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Magnetic quantization and the upper critical field of superconductors
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Recently, there has been renewed interest in the eAect of orbital quantization on the upper crit-
ical field of superconductors, given the possibility of reentrant behavior at high fields. In this pa-

per, the Gor'kov equations are solved numerically in the limit where only a few Landau levels are
involved, including the eff'ects of impurities and a nonzero g factor, for a set of parameters ap-
propriate to a low-carrier-density superconductor. It is shown that these efects conspire to make
the experimental observation of this eA'ect possible, but unlikely.

I. HISTORY

In 1968, Gruenberg and Gunther published a paper
analyzing the effects of orbital quantization on the upper
critical field of type-II superconductors. ' In it, they
showed that Landau-level quantization had a dramatic
effect on H, i, causing T, to oscillate as a function of field

at very low temperatures. Moreover, they showed that at
fields larger than H, 2, superconductivity was again possi-
ble, although at exponentially small temperatures. Al-
though they indicated that T, begins to increase again for
fields much larger than H, 2, they did not carry the
analysis any further because of their qualms about the va-

lidity of BCS theory at such high-field values. Finally,
they showed that the effect of impurities and a g factor
different from an even integer caused a rapid suppression
of this reentrant behavior.

Recently, Tesanovic, Rasolt, and Xing have reana-
lyzed this problem, giving particular attention to the limit
where only one Landau level is involved. They showed
that in this case, T, increases with increasing field,
exceeding its zero-field value, and that impurities would
not affect this result. They also indicated that by allowing
nonzero-Q pairing (Fulde-Ferrell state ), g factors dif-
ferent from zero would also not affect this result (except
at high enough fields where Pauli limiting would occur).
They also demonstrated that the standard flux-lattice
solution is preserved, with the lattice constant being set by
the orbit radius of the Landau level.

A more pessimistic view has been offered by Rieck,
Scharnberg, and Klemm. They showed that some of the
results of Ref. 2 were influenced by an assumption that
the density of states (DOS) was constant within a pairing
width about the chemical potential, p. Since the DOS in

a magnetic field is strongly energy dependent, correcting
for this changes the results somewhat, as they demon-
strate in several nice figures. In particular, they find that
a g factor differing from an even integer strongly quenches
the reentrant behavior, leading to the conclusion that the
chances of seeing this effect are very slim. They also indi-
cated that the strong effect of impurities found in Ref. 1

was due to an assumption that the impurities were pair
breakers, and thus agree in that aspect with the authors of
Ref. 2.

In this paper, the Gor'kov equations are solved numeri-
cally in the limit where only a few Landau levels are in-
volved for a parameter set appropriate to a low-carrier-
density superconductor. Solutions are generated includ-

ing the effect of impurity broadening of the DOS as well

as allowing a nonzero g factor with nonzero-g pairing.
From this, some conclusions are rendered concerning the
chances of observing reentrant behavior at high fields.

II. THEORY

The Gor'kov equation for H„2 including magnetic
quantization is [Eq. (2.6), Ref. 1]

I = VeH/8rrhcg( —,
' ) '+'(r + I)!/r!I! dk/2z[tanh(pf„+/2) + tanh(peI —/2) ]/(e, ++ ei —),

r, l

where V is the pair potential, r and I are Landau-level in-
dices running from 0 to ~, k is the z component of the
momentum, and

e, =(r+ —,
' )hru, +k /2m+og/4hco, —p,

with co, being the cyclotron frequency and g the g factor.
Note that there is a factor of 2 difference from Ref. 1 [an
error was made when going from Eq. (2.4) to (2.6)]. The
k integral is restricted to be such that k /2m is within a
pairing width of p. For fields high enough where only one
Landau level is involved (with g=O), this equation is
identical to the zero-field BCS gap equation, except that
the constant DOS is replaced by N(E, H)/2, where

I

N(E, H) is the DOS of one Landau parabola. One im-
mediately notices that for high temperatures, T, is pro-
portional to H (if one ignores the field and temperature
dependence of p). This is due to the fact that the degen-
eracy of the Landau level, and thus the number of states
available for pairing, linearly increases with 0. For a
realistic calculation, though, Eq. (1) has to be numerically
integrated within a pairing width, thus taking into account
the strongly energy-dependent behavior of N(E, H).
Moreover, p, which depends strongly on 0 and T, has to
be determined numerically at nonzero T [for T=O in the
quantum limit, p is equal to —, EF/(he@, ) where EF is the
zero-field Fermi energy]. When more than one Landau
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(2)

III. RESULTS

In Fig. 1, results are shown in the quantum limit
(hro, & 60T) for g 0 and linewidth broadenings of 0, I,
and 5 K. Note the divergence of T, with H. By the time
H reaches 400 T, p is below the bottom of the Landau
parabola, and therefore the validity of the BCS approxi-
mation is highly questionable (at higher fields around 900

level is involved, several levels are within a pairing range,
leading to a sum of numerical integrals to be done.

At a first approximation level, there is no eA'ect due to
nonmagnetic impurities because of Anderson's theo-
rem. This conclusion ignores the broadening which is
important due to the singularity in the DOS at the bottom
of a Landau parabola. One can model this broadening by
assuming the following replacement for E ' in
N(E, H):

8(E) lllE'+ (E' +I ) ' ')/2(E' +r')l ' '

where I is the linewidth and E'=E —I .
When the g factor deviates from an even integer, one

finds a rapid suppression of T, since the degeneracy of the
up- and down-spin Landau parabolas is lifted. This can
be compensated by allowing for pairing at nonzero-Q
values. This involves replacing k by k ~Q/2 with +
for spin up and —for spin down. In general, one now has
two integrations to perform per Landau-level pair, with Q
being varied to maximize the right-hand side of Eq. (1).

Finally, a parameter set appropriate to a low-carrier-
density superconductor needs to be chosen. For our pur-

pose here, we assume a zero field EF of 100 K, a Debye
width of +'20 K about p, and a BCS coupling constant
(NV/2 where N is the zero field DOS) of 0.3. This leads
to a zero field T, of 810 mK. p in a field is calculated as-
suming that the density of electrons, n, remains the same
(for the case here, n =3.63 & 10' e /cm ). This parame-
ter set is somewhat optimistic when compared to low-

carrier-density superconductors such as SrTi03, which
has a r, of only 100 mK for n as low as 1 x 10' e /cm .
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FIG. 2. H, 2 (T) vs T (K) in the quantum limit for g 0 (solid
curve), g 0.05 (dotted curve), and g 0. 1 (dashed curve).

T, r, begins to decrease again since the integration range
goes to zero as p approaches —20 K). Impurity broaden-
ing suppresses T, some~hat. If impurities are treated as
pair breakers, as in Ref. 1, the suppression effect is much
more dramatic. Still, T, substantially exceeds the zero
field T, even with broadening.

In Fig. 2, the effect of including a nonzero g factor is
demonstrated. As one can see, this has a very large im-
pact on the results. At lower fields, the transition is some-
what suppressed, whereas at higher fields the curve be-
comes Pauli limited. For g=0.05, we find the unusual re-
sult that Q 0 for the higher-temperature part of the
curve (for g 0.1, the entire curve has nonzero Q).

Next, we investigate the oscillatory region where more
than one Landau level is involved. In Fig. 3, results for
g-0 with I -0 and 1 K are shown for fields between 20
and 100 T. Note that the largest peak (involving pairing
in the I 1 Landau level) has a r, somewhat lower than
the zero field T, . A broadening of 1 K leads to a 50% de-
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FIG. 1. H, 2 (T) vs T (K) in the quantum limit for g 0 with
broadenings of 0 K (solid curve), 1 K (dashed curve), and 5 K
(dotted curve).
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FIG. 3. H, 2 (T) vs T (mK) for g=0 and fields between 20
and 100 T with broadenings of 0 K (solid curve) and 1 K
(dashed curve).
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crease in T,. In Fig. 4, we show results for g 2 and

g 2.05. The large peak corresponds to pairing between
the I 1 up and l 0 down Landau levels. The unusual
shape of the large peak does not appear to be an artifact
(for g 2.01, the peak breaks into two peaks). One can
also see from the figure that a g factor deviating from two
has a large effect on the transition, with the transition
temperature being suppressed by a factor of 100 when go-
ing from g =2 to 2.05.

FIG. 4. H, 2 (T) vs T (mK) for g 2 (solid curve) and

g 2.05 (dashed curve).

with a g factor reported to be two. Even for the lowest
carrier concentration, the Fermi energy is in excess of 100
K, ' so the largest peak would be in a field range of order
100 T (the other peaks would most likely be washed out).
Moreover, since T, for this concentration is only 100 mK,
significant broadening and deviation of the g factor from
exactly two would tend to drive T, down to less than a
millikelvin (even assuming that this field range could be
reached by current technology, such as by explosively
driven fields). At higher concentrations, T, increases and
a second band crosses the Fermi energy. ' Since this
band would have a lo~er eA'ective Fermi energy, one could
possibly be in an accessible field range for reentrant be-
havior. The problem is that the relative coupling constant
of the second band is small since the ratio of its DOS to
the total DOS is small. This implies a small T, since the
reentrant condition would not be satisfied for the first
band.

In summary, reentrant superconductivity at high fields
due to magnetic quantization has been discussed in rela-
tion to numerical parameters appropriate for an optimistic
low-carrier-density superconductor. From this, it is con-
cluded that there is a possibility of seeing such an effect,
although the possibility is somewhat unlikely due to con-
straints imposed by being in an accessible field range (low
enough Fermi energy), having a g factor close to an even
integer, and not having too dirty a sample. This assumes
that the BCS treatment is applicable for such high fields,
which remains to be determined.
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Given the above results, what are the chances of seeing
this unusual reentrant behavior'? A good example of a
very-low-carrier-density superconductor is SrTi03,
where superconductivity occurs down to 10' e /cm and
where de Haas-van Alphen oscillations have been seen
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