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We reconsider some of the previous studies of the interactions between the holes and the spin
background in the Hubbard model in the small-doping limit. We show that the hole-hole interac-
tion due to the transverse magnetization fluctuations (i.e., spin waves) is finite at arbitrarily small
hole density. It may be comparable to the coupling due to the longitudinal magnetization fluctua-
tions (which are the essence of the “spin-bag” mechanism of Schrieffer, Wen, and Zhang). This sug-
gests that the two couplings should be considered simultaneously when studying the phase diagram
of the lightly doped quantum antiferromagnets at the values of U/t relevant to the high-7, super-
conducting materials. We also show that in the large-(U /¢) limit the Hubbard-model expressions
for the coupling of holes reduce to those given by Shraiman and Siggia for the ¢-J model. This pro-
vides a link between the weak- and the strong-coupling theories of the doped quantum antiferromag-

nets, in the small-doping limit.

Ever since the discovery of the high-T, superconduc-
tors,! there has been a considerable interest in the proper-
ties of the two-dimensional (2D) doped quantum antifer-
romagnets’ (AFM). While the ultimate goal remains the
understanding of the AFM at relatively high doping lev-
els (~15%), it has so far proven elusive. One limit where
there had been some progress (at least from a
theoretician’s point of view) is that of a very low doping,
including the studies of a single hole,>® the interaction
of just two holes in an otherwise ordered AFM back-
ground,”’ 2 as well as the possible phase diagram!'>'*
and pairing schemes'!"'215 in the low-doping limit. These
studies had been done with the #-J model,>~ 712714 a5 well
as with the finite-U Hubbard model® '"!* (and their
two-band generalizations).

Working from the ¢-J model, Shraiman and Siggia (SS)
demonstrated that a single hole couples to the transverse
(i.e., spin-wave) degrees of freedom in an AFM in a way
that induces a long-range dipolar twist of the spin back-
ground.® In the presence of a (small) finite density of
holes, a strong possibility exists that these twists arrange
themselves in a pattern that leads to a spiral distortion of
the spin background.'?

In the Hubbard model, at finite U/t values, the hole
also couples to the longitudinal magnetization fluctua-
tions of the AFM background. Schrieffer, Wen, and
Zhang (SWZ) considered the consequences of that cou-
pling at low-doping levels.!! Their “spin bag” is essen-
tially a quasiparticle made of a hole dressed by such mag-
netization fluctuations. They considered the interaction
between two holes caused by these fluctuations, and stud-
ied the possible pairing schemes due to this coupling.

In the spin-bag picture only the magnitude of the mag-
netization, and not its direction, is affected by the hole,
and thus nothing like a spiral phase of SS can arise. This
means that the two solutions are quite distinct from each
other. However, we expect the large-U Hubbard model
to behave essentially like the ¢-J model, and it is especial-
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ly important to understand the relation between the
weak- and the strong-coupling calculations when they
seem to lead to such different results.

In this work, following largely the random-phase-
approximation (RPA) formalism employed by SWZ, we
demonstrate that the hole-hole couplings both due to the
longitudinal and the transverse spin fluctuations are
present and finite at arbitrarily low hole density. As a re-
sult, SWZ and SS results should be generalized by includ-
ing both couplings together, raising the possibility of a
more interesting phase diagram than each would produce
individually.

The Hubbard model is given by the Hamiltonian

H=—1t (2; (ci’tgcj,a-FH.c. H‘Uz”m"u . (1)
7 i

The large-(U /1) limit of this model is believed to be essen-
tially described by the z-J model,

H=—1 3 (¢}, ,+Hc)+J 3 S;'S; , )

Cij), {ij)
g

where J~4t*>/U. At half-filling, it reduces to a Heisen-
berg model, for which the spin waves provide a rather
good description of the collective modes. SWZ observed
that the large-U limit of a simple RPA approximation for
the transverse spin response function in the Hubbard
model, gives the correct spin-wave velocity. A one-loop
correction to self-energy also reproduced the spin-wave
result for the reduction of the order parameter due to the
quantum fluctuations.!! This was somewhat surprising,
since it was contrary to the intuitive expectation that the
RPA approach should only work in the small-U limit.
To see what happens away from half-filling, we inquire if
the RPA expressions for the hole-hole interactions
reduce, in the large-U limit, to those found by the
Schwinger-boson-spinless-fermion decoupling of the elec-
tron operators in the #-J model.'>'* We show below that

6711 ©1990 The American Physical Society



6712

this indeed occurs.

We first summarize the relevant formulas from SWZ
(see Ref. 11). At half-filling, the mean-field (MF) solution
with a spin density wave is given by diagonalizing,

_ t t
Hyp= 3 €1CkoCho — US 3 [cxrg 10k —
k

¥

Ck+Q,ick1] » (3)
k,o

where the “free-electron” energy is given by

g, = —2t(cosk, +cosky ),

the nesting wave vector Q =(m,7), and S is a parameter
to be determined self-consistently. Hyg is solved by a
linear transformation
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The resulting vacuum is given by ¥¢/0)=%""|0)=0, and
the diagonalized Hamiltonian is
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where the wave vectors are restricted to the magnetic
Brillouin zone. In these formulas, the one-particle ener-

gies are, E; =(A%+¢2)'/2, the rotation coefficients are
1 €k €k
== |1+ —= N 1— » 6
Uy 2 Ek Uy = 2 Ek ( )

and the gap parameter A=US is found from the usual
gap equation,

1 '-——-————1 :_L
N2 A U

SWZ studied the charge, the longitudinal spin, and the
transverse spin fluctuations around the spin density wave
ground state, and the interactions between holes mediat-
ed by these fluctuations. Of interest to us is the effective
Hamiltonian H=H,+H . _ due to the two-spin fluctua-

Hyeg=Y' Ek[yit,yio—yif,yia] , (5)  tion channels, where
k,o
sz 4N 2 ZV k k )Uaaaf)"ﬁckac k+qﬁc k+qﬁcka’ (7)
kk'q afB
ap
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H+‘ = —"ﬁ k% 2 V+,(k —k )O'alao'ﬁ'ﬁck'arc ,k'+q,ﬁfcfk+q‘[3cka . (8)
q;gy
f
In the RPA approximation, where the coherence factors are
U2 2z U2 +,( ) , ,
Vz(q):_M’ V+,(q):JB——€— ) 9) m(k, k") =u,v, o, kK" =uug+oop,
1—Ux&(q) 1—=Uxq “(q) (14)
plk, k') =ugv—veuy, nlk,k' ) =ugug—vvg .
Here, x, are the ‘“‘noninteracting” response functions at
=0, given by The mean-field energy E, =(A%+¢2)'/? is degenerate
| €€ +A2 1 along the Brillouin zone boundary. This is an artifact of
Hg=—=3"|1— kg , (100  the mean-field approximation; it is believed that the t-J
N5 E\Ey +q E,+E, +q model has the band minima at k =(xw/2,%t7/2) for the
- A2 physically interesting values of ¢ /J. In the following we
Yo :l S k*k+4q 1 (11)  assume the same is true of the Hubbard model for the
N % E Ey 4, E.+E; ., relevant U/t values.'®!” Then, at low densities, the holes

One then rewrites this Hamiltonian in terms of the
mean-field one-electron eigenstates, v}, and y{,, and one
further restricts it to the pairs of holes with opposite mo-
menta in the valence band only. One obtains,

H,= EE[ka

kk aa'

(k k' )Uaaoﬁ'ﬁ

PP 4V, (k —k'+Q)m(k,k" )8 S pp]
XY ¥ kY kY b » (12)
H _=——]1\72 2 _(k—k"n?(k,k’)
k k' aa’
PPy (k—k'+Q)pk, k)]
XU(;aaﬁiﬁyiTa'ka'ﬁ'Vikﬁyia ) (13)

will form Fermi pockets around k=(x#w/2,tw/2).
Note that k=(w/2,m/2) is equivalent to
k=(—m/2,—m/2) in the magnetic Brillouin zone, and
in the extended zone scheme we limit our attention to the
Fermi pocket of holes near, say, k =(7/2,7/2).

SWZ observed that the coherence factors n (k,k’) and
p(k,k’) which are present in the H _ channel are very
nearly zero when both k and k' are near the Brillouin
zone boundary, since in that case u; ~v, ~1/V2. At a
low-hole density, when the Fermi pockets are small, these
factors are very nearly zero for the scattering processes
between the various parts of the Fermi surface. On the
contrary, factors m(k,k’), I(k,k') which are present in
the H, channel are close to unity. Thus SWZ focused on
the consequences of the H, interaction, which is the cru-
cial ingredient in their ‘“‘spin-bag” approach to doped
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AFM.

The main thesis of this note is that H, _ is also finite,
despite the vanishingly small coherence factors
p(k,k’),n(k,k"). The key idea is that V, _(k'—k+Q)
has a Goldstone pole at ¢g=(k'—k)—0, and this pole
cancels the zero in p(k,k’'). To demonstrate this, con-
sider,

pAk,k" )= (v —up; )2
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When k —(7/2,7/2),
€, = —2t(cosk, +cosk,)~2t(8k, +8k,) , (16)

where 8k, =(k,—m/2) and 6k,=(k,—m/2). In the
same limit, E, —A. Thus, when both k and k' are close
to this band minimum,

2

€y —Eg t?
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where g =k —k’.
We now go back to V., _(g +Q), which in the ©=0,
g —0 limit had been calculated to yield,

1
tiyq?

Vi (g+Q)=Uxgpalg +Q)~
where

) (18)

1 s sinzkx 19)
NS B

M1l

y

Combining Egs. (17) and (18) for p*k,k’') and
Vi _(g +Q), and substituting into Eq. (13) for H, _, we
obtain our key result for the hole-hole interaction
strength due to the spin waves,

12,
(IZy)qZ A2 x
_ 1 (g,+q)
ya* ¢t
Here, we have a finite interaction strength in the limit
0=0, g —0, regardless of the hole density.

This interaction is of the same functional form as the
one found by SS for the ¢-J model.'? In the large-U limit
we also get the same coupling strength as in the unrenor-
malized (i.e., without the vertex corrections) SS calcula-
tion. Indeed, in the t /U —0 limit we have, y —1/(4A%)
and A— U /2, and we obtain from Eq. (20),

V. _(g+Q)pk, k+q)= +gq,)?

(20)

(g, +g,)?

V. _(g+Q)pik,k +q)~2U .

(21)

SS obtained the following Hamiltonian,

1 o, - _
H=—]\7 2 V(k’k ’q)¢;¢f+q¢f'+q¢ij’ > (22)
k,k',q

where (before the vertex corrections),
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It is easy to check that when k,k’'—(7/2,7m/2),q —0, we
obtain,
, 82 (4, +q,)’

V(k,k ,q)Z—T”—qz— .
The large-U limit of the Hubbard model corresponds to
J=412/U in the t-J model, and thus both the coefficients
and the functional forms in Egs. (21) and (24) are the
same. We know that the RPA correctly reproduces the
spin-wave results in the large-U limit at half-filling.'!
Thus the fact that the hole-hole interaction came out the
same as well demonstrates that the (bare) vertex is identi-
cal to that obtained by the Schwinger-boson—slave-
fermion decoupling of the electron operators in the t-J
model.»® This establishes a definitive connection between
the “weak-coupling” approach of SWZ and the ¢-J model
calculations by SS and others. In particular, all of SS cal-
culations regarding the possibility of a spiral phase can
now be repeated for a weak-coupling case.

One would like to compare the relative magnitude of
H, and H, _ at the realistic values of U/t. Unfortunate-
ly, the RPA expressions can be poor guides because of
the vertex corrections. The most extreme example is
offered by Eq. (21) for the strength of H, _ in the large-
(U/t) limit. It is clearly unphysical, as the coupling
strength should not grow indefinitely with U. In the t-J
model language, Eq. (24) is unphysical when ¢ /J >>1. In
fact, SS argued that the coupling constant ~t2/J should
renormalize to ~J in that limit. This would correspond
to the coefficient 2U in Eq. (21) being renormalized into
one of order t2/U at large U /t. In that limit, V,(q) given
in Eq. (9), leads to V,(Q)~16t2/U. We do not know at
present how this gets renormalized due to the vertex
corrections. Thus we cannot draw any conclusions about
the relative strength of H, and H, _ in the large U/t
limit. We do expect the importance of the vertex correc-
tions to diminish at small U/t values, and the results of
calculating the coupling strengths from Egs. (9),(10), (19)
and (20) for several representative U /t values are as fol-
lows: for t =1, U=2.28, we have A=0.5 and,

(24)

(q.+q,)
Vi_(g+Qp’k, k+q)—»10.3q—%- ,
I (25)
V(g +Qim?(k, k+q)—2.45;
when r =1, U=3.29, we have A=1.0, and we obtain
(g, +q,)*
Vi (q+Qpk k+q)—11.3-2
K (26)

V(g +Q)m*k, k+gq)—2.41 .

Even at these smaller U/t values, unless we calculate the
vertex corrections, these numbers are at best suggestive
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of H, and H, _ being comparable in strength.

To see if the two interactions together may behave
differently than each would separately, we look more
closely at their functional forms. H, is a short-range in-
teraction with an attractive spin-independent dominant
term. It also has a spin-dependent term ~oio3, which is
attractive in the spin-symmetric channel, and repulsive in
the spin-antisymmetric channel [cf. Eq. (12)]. The spin
dependence of H, _ is ~(o; 0, +0; o;). Upon taking
a Fourier transform of V(q)~(q, +g, )2/q?, we obtain in
coordinate space,

1 2xy
&(r)+ Ey—
Due to a finite momentum cutoff, the delta function is
simply a short-range interaction, which is attractive in
the spin-symmetric channel and repulsive in the spin-
antisymmetric one. The second term is a long-range di-
polar interaction, and similarly to its three-dimensional
analogue, it is repulsive or attractive depending on the in-
stantaneous relative location of the two holes.

The spiral phase proposed by SS is due to the align-
ment of spins by the short-range (i.e., the contact) term in
Eq. (27). The fact that the holes are also coupled to the
long-range distortions of the spin background then leads
to a spiral twist of the background. It is essential for the
spiral that the spins be aligned in the plane perpendicular
to the Néel axis. Should the strength of the spin-
dependent term in H, exceed that of the H, _ (for exam-
ple, at lower-U values), the spins will align along the Néel
axis, and the spiral will disappear. The possibility of this
transition clearly deserves further study.

As another illustration of how the two interaction
terms may play against each other, consider the super-
conducting gap equation. SWZ showed that H, alone
leads to the pairing in the usual spin-antisymmetric chan-
nel. Assuming that the angularly-dependent long-range
term in H, _ averages to zero, we observe that the
short-range term will be repulsive in the spin-
antisymmetric channel. Thus, if the strength of H, _ is

H, (r)~— (o0fo; +o70). (@27
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sufficiently large, the pairing produced by H, will be en-
tirely suppressed.

There is a simple intuitive picture that clarifies this re-
sult. It is known that in the magnetically disordered
phase, the paramagnetic fluctuations depress the super-
conducting transition temperature in the spin-singlet
channel.'® A qualitatively similar phenomenon can be
seen to occur here. Both the spin-dependent piece of H,
[cf. Eq. (12)] and the whole of H, _ are repulsive in the
spin-antisymmetric channel. In the rotationally-invariant
case, H,  would be equal to the sum of the spin-
dependent parts of H, and the charge-fluctuation part of
the total Hamiltonian. This equality is generally no
longer true in the spin-ordered state, due to the presence
of the broken symmetry. One should also add that the
frequency cutoffs in H, and H , _ will also be different in
the presence of the broken symmetry.

In conclusion, we have offered evidence that both the
spin bag and the spiral phase ideas are relevant to under-
standing the low-hole-density behavior of the Hubbard
model at the realistic values of U/t. We did this by
demonstrating analytically that the interaction term that
had been used'>'® to derive a spiral phase in the context
of the ¢-J model, is already present in the RPA weak-
coupling calculations on the Hubbard model, regardless
of the hole density.
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