. They will diverge at some finite T, . We fit them
to the form predicted by Kosterlitz and Thouless for the
classical model '

FIG. 1. The correlation functions on 96 x 96 lattice.

is a further consistency check. These results strongly indi-
cate that the spin- —,

' XY model undergoes a Kosterlitz-
Thouless phase transition at T, 0.350+'0.004. We note
that this T, is consistent with the trend of the "twist ener-
gy" ' and the rapid increase of vortex density near
T 0.35-0.40, ' due to the unbinding of vortex pairs.

&(T)=we ' ', v--,' . (3)
40 ! ! ! !

[
!

(4)Ag 0.27(3), B(=1.18(6), T, =0.350(4) .

A similar fit for the susceptibility g is also very good (g
per degree of freedom is 1.06):

Ax 0.060(5), Bz 2.08(6), Tc 0 343(3) (5)

as shown in Fig. 3. The good quality of both fits and the
closeness of T, 's obtained are the main results of this
work. The fact that these fits also reproduce the expected
scaling behavior g cx: g " with

ri 2 —Bz/B( 0.24 ~ 0.10

The fit is indeed very good (g per degree of freedom is
0.81), as shown in Fig. 2. The fit for the correlation
length gives
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TABLE I. A list of temperature, lattice size, correlation
length, and susceptibility.

Size c 2

0.7
0.65
0.6
0.55
0.52
0.48
0.45
0.43
0.42
0.41

24x 24
24x 24
32x 32
32x 32
48x48
48 x48
64x 64
64x 64
96x 96
96x 96

1.88(7)
2.41 (8)
2.90(8)
3.70(9)
4.53(11)
6.92(14)

11.3(3)
17.4(5)
22.9(6)
32.0(1.5)

1.93(2)
2.56(3)
3.58 (4)
5.72(11)
8.22 (16)

16.0(7)
36.3 (1.4)
70. 1 (5.6)

116(11)
162(12)
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FIG. 2. Correlation length and the fit.
cal line indicates f diverges at T„(b) In(
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FIG. 3. Susceptibility and the fit.
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Figures 2 and 3 also indicate that the critical region hT is
quite wide (-T,), very similar to the spin- —,

'
Heisenberg

model where the T 0 behavior holds up to T-2J. ' '
These 20 phenomenon are in sharp contrast to those usual
second-order transitions in 3D.

The algebraic exponent rt is consistent with the
Ornstein-Zernike exponent (d —I )/2 —,

' at higher T. As
T T„rt shifts down slightly and shows signs of ap-
proaching 4, the value at T, for the classical model. '

(Extensive large-lattice simulations indicate that rt is
slightly bigger than 0.25.) This is consistent with Eq. (6).

We measured energy and specific heat Cv (for
T ~ 0.41 we used a 32X32 lattice). The value of energy
is in general agreement with Refs. 10 and 13. The specific
heat is shown in Fig. 4. We found that Cy has a peak
above T„at around T 0.45. The peak clearly shifts
away from T 0.52 on the much smaller 8xg lattice. '

De Raedt etal. suggested a logarithmic divergent Cv in
their simulation, which is likely an artifact of their small
m values. One striking feature in Fig. 4 is a very steep in-
crease of Cv at T = T, . The shape of the curve is asym-

metric near the peak. These features of the Cv curve
differ from that in the classical XYmodel. '

A few comments are in order. Quantum fluctuations
are capable of pushing the transition point from
T, =0.898 (Ref. 3) in the classical model down to
T, 0.35 in the quantum spin- & case, although not
strong enough to push it down to zero. They also reduced
the constant 8~ from 1.67 in the classical case to 1.18 in

the spin- & case.
The critical behavior in the quantum case is of KT-type

as in the classical case. This is a little surprising, consid-
ering the difl'erences regarding the spin space. In the clas-
sical case, the spins are confined to the X-Y plane (thus
the model is conventionally called the "planar rotator"
model). This is important for the topological order in KT
theory. The quantum spins are not restricted to the X-Y
plane, due to the presence of S' for the commutator rela-
tion. The KT behavior found in the quantum case indi-
cates that the extra dimension in the spin space (which
does not appear in the Hamiltonian) is actually unimpor-
tant. This interpretation is supported by the behavior of
the correlation functions between S' components listed in

Table II. These correlations are very weak and short-
ranged. The out-of-plane susceptibility remains a small
quantity in the whole temperature range.

Our results for the XY model, together with recent
work' on the quantum Heisenberg model, which was
found to behave essentially like its classical counterpart at
finite T, strongly suggest that, although quantum fluctua-
tions at finite T can change the quantitative behavior of
these nonfrustrated spin systems with continuous sym-
metries, the qualitative picture of the classical system per-
sists. This could be understood following universality ar-
guments that near the critical point, dominant behavior of
the system is determined by long wavelength fluctuations
which are characterized by symmetries and dimensionali-
ty. The quantum effects only change the short-range fluc-
tuations which, after integrated out, only enter as renor-
malization of the physical parameters, such as 8~.

Our data also show that, for the XYmodel, the critical
exponents are spin-S independent, in agreement with
universality. More specifically, v in Eq. (3) could in prin-
ciple differ from its classical value 2. Our data are
sufficient to detect any systematic deviation from this
value. For this purpose we plotted g in Fig. 2(b), using
ln(g) vs (T —T, ) 't . As expected, data points all fall
well on a straight line (except the point at T =0.7 where
the critical region presumably ends). A systematic devia-
tion from v=

2 would lead to a slightly curved line in-

stead of a straight line. In addition, the exponent g at T,

0.2 TABLE II. 4(5/5;) at several temperatures.

C
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FIG. 4. Specific heat Cy. Lattice sizes are listed in Table I
for T~0.41. For T &0.41, lattice size is 32x32.

0.55

0.45

0.35
0.2

—0.1145(1)
—0.1353(2)
—0.1516(2)
-0.1647(1)

—0.0016(1)
—0.0030(1)
—0.0051 (2)
—0.0073 (1)

—0.0002 (1)
—0.0007 (1)
—0.0012(2)
—0.0027 (1)
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seems to be consistent with the value for the classical sys-
tem.

In conclusion, by studying the correlation lengths and
susceptibility of the spin-2 LY model via a large-scale
simulation, we found convincing evidence that the Kos-
terlitz-Thouless transition occurs at finite T,. The general
picture of the quantum model remains essentially that of
the classical model. The specific heat exhibits a steep rise
in the vicinity of T, and a finite peak about 28% above T, .
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