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Compressible spin models for plastic crystals
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We study a compressible spin model with two different species of spin variables on each lattice
site. The integration of elastic degrees of freedom produces mixed biquadratic couplings in addition
to the usual single-species tetralinear terms. We consider three different ways of accounting for the
lattice vibrations and discuss the occurrence of first-order transitions. The results are analyzed in

the context of plastic crystals.

Plastic crystals are characterized by the interplay of ro-
tational and translational degrees of freedom. ' Lowering
the temperature from the liquid phase, these compounds
undergo a first-order phase transition to an intermediate,
thermodynamically stable, plastic phase, where rotational
disorder coexists with a translationally ordered state. At
lower temperatures there is another phase transition, usu-

ally of first order, to the solid phase. Much effort has
been devoted to the study of both the plastic phase and
the solid-plastic transition. Due to steric hindrances, the
coupling between translational and rotational degrees of
freedom is expected to play a fundamental role in the on-
set of these transitions. Earlier works, which were re-
stricted to the description of the solid-plastic transi-
tion. ' included only rotational degrees of freedom ex-
plicitly. Lattice vibrations were used to account for the
translational degrees of freedom, and a bilinear coupling
was assumed between rotations and vibrations. In more
recent works, some spin models have been proposed to
describe the global phase diagram by explicitly including
both rotational and translational degrees of freedom. '

Bilinear translational-rotational couplings were con-
sidered together with random fields coupled to rotations. '
More recently, tetralinear translational-rotational cou-
plings were also assumed without random fields. How-
ever, rigid lattices were used in both cases.

According to the previuos investigations, the theoreti-
cal phase diagram of plastic crystals is strongly depen-
dent on the ad hoc form of the couplings between the
various kinds of degrees of freedom involved in this prob-
lern. A more physical approach should consist indeed in
the derivation of these couplings from a model that ac-
counts for the three separate ingredients of the problem,
that is, translational, rotational, and elastic degrees of
freedom, without a priori assumptions about the form of
mixed couplings. Steric hindrances being expected to be
instrumental in the interplay of rotations and transla-
tions, and elastic degrees of freedom being not critical, it
is natural to tackle the problem of translation-rotation
couplings by considering compressible systems.

The critical behavior of compressible Ising models has

been the subject of many investigations. ' First, it is
interesting to consider two very schematic models: (i)
The elastic mean-field, or Domb, model, in which the
elastic Quctuations are taken into account as an average,
and shear forces are overemphasized; ' (ii) The shearless
model, where only compression forces are taken into ac-
count, and which lends itself to an exact solution. ' In
the pressure ensemble, Domb's model leads to an
effective spin Harniltonian with long-range four-spin in-
teractions which turn the transition first order. The
effective Hamiltonian of the shearless model, however, in
a suitable field ensemble yields a standard second-order
transition with renormalized critical exponents. In a
seminal paper, Larkin and Pikin' considered a more
realistic continuum compressible model, embedded in an
elastically isotropic medium. In the pressure ensemble,
the effective spin Hamiltonian includes again long-range
four-spin interactions, as in Domb s model, which turn
the transition first order except in the limit of no shear
forces. This work has been later extended, and con-
sidered in the framework of the renormalization group,
by Sak," Bergman and Halperin, ' and several other au-
thors. ' '

In the present paper we extend earlier works on
compressible spin systems by considering two specie of
spins on each lattice site of the same elastic medium.
Once elastic vibrations are integrated out there appear
new mixed biquadratic couplings between the two species
of spin, in addition to the usual tetralinear terms. Vari-
ous models of including the effects of elasticity lead to
different effective Hamiltonians. The elastic mean-field
version of a system of two compressible Ising models
gives rise to two first-order transitions. In the pressure
ensemble, besides long-range four-spin interactions
among the same set of spin variables, there exist also
mixed long-range couplings between spin variables of
different types. We then consider a system of two
compressible models without shear forces. In the pres-
sure ensemble, there exist only short-range mixed biqua-
dratic couplings, as in the spin model of Ref. 6. The tran-
sitions may be either continuous or first order, with a tri-
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critical point. Finally, we also consider a more realistic
model, including isotropic compression and shear forces,
which generate both short and long-range tetralinear
couplings. The results are discussed with respect to the
form of translation-rotation couplings in plastic crystals.

Let us first consider a compressible spin model with
two spin species per site and nearest-neighbor interac-
tions, given by Hamiltonian

JR(u)g cr;crj —JT(u)g t;t +Np(v), (I)
(tj)

where the coupling coeScients, Jz and Jz, and the elastic
potential, ()I), are functions of the average volume per par-
ticle v. A set of general spin variables, o, , for all sites
i = 1,2, . . . , X, has been introduced to represent the rota-
tional degrees of freedom, and an extra set, t„has been
used to mimic the melting transition. In this first case,
the effect of elastic vibrations is taken into account in a
global, or mean field, way. Local elastic fluctuations are
totally ignored. From the canonical partition function,

Z(T, v, N)=ZR[pJ R( )u]Z T[pJ (Tv)]exp[ pN&(u)—], (2)

where P= (k j) T) ', we calculate expressions for the
Helmholtz free energy, the pressure and the compressibil-
ity. It can be shown that, if the rigid models display
diverging specific heats at criticality, there is a mechani-
cal instability which turns the transition into first or-
der. ' Writing the partition function in the pressure en-
semble,

C

Y(T p, N)= f dv e ~ ~"Z(T, u, N)=Tre
0

where the trace is a sum over all spin variables, we obtain
an effective spin Hamiltonian, %,(r, in terms of the field

variables T and p. For simplicity, let us assume the linear
forms

As in the model of Ref. 6, the effective Hamiltonian of
Eq. (6) includes mixed biquadratic coupling terms. In the
present work, however, instead of displaying a short-
range character, these couplings are long ranged. More-
over, the first-order nature of the transitions is associated
with the long-range character of the couplings, ' without
depending on the assumption of more complex degrees of
freedom.

To go beyond the elastic mean-field approach, we have
to include the effects of the local microscopic fluctua-
tions. The Hamiltonian should then be written in the
form

A= —g JR(R, —R )o;crj —g JT(R, —R )t, t
(ij ) (ij )

+gp,

where R, is the position of site i, and the sums are re-
stricted to nearest neighbors on a cubic lattice. At this
stage, it is very hard to integrate over the elastic degrees
of freedom. We can, however, neglect all shear forces,
and consider elastic compression terms between nearest
neighbors only. The problem is then drastically
simplified, as the model, from the elastic point of view, is
reduced to a set of decoupled one-dimensional chains. '
Now it is easier to work directly in the pressure ensem-
ble. To integrate the elastic degrees of freedom, let us
consider a decoupled elastic chain, along the x direction,
described by the Hamiltonian

g JR (X, +1
—X, )o (jcr;+;

—g JT(X, +, —X;)t,jt;+, j

+g (t)(X;+ )
—X; ) +p g(X;+,—X; ),

and

JR(v) JRO JR1(u vo)

JT(v) JTO JT1( vo)

for the exchange terms, and the quadratic form,

(tr(u) =(t)0+ ((I)2(u —
u() )',

(4a)

(4b)

where the subscript j refers to the y or z directions, and
the force p plays the role of the external pressure. For
simplicity, let us again assume that Jz and Jz are linear
and P is quadratic in the lattice displacements, as in Eqs.
(4) and (5). Discarding a smooth function of p, we have
the effective spin Hamiltonian in the pressure ensemble,

&«= JR (p)g o;o,—JT(p)g t;t, —
(ij ) (ij )

where

JR)g o.;o, +JT)g t, t,
Y 2 (ij ) (ij)

(6)

JR(p) =JRO+ (7a)

and

pJriJ (p)=J + (7b)

for the elastic potential. Discarding a smooth function of
p, the effective Hamiltonian is given by

&«= JR(p)g cr;cr, JT(p)g—t;t, —
(ij ) (tj )

2 2
z z JT) zzg cr,-o J

— g t,t.
2 ((j) 2 (&j)

Jr]J~i
g o, t;cr t
(ij)

where Jz and J~ are given by Eq. (7). For Ising spin
variables, o.

, =+1, and t, =+1 for all i, this effective
Hamiltonian displays the nearest-neighbor tetralinear
couplings considered by Galam and Gabay. It corre-
sponds indeed to the asymmetric Ashkin-Teller model. "
For small tetralinear couplings, which corresponds to
small elastic effects, mean-field calculations for the
Ashkin-Teller model indicate that there are two second-
order transitions. ' ' For larger couplings, however, the
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and

~ JR 1~k) ~k2 ~k)~ —k( —
k~

—k3
1' 2' 3

+2JR1JTl~k)~k rk r —k) —
k~ —k3

+JTlrk rk2rk3r —k) —
k~ —k3 ] (12)

~LR D g( R 1~k~ —k + Tl k —k
k

where prefactors C and D are positive and depend on the
elastic parameters. The long-range term &LR corre-
sponds to the Fourier representation of tetralinear cou-
plings in the effective spin Hamiltonian of the elastic
mean-field model. Equation (12), for &sR, corresponds
to the short-range couplings of the shearless case. The
detailed study of the model Hamiltonian of Eq. (11) is in
progress. It seems, however, that the long-range terms
will dominate and the transitions will be discontinuous.
Considering one single set of spin variables, we regain the
results of Bergman and Halperin' for the case of an
elastically isotropic medium.

transitions may turn first order and the phase diagram in
much more complex. The study of this global phase dia-
gram is left for a future work.

At this point, to get one step further towards consider-
ing realistic elastic effects, we introduce some shear
forces by the inclusion of second-neighbor interactions in
the elastic potential of Eq. (8). It is convenient to write
the small displacements from equilibrium and the spin
variables in terms of their Fourier components. After
some long and straightforward manipulations, we obtain
an effective spin Hamiltonian of the form

jef ~SR +~LR

where, up to lowest orders in k, we have

&$R —g[( R BRk —)&ko k+( Ar Brk—)rkr k ]

Finally, to emphasize the connection between our work
and the pliysics of plastic crystals, it is worth making
some comments on the validity of using discrete variables
to describe continuous rotations. In plastic crystals, the
interplay between the symmetries of both the lattice and
the molecular groups generates the existence of a discrete
set of equivalent orientations in the plastic phase. Due to
steric hindrances, the dynamics of reorientations is rather
complex. However, at first approximation, it is reason-
able to assume instantaneous jumps between discrete
orientations, thus making appropriate the use of Ising
variables. On the other hand, Heisenberg variables
would require the introduction of additional anisotropic
exchange couplings. The problem becomes then more
dificult and is out the scope of the present work.

In conclusion, we have shown that elastic degrees of
freedom are instrumental to generate couplings between
translational and rotational degrees of freedom in models
for plastic crystals. The mixed couplings are found to be
always biquadratic, but their specific form depends on the
way elasticity is included. A mean-field elastic model
produces long-range coupling terms which drive the tran-
sition first order. In contrast, a shearless model, which
overemphasizes microscopic position fluctuations, pro-
duces couplings that are always short ranged. The transi-
tions are then continuous or discontinuous with a tricriti-
cal point. Finally, a more realistic model, which takes
into account some shear forces, generates both short and
long-range tetralinear couplings. The study of the com-
petition between these interactions is required to deter-
mine the nature of the associated transitions. However,
it is reasonable to expect that long-range terms will dom-
inate and the transition will turn into first-order always.
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