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Binding of holes in one-dimensional Hubbard chains
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Using the Bethe ansatz, we calculate the binding energies of two holes just off half-filling in

one-dimensional Hubbard chains. Somewhat surprisingly, we find binding comparable to that
seen in two-dimensional systems in chains that have a degeneracy at the Fermi level in the nonin-

teracting (U 0) limit. The binding initially increases with lattice size before beginning a slow

decay to zero in the thermodynamic limit. We discuss the general implications of our results for
binding energy and other numerical calculations of high-T, models.

I. INTRODUCTION II. MODEL AND PROCEDURE

A variety of studies has recently been made of the
ground-state binding energy of two holes in various high-
T, models in order to determine whether the models might
exhibit superconductivity. This binding energy is calcu-
lated using the formula

[E(M —2) —E (M) ] —2[E (M —1)—E(M) ], (1)

where E(M) is the ground-state energy of the system
studied for M electrons.

A negative I, implies that the energy of two interacting
holes is lower than that of two noninteracting holes; quali-
tatively, a net attraction is presumed to occur between
holes leading to the observed "binding. " Though this
binding does not by itself guarantee the existence of super-
conductivity, it is suggestive.

Such binding, or existence of a negative 5, has been
seen in two-dimensional Cu02 clusters, z' Hubbard 5 and
extended Hubbard6 models, and t-J models. 4 ~ 9 Howev-
er, the calculations have all been limited to a small num-
ber of unit cells; the largest studied, to our knowledge,
have been 4&4 Hubbard and t-J (Refs. 4, 8, and 9) lat-
tices. These systems are still sufficiently small that finite-
size effects could play an important role, and it appears
unlikely that calculations on high-T, models can be per-
formed on significantly larger lattices in the near future.
Thus, it is of great interest to explore the general effect of
finite system size on the calculation of binding energies.

In order to investigate this question, we have used the
Bethe ansatz equations' to calculate binding energies 5
for the one-dimensional Hubbard model just off half-
filling. The advantage of this technique is that we can get
essentially exact results for very large systems, allowing us
to understand the finite-size behavior in more detail than
could be done otherwise.

In Sec. II, we discuss the model and our procedure.
Section III contains our results. We close in Sec. IV with
a summary and a discussion of the implications of these
results for general binding energy and other calculations
of high-T, models.

N

+(—t)g(e"ctv ~~ +H.c.)+Up n, t~&t.
0' j~'[

(2)

The first and second terms in the Hamiltonian "hop" elec-
trons of the same spin ct between neighboring sites on a
scale t set by the overlap of the on-site wave functions; the
third term expresses the Coulomb repulsion U between
two electrons of opposite spin at the same site. Different
choices of 8 reflect different boundary conditions. We will
set t 1, giving a bandwidth of 4.

We consider periodic boundary conditions [8 0 in Eq.
(2)] and antiperiodic boundary conditions (8 tr).
Chains of length N 4j with periodic boundary conditions
and chains of length N 4j +2 with antiperiodic bound-
ary conditions have a degeneracy at the Fermi level in the
noninteracting (U 0) limit in the half-filled case (total
number of electrons M N); we call such chains "degen-
erate" chains. Chains of length N 4j with antiperiodic
boundary conditions and chains of length N 4j +2 with
periodic boundary conditions have no such degeneracy; we
call such chains "nondegenerate" chains. We show this
difference in Fig. 1 for N 8.

To calculate the binding energy h(N) for a chain of N
sites just off half-filling, we solve the Bethe ansatz equa-
tions to obtain the ground-state energy of the half-filled
case, and then the ground-state energies after one and two
holes are introduced. A(N) is subsequently determined
from Eq. (1).

For the Bethe ansatz prescription for Hubbard chains
with general boundary conditions, including the two con-
sidered in this paper, we refer the interested reader to
Refs. 11 and 12. To check that our procedure was work-
ing correctly, we made extensive comparisons with exact

The Hamiltonian which we consider is the one-
dimensional Hubbard Hamiltonian on a closed chain of N
sites,

N —
1

H-( —t) g (clt~, +) +H.c.)
crj 1
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FIG. 1. Single-particle energies e(k) vs k for t 1 and U 0.
Solid line: N oo; solid squares: N 8, periodic boundary con-
ditions; open squares: N 8, antiperiodic boundary conditions.
Note degeneracy at the Fermi level [e(k) Ol for periodic
boundary conditions.

diagonalization and Lanczos results for systems of 2, 4, 6,
8, and 10 sites.

III. RESULTS

In Fig. 2, we show the binding energy d (N) vs N with
t I and U 4 for nondegenerate chains (top) and degen-
erate chains (bottom). We note the existence of binding
(negative LL) in the degenerate chains but not in the non-
degenerate ones.

Treating first the nondegenerate case, we observe the
decay of (positive) h(N) to zero in the thermodynamic
limit. This decay is expected, as two repulsive holes can
move infinitely far apart in an infinite system. All values
of U studied, from U —,

' to U 32, showed nondegen-
erate binding behavior qualitatively similar to that shown
for U 4. On that basis, we conjecture that binding never
occurs in nondegenerate chains for any U or N.

FIG. 3. Binding energy h, vs lattice size N with t 1 and
U 16 for degenerate sequence. Note lack of binding for small
lattices.

In the degenerate sequence with t 1 and U 4, howev-
er, binding is seen to occur for all N. d(N) initially in-
creases dramatically with lattice size, plateauing when
N 12 at the value h, —0.090. ' It then begins a slow
decay as N increases further. This decay is expected when
compared with the nondegenerate results, as binding
should be independent of boundary conditions in the ther-
modynamic limit.

We have found that this general behavior, an initial in-
crease in binding-energy magnitude followed by a slow de-
cay, holds for all U/t &4.5 in degenerate chains. Also,
the lattice size N at which maximum binding occurs for a
given U appears to increase monotonically with U.

An additional feature appears, however, when
U/t) 4.5, as illustrated in Fig. 3 for U 16. Here, we
see that no binding occurs until a critical lattice size is
reached. The binding-energy magnitude then increases,
plateaus (here, at N 30), and begins to decay as before.

As U/i increases beyond 4.5, it becomes necessary to go
to larger and larger lattices before binding occurs; for ex-
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FIG. 2. Binding energy 6 vs lattice size N for t 1 and U 4.
Top: nondegenerate lattices. Bottom: degenerate lattices.
Note initial increase of binding-energy magnitude with N in de-
generate sequence, followed by slow decay.
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FIG. 4. Binding energy 5 vs U, with t -1, for N 4 sites (top,
solid squares); N 8 sites (middle, open squares); and N 16
sites (bottom, solid triangles). Note general increase of binding
with increasing lattice size.
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FIG. 5. Binding energy 6, vs U, with t 1, for N 4 sites
(solid squares); N 16 sites (solid triangles); and N 64 sites
(bottom, open circles). Note general decrease of binding in go-
ing from N 16 to N 64, following the increase in going from
N 4 to N 16.

ainple, there is no binding for U/t 48 until N=40.
However, once binding sets in, it appears that it never
completely vanishes as finite N is further increased. This
leads us to the somewhat nonintuitive conjecture that, al-
though binding will eventually decrease with lattice size
for any U, the range of U/t over which binding occurs will

actually increase monotonically with lattice size.
We note that the general nonmonotonic behavior of

LL(N) with N in degenerate chains could be very mislead-
ing if one were restricted to small lattices. For example,
in Fig. 4 we show d, vs U (t =1) for N=4, 8, and 16. As
N increases, both the magnitude of 6 and the range of U
over which 5 is negative increase. These results could
easily lead one to suspect that binding persisted in the

thermodynamic limit.
However, in Fig. 5, we again show h. vs U, but for N =4,

16, and 64. After an initial increase in the magnitude of 6
from N =4 to N = 16, we now see a general decrease ' go-
ing from N=16 to N=64. In fact, as expected' in the
one-dimensional repulsive-U Hubbard model, our results
suggest very strongly that 6 is zero in the thermodynamic
limit for all values of U.

IV. CONCLUSIONS

Using the Bethe ansatz equations, we calculated the
binding energies A(N) of two holes just off half-filling in
one-dimensional Hubbard chains of varying lengths N.
Our main purpose was to investigate the general effect of
finite size on such calculations. We found no binding in
chains with no degeneracy at the Fermi level in the nonin-
teracting (U=O) limit. However, we found significant
binding (6 & 0), comparable to that seen in two-
dimensional Hubbard lattices, in chains which had such a
degeneracy.

In the degenerate chains, for U/t & 4.5, we found that
binding initially increased dramatically with lattice size
before beginning a slow decay to zero in the thermo-
dynamic limit. For U/t &4.5, there was no binding on

small lattices. However, as the lattice size was increased,
binding eventually set in, increased in magnitude, and
then began to decay, as before. We noted that a non-
monotonic behavior of h(N) with N of this sort could
prove deceptive in attempts to extrapolate to the thermo-
dynamic limit.

Our results suggest that, in general, great care must be
exercised in inferring binding energies in the thermo-
dynamic limit from binding energies calculated for finite
systems. In particular, they suggest that the two-
dimensional systems studied to data may be too small to
determine whether binding persists in the thermodynamic
limit.

Nonetheless, the use of different boundary conditions
may provide further useful information within current size
limitations. As an example, the largest two-dimensional
Hubbard lattices for which binding calculations have been
done, and in which binding was observed, have periodic
boundary conditions in both the x and y directions. This
gives a U 0 degeneracy at the Fermi level in the half-
filled case, as in the degenerate (binding) one-dimensional
chains. For a square lattice, the degeneracy persists if an-
tiperiodic boundary conditions are used in both directions.
However, if "mixed" boundary conditions are used,
periodic in one direction and antiperiodic in the other,
there is no U 0 degeneracy at the Fermi level. Further,
the one-particle energies are symmetric about the Fermi
energy, as in the one-dimensional nondegenerate (non-
binding) chains (see Fig. 1). Thus, for instance, the ex-
istence of binding in two-dimensional Hubbard lattices
with mixed boundary conditions would provide a clear-cut
difference between the one- and two-dimensional systems,
suggesting (though not yet proving) that binding might
survive in the thermodynamic limit. Conversely, the
disappearance of binding in the "mixed" case, by analogy,
might lead one to question whether the observed binding
could be a finite-size effect. Another alternative would be
to look at binding slightly off half-filling.

These same considerations apply equally to the t-J
model, due to its close relationship with the Hubbard
model. '5 Further, variable boundary conditions may also
prove helpful in studying Hubbard, CuOq, and other relat-
ed clusters, ' though the prescription there is less clear.

Lastly, it is possible that the appearance of binding in
finite systems may be associated with other indications of
superconductivity, such as enhanced pairing correlations
or susceptibilities. If this is so, our results suggest similar
caution in interpreting such indications. As for the bind-
ing energy, mixed or other variable boundary conditions
might prove generally useful in obtaining better control
over finite-size effects.

ACKNOWLEDGMENTS

One of us (R.M.F.) is indebted to D. J. Scalapino, R. L.
Sugar, A. Moreo, and P. Littlewood for helpful discus-
sions. R.M.F. is grateful to IBM for partial financial sup-
port. M.J.M. would like to acknowledge support by Con-
selho Nacional de Desenvolvimento Cientifico e
Tecnologico and by NSF Grant No. PHY86-14185. This
research was supported in part by the National Science
Foundation under Grant No. DMR86-15454.



6812 R. M. FYE, M. J. MARTINS, AND R. T. SCALEI IAR

'On leave from Departamento de Fisica, Universidade Federal
de Sao Carlos, Sao Carlos, 13560, Brazil.

'For example, see V. J. Emery, S. A. Kivelson, and H. Q. Lin,
Phys. Rev. Lett. 64, 475 (1990), and references therein.

J. E. Hirsch, S. Tang, E. Loh, Jr., and D. J. Scalapino, Phys.
Rev. Lett. 60, 1668 (1988); J. E. Hirsch, E. Loh, Jr., D. J.
Scalapino, and S. Tang, Phys. Rev. B 39, 243 (1989).

C. A. Balseiro, A. G. Rojo, E. R. Gagliano, and B. Alascio,
Phys. Rev. B 3$, 9315 (1988).

sJ. A. Riera and A. P. Young, Phys. Rev. B 39, 9697 (1989).
~E. Dagotto, A. Moreo, R. L. Sugar, and D. Toussaint, Phys.

Rev. B 41, 811 (1990).
sJ. Callaway, D. P. Chen, D. G. Canhere, and Qiming Li, Phys.

Rev. B 42, 465 (1990).
7E. Kaxiras and E. Manousakis, Phys. Rev. B 3$, 866 (1988).
J. Bonca, P. Prelovsek, and I. Sega, Phys. Rev. B 39, 7074

(1989).
9Y. Hasegawa and D. Poilblanc, Phys. Rev. B 40, 9035 (1989).
'oE. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
"M. J. Martins and R. M. Fye (unpublished).
' B. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243

(1990).
' This value, h, —0.090, is close to the maximum binding seen

for any U or N, and is comparable to the 4x4 Hubbard lat-
tice value b —0.10~0.02 when t 1 and U 4 observed in

Ref. 5.
'4The N 16 and 64 curves will, however, cross for some U

sufficiently large.
'sJ. E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985).
' Y. Hatsugai, M. Imada, and N. Nagaosa, J. Phy. Soc. Jpn. 58,

1347 (1989).


