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Recent data on flux creep in a variety of Y-Ba-Cu-O superconductors show a temperature-
independent plateau in the magnetization decay S=—dInM(¢)/dIn(z), with values clustered in
the range S =0.020-0.035. This apparent universality in S, which appears at odds with conven-
tional flux-creep theories, can be explained naturally if one assumes the existence of a truly super-
conducting ordered phase at low temperatures that has a strongly nonlinear (exponential) 7-V

characteristic.

Early flux-creep data' ™3 on YBa,Cu3O; (henceforth
denoted Y-Ba-Cu-O) superconductors already showed an
initially unexpected increase in the effective pinning bar-
rier with temperature in an intermediate temperature
range. We point out here that recent data,*”'? taken in
such a way as to avoid the additional complications of in-
complete flux penetration® and other experimental ar-
tifacts,>” show this increase with a remarkably universal
slope. A first suggestion of this universality came from
experiments on various kinds of crystals by Xue ezal.,’
but we show here that the result is considerably more gen-
eral. Furthermore, we argue that this universality can be
understood, provided one assumes that at low tempera-
tures in the mixed state the voltage vanishes exponentially
with current density J, i.e., V~expl— (J7/J)*] (where u
is an exponent and Jr a temperature-dependent parame-
ter with units of current density). An exponential 7-V
characteristic, which implies a truly superconducting state
with strictly zero linear resistance, is the form predicted in
the vortex-glass phase.'>'4

Figure 1 summarizes Y-Ba-Cu-O data from many
different laboratories on grain aligned powders,®’ flux-
grown and melt-processed crystals®'? measured with field
both parallel and perpendicular to the ¢ axis, irradiated
crystals'? and e beam and magnetron sputtered films,*!!
which together span several orders of magnitude in criti-
cal current density, even at the same temperature and
field. The data represent the normalized time-logarithmic
slope of the magnetization S=—dInM(¢)/dIn(z). We
emphasize that this is not the same as the extracted
effective barrier height, where in certain cases authors>*°
have included a In(z/t¢) correction. In most cases S is
reasonably approximated by — (1/M;)dM/dn(t), where
M; is the initial magnetization measured at the beginning
of the relaxation experiment.

The results generally show a plateau or at least a flat
maximum over a large range of temperature, usually with
a dropoff at lower temperature and either an enchance-
ment or a dropoff at temperatures approaching 7,.. We
concentrate our discussion here on the plateau region,
which, with only a few exceptions,”? lies at approximately
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§=0.020-0.035, a remarkable universality considering
the range of J,’s, applied field strengths, field orientations,
and material properties represented by these samples.

The magnetization in the mixed state is proportional to
the current density flowing in the sample J(¢) which, due
to Joule heating, decays in time as 8J/9t~ —V(J). A
measurement of the magnetization decay is thus an in-
direct measurement of the system’s I-V characteristics.
The standard Anderson-Kim flux-creep model®~™!7 as-
sumes an I-V curve of the form V~exp(—Uy/T)
xsinh[(Uo/T)(J/J.0)]1, where Uy is the energy barrier
and Jo is the critical current density without flux creep.
This assumption leads to

J(@) =Jco[1 - (T/U())ln(!/to)], 1<Lter,

J(@t) = J.oexp(—ct/te), t >t

(1a)
(1b)

with a crossover time ¢ =toexp(Uo/T), to a microscopic
hopping ‘*‘attempt” time, and ¢ a sample-dependent
geometric constant, of the order of one for typical sample
dimensions.

The magnetization decay is measured in a window of
times, from some initial time ¢; to a final time ¢,. Provided
that ¢, is much larger than both of these times, logarith-
mic decay is predicted’ with S=—dInJ(t)/dIn(z)
=T/Uy, an inverse measure of the barrier height. In
low-T, superconductors this is often the case. In the
high-T, superconductors the barrier height U, extracted
at low temperatures from (1a), is often sufficiently small
(e.g., 20 meV) that ¢, already drops below the window of
observation times at moderate temperatures (assuming a
constant or decreasing barrier Uy with increasing temper-
ature). In this case (1b) would predict that since ¢>> ¢,
the magnetization should have completely decayed to its
equilibrium value by the time the observation begins. The
observed persistence of logarithmic time decay at higher
temperatures thus indicates that the simple -V charac-
teristic with a single barrier height assumed by Ander-
son-Kim is not appropriate in these materials, as pointed
out earlier. '®

One approach to explaining the logarithmic time depen-
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FIG. 1. Normalized time-logarithmic magnetic relaxation
rate S=—dInM(2)/dIn(t) vs temperature T for a variety of
YBa;Cu30; samples. Solid lines emphasize plateaus and show
temperature range averaged to give values shown at right. (a)
Data of Xu et al. (Ref. 6) on grain-aligned powders with Hllc of
1 T (squares) and 2 T (circles). (b) Data of Campbell et al.
(Ref. 7) on grain-aligned powders with Hllc of 0 T (plusses) and
1 T (crosses). (c) Data of Keller eral. (Ref. 8) on melt-
processed crystals at remanence after application of saturating
fields along the ¢ (squares) and ab (circles) axis. (d) Data of
Civale er al. (Ref. 10) on unirradiated (circles) and 3 MeV-
proton-irradiated (squares) flux-grown crystals for Hllic of 1 T.
(e) Data of Sun eral. (Ref. 11) (crosses) on magnetron-
sputtered thin films on MgO substrates with Hllc of 0.9 T, and
of Stollman eral. (Ref. 4) (plusses) on e-beam evaporated and
annealed thin films on SrTiOj; substrates at O T.

dence at higher T and the plateau in S(7’) has been to in-
voke distributions of various kinds, either in the energy
barriers®!® or in the critical current.!"'® Except for one
case with a rather special inverse power-law distribution
of energy barriers'® [which also gives the interpolation
formula of Eq. (3) belowl], the predicted relaxation will
depend on details of the distribution and so is difficult to
reconcile with the apparent universality of the data.
Another approach®”%2° to account for the temperature
dependence of S has involved modeling the physics in
terms of a single physical barrier, but with a more compli-
cated shape than in the Anderson-Kim theory. If one ig-
nores the motion of flux against the Lorentz force, replac-
ing the sinh by an exponential, the Anderson-Kim I-V
characteristics can be written in the suggestive form,
V(J)~expl—UW)/T], with an effective current-de-
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pendent barrier U(J) =Uy(1 —J/J:0). A number of pa-
pers®7%20 have proposed other forms for U(J), all in the
context of a single well with a more complicated barrier
shape. These fall into two classes: Those with U(J)’s
which approach a finite limit as J— 0, as in Anderson
Kim, and those in which U(J) diverges in the zero-current
limit. In the former class, at times long compared to the
crossover time ¢, =toexp[U(J =0)/T1], the magnetization
will decay exponentially with time as in (1b). At shorter
times a In(¢) time decay is expected, with a form which
will depend in detail on the shape of the barrier leading to
U(J). It is hard for us to see how this approach can then
account for the apparent universality of the experimental
results for S, especially since the pinning barrier is likely
to be collective and should depend on both the strength
and density of the microscopic pinning centers. Models in
the latter class, based on a single well for a finite flux bun-
dle hopping a finite distance, but with a barrier U(J)
which diverges as J— 0 seem rather unphysical to us.
Nevertheless, the formal results which follow from the as-
sumption® of a single well with a U(J) varying as an in-
verse power of J, will closely parallel the approach we ad-
vocate below.

Several recent theoretical papers go beyond the
simple model of a single well, and consider directly the
statistical mechanics of many interacting vortex lines in
an environment of dense pinning centers. In one ap-
proach,'* a truly superconducting phase is predicted,
named a vortex glass, in which highly nonlinear I-V
characteristics are expected, with an exponential depen-
dence at low currents, V'(J) ecexpl— (J7/J)*]. Here p is
an exponent characteristic of the low-temperature phase,
which must satisfy 4 <1 for J— 0. Feigel'man etal.?'
and Natterman,? using an elastic medium approach to
collective flux creep, also predict an exponential I-V
characteristic, but under some conditions there can be
several regimes in current density, each with an exponen-
tial form but with different exponents. We point out
below that such an exponential I-V characteristic leads
directly to a plateau in S(T') with a value which should be
essentially sample independent.

First note that with an I-V curve of the form
V(J) <expl— (Jr/J)*], the current decay, which follows
by integrating the equation 8J(¢)/9t = —V (J), varies at
long times as'*2' J(t) = Jr/ln(t/t9)1"4. Provided that
one is in this “long time” limit (see below), this immedi-
ately implies in turn that

S=—dInJ/dIn(t) =[uln(t/tx)] 71 ()]

13,14,21,22

This key result, though implicit in earlier work, '*"* now
displays explicitly the universality of the magnetic relaxa-
tion. This is because it depends only on u, which is a
universal exponent in this interpretation,'>'* and only log-
arithmically on the observation time and the attempt
time, which presumably do not vary enormously from sys-
tem to system or from experiment to experiment. With
u =1, an attempt time of order 10 1%, and an observa-
tion time of z =1000 s, one obtains S =0.033, in remark-
able agreement with experiment. If this explanation of
the plateau in S(T') is correct, the observed values of .S in
Fig. 1 would suggest an exponent u close to the theoretical
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upper bound of one.

The physical picture underlying this result involves vor-
tex lines at low temperature in the mixed state creeping in
an environment of dense randomly located pinning
centers.'>142! In the vortex-glass phase,'>!* and in the
absence of an applied current, “vortex-loop” excitations of
size L (which can be thought of roughly as a way to repre-
sent the displacement of a length-L segment of given vor-
tex line) cost an energy which increases with some positive
power of L. When a current is applied, loop excitations
larger than some minimum size, Ly, varying as an in-
verse power of J, are no longer metastable due to the ener-
gy gained from the Lorentz force. Formation of these
minimum size loops requires passing over barriers
U(L min), which typically scale as a power in L, and
hence with an inverse power of J. A voltage results from
nucleation (and then growth) of these minimum size
loops, with magnitude V(J)~expl—U(J)/T]~exp
—(J7/J)"" ie., exponentially in current.

In a decay measurement, the current will relax via
nonactivated processes to the fluctuationless critical
current density J.o on a microscopic time scale, to. An in-
terpolation formula has been proposed'4 which connects
the short-time regime (¢ 1¢), where the decay is dom-
inated by vortex-loop excitations with a fixed (current in-
dependent) size, comparable to the vortex-glass coherence
length,'* and a fixed barrier height Uy, to the asymptoti-
cally long-time limit where the size of the dominant
vortex-loop excitation (L ;) varies with current and the
current decays with an inverse power of In(z):

J@) =J.o/[1+ (ukT/UDIn(t/15)1 Ve | (3)

At short times, compared to the crossover time z. =t¢
xexp(Uo/kT), the denominator in Eq. (3) can be expand-
ed and reduces to the Anderson-Kim form (1a). In the
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long-time limit, though, (3) crosses over to an inverse
power-law decay in In(¢). In practice, since the window of
observation times is naturally restricted, this “long-time”
limit can only be accessed by increasing the temperature
until ¢ is shorter than tops, i.e., T> T*=Uy/In(tops/10).
Below this temperature, Eq. (3) predicts a linear tempera-
ture dependence of S, crossing over into a temperature-
independent plateau for 7> T*. This accounts naturally
for the decrease in S(T') observed at temperatures below
the plateau in the data (see Fig. 1).

It should be emphasized that although Eq. (3) predicts
a nonlinear function of In(z) (power law at long times),
the dependence can in practice appear linear in a restrict-
ed window of observation time, since (kT/Uo)In(¢//t;)
[with #; (¢/) initial (final) observation times] can be small
compared to one, even though (kT/Uo)In(ts/t¢) is larger
than one. Some experiments, though, in fact detect appre-
ciable curvature when M(¢) is plotted versus In(z).
Indeed, Xu ez al. ® (and also Svedlindh et al., ' working on
PbMoeSs) find that when their data shows curvature,
M (t) is approximately linear in [In(z)] ~', consistent with
Eq. (3), and does not fit the dependence predicted in (1b).

Finally we comment that factor-of-two variations in the
relaxation rate S in the plateau region are observed in cer-
tain cases, for instance with applied field in the work of
Campbell eral.” and Xue etal.® It remains to be estab-
lished to what extent these are due to differences in exper-
imental procedure, to progressive violation of the limits
discussed above or to possible limits on the range of validi-
ty of the vortex glass model.

The authors thank I. A. Campbell, L. Civale, V. Vi-
nokur, and M. Feigel’'man for helpful discussions. A.P.M.
wishes to thank Dr. Campbell and the Universite Paris-
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