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Exotic quantum effects in two space dimensions: The role of translation invariance
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A translation-invariant system of particles in two space dimensions has a state space with a con-

tinuous infinity of superselection sectors parametrized by a real number a. In sectors with a&0,
plane-wave quantization of free particles is not possible; the "freest" Hamiltonian is that of charged
particles moving in a constant transverse magnetic field.

Unusual features of particle quantum mechanics in two
space dimensions, especially the possible occurrence of
"fractional" statistics and angular momentum, ' are now
being put forward as the underlying cause of physical
effects like the quantuin Hall effect(s) and high-
temperature superconductivity. Laughlin, in particular,
has shown in a recent paper that a free gas of fractional-
statistics particles behaves, in the Hartree-Fock approxi-
mation, as a gas of charged fermions in a constant mag-
netic field perpendicular to the plane and has proposed
that this behavior would be sufficient to account for the
superconductivity.

The present paper is an attempt at understanding the
origins of possible unusual behavior of a two-dimensional
quantum-mechanical system from the general point of
view of its symmetries. As is known from the pioneering
days, ' the essential principle in the symmetry approach
is that the state space of a system with symmetry group 6
must accommodate all projective unitary representations
(PUR) of 6 and not only those PUR's which are actually
UR's of G. Thus, half-odd-integer spin states of a
rotation-invariant three-dimensional system carry PUR's
of the rotation group SO(3) which are UR's, not of SO(3}
but of SU(2). To determine the most general state space,
one therefore needs to find all PUR's of the symmetry
group of the system.

For particle quantum mechanics in n space dimen-
sions, Bargmann found a long time ago that the Euclide-
an group E(n) has a continuous infinity of inequivalent
PUR's for n=2 (and only for n=2). The question posed
in the present paper is the following: %'hat modification
of the dynamics in two dimensions is required in each of
the distinct PUR's (sectors) to ensure Euclidean invari-
ance? It is most directly answered by invoking the gen-
eral connection that exists between PUR's of a group 6
and central extensions of 6 by the group U(1) of phases.
For this reason, I now state the essential facts pertaining
to this connection.

A central extension of 6 by U(1) is a group 6 of which
U(1) is a central subgroup [U(1) commutes with all ele-
ments of G] such that the factor group G/U(1) is G. G is
itself not a subgroup of G [except when G is the trivial ex-
tension G X U(1)] but only a subset. Hence, a UR of G is
not, in general, a UR of 6. However, it is always a PUR
of G. Moreover, given a PUR of 6, there exists a central
extension G and a UR of G such that, when restricted to

the subset 6, it is the given PUR and this correspondence
between PUR's and central extensions of G is one-to-one.
It is this fact that makes the study of central extensions
of symmetry groups unavoidable in quantum mechanics.

When G is a Lie group, it is simpler to deal, following
Bargmann, with its Lie algebra Lie G (and to indicate,
where appropriate, that caution has to be used in passing
to the group). Corresponding to 6 there is a central ex-
tension of Lie 6=[X,Y, Z, . . . I obtained by modifying
the Lie bracket [X, Y] to

[X, Y] =[X,Y]+iy(X, Y),

If y(X, Y) is of the form i f3([X, Y]) for P some real linear
function, Eq. (2) is automatically satisfied and [, ]r and

[, ] define the same (isomorphic} Lie algebra: X+p(X)
and X have the same Lie brackets. Hence, solutions of
Eq. (2}, which are inequivalent in the sense that their
difference is not of the form ip([, ]), define distinct cen-
tral extensions.

Once again, it must be kept in mind that the
correspondence between extensions of 6 and Lie G may
not always be one-to-one.

Though contained in the work of Bargmann, it is use-
ful to exhibit the central extensions of Lie E(2), essential
for what follows, and to see explicitly that Lie E(n) has
no nontrivial central extensions for n & 2. The Lie brack-
ets for E(2) are

[P;,P ]=0, [J,P;]=i@;P,

and Eqs. (2) are easily solved:

y(P, , P2 ) = y(P2, P, ) =i a, —

y(J, P, ) =is;, fi, ,

(3)

a, 6; arbitrary real numbers. Obviously y(P, ,P2) cannot
be a linear function of [P, ,P2](=0) except for a=0.
But, defining

P(P; ) = i e, P( [J,P, ] ) =——5, ,

where y is a real-valued antisymmetric bilinear function
[in particular, y(X, O)=y(O, X)=0] satisfying the condi-
tion (to ensure that [, ] fulfills the Jacobi identity)

y([X, Y],Z)+y([Y Z],X)+y([Z,X],Y)=0 . (2)
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we see that 6; can be absorbed in P; without changing the
structure of the Lie algebra; in other words, an extension
defined by an arbitrary 5; is a trivial extension. Hence,
extensions of Lie E(2) are parametrized by one real num-
ber a, —~ &a & ~, and these are all obtained from ex-
tensions of the translation subalgebra

[P„P2]=ia . (6)

For every value of a%0, the momenta satisfy the Heisen-
berg commutation relations.

To illustrate what happens in higher dimensions, it is
sufficient to look at n =3. E(3) has Lie brackets

[P, , P ]=0,
[J; J, ]= i&'jk Jk

[J;,P) ]=i ejkPk

and the substitutions X=J;, F=P, Z =PI„X=J,,
Y =JJ, Z =PI„and X =J;, Y =Jj, Z =J& lead, respec-
tively, to the vanishing of y(P, P ), y(J„P ), and

y( J, ,J ) (a special case of a general theorem valid for the
Lie algebra of the semidirect product of a semisimple
group and an Abelian group}.

Finally, the passage from the Lie algebra to the group
also works diff'erently for E(2) and E(3). Even though Lie
SO(3) [=Lie SU(2)] has no nontrivial central extension,
the group SO(3) has one, whose UR's are the half-integral
spin PUR's of SO(3). In contrast, the group SO(2) has no
nontrivial central extension as follows from its being
compact and Abelian —two-dimensional angular
momentum is integral.

The upshot of all this is that a translation and Euclide-
an invariant system of particles in two dimensions has a
state space containing sectors V parametrized by an ar-
bitrary real number a. Each V is a vector space carry-
ing a UR of the a extension E (2) of E(2) [and of the cor-
responding Heisenberg extension R ~, defined by Eq. (6),
of the translation group R ] or, equivalently, carrying an
a PUR of E(2) (and of R ). Since it is a general result
that inequivalent PUR spaces of the group of symmetries
are actually superselection sectors, each V is a super-
selection sector. A sector with a@0 is a direct sum of
identical ~-dimensional subspaces (the Heisenberg group
has a unique oo-dimensional irreducible UR}. For a=0,
the situation is degenerate: Vo is an infinite direct sum of
inequivalent one-dimensional UR's of R, the familiar
plane-wave representations. That the translation group
has nontrivial PUR's (in fact, for all n ~ 2) is an old re-
sult. ' Nevertheless, it is necessary to stress that P, , the
self-adjoint operators representing P,- in the a sector are
the momentum operators even though they do not
commute —operating on states in V, they generate
translations.

The fact that a is a superselection charge is important:
it implies that time evolution cannot take the system
from one sector to another. Consequently, there cannot
be one Hamiltonian valid for all sectors, but rather a fam-
ily I H I . For H to respect translation (or Euclidean)
symmetry in V, H must be invariant not under R or

E(2) but under R and E (2) because only the latter are
unitarily represented on V . Obviously, P &+P 2 is not
invariant under R „. More generally, if Q is a polynomial
function of P;, and invariant under R

where P is a potential satisfying

Bxp Bx )

=a,

i.e., a connection on a U(1) bundle on R whose curva-
ture is constant and equal to a. The P; satisfy the
canonical commutation relations [P;,xj ]= i 5; —as ex-
pected of momentum operators. One easily verifies now
that the only operators linear in P; (to preserve rotation
symmetry) and commuting with P; are

Ql CXl /J J (10)

and that the unique invariant operator quadratic in mo-
menta is, up to a constant,

H =K2] +I(},22

This is the closest we can get to a free Hamiltonian.
Strictly speaking, H even for a fixed a is a family of

operators, on account of the gauge freedom in choosing
the "kinematic" vector potential P. But the uniqueness
theorem for UR's of the Heisenberg group ensures that
gauge transforms of P; and H are unitarily equivalent.
In the gauge

,'(X'()XJ. —

Eqs. (10}and (11)give

8 8 . 8 Q

Bx; Bx; BXj
(12)

Note that in this gauge, J=—iE'jx 8/Bx . This is the
Hamiltonian for a "charged" particle in a constant trans-
verse "magnetic field. " Whether the particle is endowed
with charge a and the magnetic field with unit strength
or vice versa is a matter of convenience; for definiteness
we adopt the former picture. Also, E; are not covariant
derivatives: K,W ir}/r}x, +const P,—in an arbitrary
gauge for P;.

Equation (12) shows that the Hartree-Fock approxima-
tion of Laughlin for a free gas of particles obeying frac-
tional statistics is the exact description of particles obey-
ing normal statistics but in a nontrivial superselection
sector of the translation and Euclidean groups. The N-
particle Hamiltonian

[Q,P;]=is; =0,a

lXJ

then Q is a constant, showing that there is no nontrivial
Hamiltonian that is a function of the momenta alone.

In spite of this, V can be realized as the Hilbert space
of conventional wave functions, i.e., functions on the
configuration space with
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HN ~ (~(r)2+~(r)2 )a ~ a1 Q2

operating on (anti)symrnetrized wave functions
ttj(x"', . . . , x'"'), is readily shown to commute with the
total momentum Pz . However, the modification of
plane-wave quantum mechanics peculiar to a@0 sectors
is not a statistical or many-particle effect, nor is it a
boundary effect.

I conclude with two remarks.
(l) Unusual physics in the a%0 sectors depends not so

much on the dimension of space as on the invariance
group. The discussion above holds unchanged for parti-
cles in three dimensions provided there is translation in-
variance at least in planes and rotation invariance at most
about the normal perpendicular to the planes, e.g. , for
electrons in layered materials.

(2) Full Galilean invariance (or for that matter Poin-
care invariance) destroys the superselection structure de-
scribed in the main part of this paper. The Lie algebra of
the Galilei group in two dimensions, Q(2), is obtained
from that of E(2) by adjoining the generators of velocity
transformations (M~) and time translation (H). Equa-
tions (2) for M, , H, and P and the Lie brackets

[M;,H]=iP;, [M, ,P ]=[H,P ]=0,
imply directly that y(P;, P ) =0; in other words, the func-
tions of y which satisfy Eq. (2) on all of Q(2) necessarily
vanish on the translation subgroup. [As in the well

known case of Q(3), Q(2) does have a one-parameter fami-
ly of extensions, corresponding to y which is nontrivial
on the pair (M, , P, ), y(M, , P, )=i6,,e, —oo &c & co; e is
related to the total mass and is not relevant in the present
context. ] What this means is that, for a strictly isolated
system with no external forces, a&0 sectors are absent.
On the other hand, systems (electron gas in a material) in
which the exotic phenomena mentioned in the beginning
occur are not isolated and the Galilean invariance is re-
stored by the motion of the environment. The external
magnetic field that simulates the lack of commutativity of
momenta is a signal of the breaking of Galilean invari-
ance. In a real system, the magnetic field is presumably
physical, and reflects the influence of the (neglected) envi-
ronment on the electrons.

After completing this work, I have seen a copy of work
by Chen et al. which discusses a number of conceptual
issues connected with the properties of a system of parti-
cles with fractional statistics, including Laughlin's
Hartree-Fock wave function. The notion of a spontane-
ous breaking of the commutativity of translations plays
an important role in this paper. While a comparison of
the paper of Chen et al. and the present work cannot be
made here, it should be stated that it is perhaps more ap-
propriate to think of translation invariance as anomalous-
ly implemented in a&0 sectors, through the extra (anom-
alous) terms in the Hamiltonian.
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