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Positron annihilation studies of an icosahedral quasicrystal and the cubic R phase of Al-Li-Cu
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Positron annihilation lifetime and Doppler-broadening measurements have been performed for
Bridgman-grown single-grained icosahedral quasicrystal and cubic R phase of Al-Li-Cu. The re-
sults are consistent with the existence of triacontahedral clusters with the vacant center in the

icosahedral phase as well as in the R phase.

Since the discovery of the Al-Mn alloy with a
diffraction pattern exhibiting icosahedral point symme-
try,! several classes of quasicrystals have been produced
by rapid solidification of the melt or by other nonequi-
librium methods.> One of the stable icosahedral phases is
the Al-Li-Cu system.’ > To determine the atomic struc-
ture of an icosahedral phase, it is important to investigate
the atomic packing in the crystalline analog. Marcus and
Elser® have pointed out that the cubic R phase consisting
of icosahedral clusters is related to icosahedral Al-Li-Cu.
Audier et al.” have constructed icosahedral Al-Li-Cu
and the cubic R phases by different matching rules using
two kinds of triacontahedral clusters. Recently, the
structure of the cubic R phase has been studied in detail
by x-ray and neutron diffractions.®® It has been clarified
that the central site of triacontahedral cluster in the cubic
R phase is vacant. These results suggest that the
icosahedral Al-Li-Cu also contains densely triacontahe-
dra with a vacant center. However, it has not been
proved experimentally that triacontahedra with vacant
centers exist in icosahedral Al-Li-Cu densely.

It is known that positron annihilation methods are
very powerful when studying vacancies in solids. In this
study, we have performed positron annihilation lifetime
and Doppler-broadening measurements for the
Bridgman-grown single-grained icosahedral phase and
the cubic R phase of Al-Li-Cu and have observed
structural vacancies in the icosahedral Al-Li-Cu as well
as in the R phase.

Specimens have been produced in the following way.
Using a mother alloy of Al-Li-Cu, pure aluminum and
copper, all with purity better than 99.9%, we melted ter-
nary alloys in a boron nitride crucible that was sealed in a
quartz ampoule, and then lowered the ampoule in a
Bridgman furnace at a speed of 2 mm/h. The composi-
tion of the initial melt was Alg gLisg ¢Cu,y, for the
growth of the icosahedral phase and Als, ¢Lis, oCuy 4 for
the cubic R phase. After the Bridgman growth, the ingot
was found to be composed of large grains, with approxi-
mately 1 cm diameter, of the icosahedral or the cubic R
phase, and fcc aluminum phase which surrounded the
large grains. We cut the ingots into 0.4-mm-thick plates
with a multiwire saw, etched off completely the surround-
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ing Al phase and used the obtained single-grained quasi-
crystals or R phase crystals for measurements. Figure 1
shows x-ray-diffraction spectra for powdered samples of
the two kinds of sliced specimens. It is found that all the
diffraction peaks can be indexed either by the cubic R
phase or the icosahedral phase and that no peak from
other phases can be detected. The monocrystalline na-
ture was confirmed by taking Laue photographs at two
ends of the specimens, although the Laue spots from
quasicrystalline specimens were quite diffuse.

The positron source, 10 uCi **NaCl sealed in an alumi-
num thin foil, was set at the center of the specimen. The
specimen was sealed in a Pyrex glass tube in a vacuum of

107° Torr. The isochronal annealing was performed
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FIG. 1. Powder x-ray-diffraction spectra from R-phase speci-
men, (a) and quasicrystalline specimen, (b).

6730



42 BRIEF REPORTS 6731

(a)
50000 e
9 g
4]
t 8 8
3
o 8 )
s 1
]
8
) e
EU Q
0= 2 0 2 Z
Doppler shift  (keV)

(b)

Counts

Lifetime (nsec)

FIG. 2. (a) Open circles and open squares show the raw data for the positron Doppler-broadening spectra of the icosahedral quasi-
crystal and the cubic R phase, respectively. (b) Open circles and open squares show the raw data for the positron lifetime spectra of

the icosahedral quasicrystal and the cubic R phase, respectively.

from room temperature to 350 °C for 20 min at 50°C in-
tervals. The measurements of Doppler broadening were
carried out at the room temperature by use of a solid-
state detector (pure Ge), whose energy resolution was
1.19 keV (FWHM) at 512 keV. The total counts in a
spectrum were 1.2X 10% The positron lifetime spectra
were obtained at the room temperature with a fast-fast
coincidence system by using Hamamatsu photomulti-
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FIG. 3. (a) Open circles show the values of A parameter of
the quasicrystal after isochronal aging for 20 min from the room
temperature to 350°C. Open square shows the value of A pa-
rameter of the as-casted R phase. (b) Open circles show the
values of w parameter of the quasicrystal after iso-
chronal aging for 20 min from the room temperature to 350°C.
Open square shows the value of w parameter of the as-casted R
phase. (c) Open circles show the values of the mean lifetime
after isochronal aging for 20 min from the room temperature to
350°C in the quasicrystal. Open square shows the value of the
mean lifetime of the as-casted R phase.

pliers (H3378) and 1X 1 in.? BaF, scintillators. The time
resolution of the system was 230 psec (FWHM) with the
use of %°Co. After background subtraction the line-shape
parameter h was determined by the ratio of the central
area over 20 channels to the total area of the spectrum.
The line-shape parameter w was determined by the ratio
of the two wings taken between * (15~20 channels)
from the center of the peak to the total area. The values
of h and w parameters were normalized by setting the
value of the 4 and w parameters of a well-annealed Al
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FIG. 4. Open circles show the intensity I, and the lifetime 7,
of component two, and I; and 7; of component three from the
room temperature to 350°C in the quasicrystal. Open squares
show I,, 75, I, and 73 in the as-casted R phase.
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(99.9999 wt. %) equal to 1. Positron lifetime spectra were
analyzed by POSITRONFIT (Ref. 10) after subtracting the
background. Each x?/q was below 1.0.

Figure 2(a) shows the raw data for the positron
Doppler-broadening spectra and Fig. 2(b) shows the raw
data for the positron lifetime spectra in the two phases of
Al-Li-Cu at room temperature. Open circles and open
squares indicate the values for the quasicrystal and the
cubic R phase, respectively. It is seen that the data are
quite similar for the two phases. Figures 3(a), (b), and (c)
show the values of the h parameter, w parameter, and the
mean lifetime of the quasicrystal measured after iso-
chronal aging for 20 min at each temperature. Data for
the cubic R phase at the room temperature are also plot-
ted. It seems that the values of the 4 and w parameters of
the quasicrystal are almost constant from room tempera-
ture to 350°C. It is also observed that the values of 4 and
w parameters of the R phase are similar to those of the
quasicrystal. The values of the mean lifetime of the
quasicrystal are 21214 psec from room temperature to
350°C. The value of the mean lifetime of the cubic R
phase is 200+4 psec, which is only slightly shorter than
those of the quasicrystal. The observed lifetime spectra
are well fitted with three lifetime components. The open
circles in Fig. 4 show the intensity I, and the lifetime T,
of component two, and I; and 7; of component three
from the room temperature to 350°C in the quasicrystal.
The open squares in Fig. 4 show I,, 7,,15, and 7, in the

cubic R phase. The lifetime 7, of component two is in
the range 205%4 psec from room temperature to 350°C
in the quasicrystal.

In view of the value 7,=205%4 psec, it is considered
that this component corresponds to that of vacancy-like
defects.!! The intensities I, of component two are
~80% from room temperature to 350 °C. The lifetime 7,
of component three has almost the same value of 43020
psec on the average from the room temperature to 350°C
in the quasicrystal. The intensities /; of component three
are ~11% from the room temperature to 350°C. From
the value of 430120 psec, it seems that component three
corresponds to microvoids in the quasicrystal.

It should be noted that the intensity of component two,
which is ~80%, is very high in both phases. This means
that there exists a dense concentration of vacancy-like de-
fects; in other words, vacancy-like defects exist as a
structural defect in both phases. Furthermore, it is very
interesting that I,,7,,I;, and 7; in the quasicrystal are
similar to those in the cubic R phase. As described previ-
ously, x-ray analysis of the structure of the cubic R phase
revealed that the center site of the triacontahedral clus-
ters is vacant, meaning that the I, and 7, in the R phase
are due to this vacant site. Therefore, the above results
suggest that the Al-Li-Cu icosahedral phase also contains
a similar density of the same triacontahedral cluster with
vacant center as in the cubic R phase.
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