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We present a calculation of the lattice specific heat of the high-temperature superconductor
YBa,Cu;0,, based on a full lattice-dynamical description. The availability of a realistic lattice
specific-heat function is of importance for separating the nonlattice (and possibly anomalous) contri-
butions from the measured total specific heat. It provides a test for the appropriateness of the fitting
functions and fitting ranges used in the literature, to separate the lattice contribution from the total.
It is found that the Debye region [@(0)=465.5 K] extends only up to 3 K [=0.006®(0)]. Strong de-
viations from Debye behavior in the range 3 to 20 K lead to a 30% drop in ®(T); this roughly cov-
ers the range of Debye temperatures obtained from the experiments by various fitting procedures.
One of the reasons for this spread in experimental Debye temperatures is that, if the lattice specific
heat is assumed to be of the form BT outside the Debye region, an improper fitting of the measured
data can lead to the wrong Debye temperature and also to the appearance of spurious nonlattice
contributions to ¢,. Sound velocities are a natural by-product of this calculation; direct comparison
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with experimental values for ceramic samples is not possible.

Traditionally, specific-heat measurements have been an
important tool in the study of superconductors since they
reveal the value of the transition temperature T, and in
general allow the investigation of the electronic, vibra-
tional, and magnetic excitation spectra. Experimentally,
the high-T, superconductors (HTSC) pose special prob-
lems because of the unusually large lattice specific heat,
and the occurrence of a variety of extrinsic effects, such
as disorder, defects, structural instabilities, etc., all of
which contribute to the measured specific heat. Many of
the intrinsic and extrinsic effects are superimposed and
the most interesting contributions are not necessarily the
dominant ones. It is commonly accepted that the best
manifestations of intrinsic properties are to be found for
samples which have the smallest specific heats at low
temperatures, and that the behavior of the specific heat at
T, provides one of the most stringent tests for the homo-
geneity of a superconducting sample. (For reviews of the
specific-heat properties of HTSC we refer to Refs. 1-3.)

Of the various HTSC, the specific heat of
YBa,Cu;0,_5 (Y-Ba-Cu-O) has been the most extensively
studied experimentally. Of particular interest is the pres-
ence, in the measurements, of a low-temperature contri-
bution with an apparent linear temperature dependence,
the origin and magnitude of which are still under active
study.* In order to extract from the measured specific
heat the various contributions (such as this linear contri-
bution) and to identify and reliably establish their tem-
perature dependence, it would be of great importance to
have an accurate determination of the lattice specific
heat, particularly because of its tendency to overwhelm
the other specific-heat contributions.

In this paper we present a calculation of the lattice
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specific heat of Y-Ba-Cu-O based on a full lattice-
dynamical treatment of the crystal. Of particular interest
is the extent to which the results of our calculations can
be used to analyze the experimental data. We find that
qualitatively and quantitatively, the behavior of the lat-
tice specific heat gives important clues for reduction of
the measured specific-heat data. However, the numerical
uncertainties in both the experimental and the calculated
data are such that they preclude a detailed numerical
comparison of the two sets of data at low temperatures.
Thus, it is not possible to simply subtract the calculated
specific heat from the measured data at low temperatures,
and obtain the experimental nonlattice specific heat with
sufficient accuracy to be amenable to a detailed and
meaningful analysis.

Our calculations of the lattice dynamics of the HTSC
are carried out in the framework of shell models which
take into account short-range overlap and long-range
Coulomb interactions, as well as ionic polarizabilities.
The short-range interactions of the various ion pairs are
represented by Born-Mayer potentials. Owing to the
closed-shell-like electronic configurations of the ions,
these potentials are to a large degree independent of the
spatial arrangement and the crystal surrounding of the
interacting ion pair. This has the advantage that the
short-range potential parameters can be taken from shell
models which have been developed for perovskites and
metal oxides for which neutron measurements of phonon
dispersion curves are available. Moreover, interaction
potentials of ion pairs (such as Cu-O, Ba-O, etc.) common
to the different HTSC can be transferred from one com-
pound to another, which results in an internally con-
sistent approach to the lattice dynamics of a broad class
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FIG. 1. Calculated lattice specific heat ¢,(T) vs T (solid line).
Measurements of Lang et al. (Ref. 12) ( A ) and of Shaviv et al.
(Ref. 13, Table II) (@).
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Solving the dynamical equations for a suitably chosen
set of wave vectors in the Brillouin zone allows one to
construct the (normalized) phonon density of states func-
tion F(w). Using F(w) one evaluates the lattice specific
heat ¢, (T) using the customary expression
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where x =#iw/kgT. Unfortunately, for very low temper-
atures the practical use of Eq. (1) can lead to inaccurate
results, because of inaccuracies in the calculated F(w) for
very small w. This has to do with the fact that in a root
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sampling method there inevitably occurs a smallest
acoustical frequency w,,;,; for temperatures below
#iwnin/kg, ¢, will become anomalously small. However,
one can always choose sampling meshes in the Brillouin
zone so that these difficulties appear in the linear disper-
sion region of the acoustic modes, where the Debye ap-
proximation is strictly valid. Under these conditions, the
method of de Wette et al.'' will give results for c, to any
desired degree of accuracy.

In Fig. 1 we display the calculated c¢,(T) in the range 0
to 350 K together with the measurements of Lang
et al.'?> and Shaviv er al.'* To the eye the calculated
¢,(T) agrees quite well with both sets of measurements at
least up to 50 K. This makes it clear that the specific
heat itself is not a very sensitive tool to judge the subtle
differences which may be important at low temperatures,
nor does it allow us to determine the extent of the Debye
region where ¢, =fBT>. For this purpose, ¢, /T or the
Debye temperature O(T) provide much more sensitive
measures. In Fig. 2 we have plotted ¢, (T)/T? in the tem-
perature ranges O to 100 K and 0 to 10 K, respectively.
From Fig. 2(b) it is evident that the Debye region
[®©(T)=0(0), the “initial” Debye temperature] does not
extend beyond 3 K. Furthermore, it is interesting to note
that in the range 5 to 12 K, ¢, /T3 is linear in T, i.e.,
¢, T)z[J”T3+8T4. Finally, for T > 12 K, where cv/T3 is
no longer linear in 7, the power expansion of c,(T) be-
comes more complicated, with the highest power of T
less than four. These facts provide clues for the fitting of
the experimental low-temperature specific heat; in partic-
ular they call into question the appropriateness of the
fitting functions as well as fitting ranges used in the litera-
ture (cf. Refs. 1-4).

Debye temperature ®(T). The “initial” Debye temper-
ature ®(0) is usually obtained from the coefficient of the
Debye term BT of the fitting function, namely,

®(0)=(1.943 73X 10°N /B)'/? | ()

where N is the number of particles in the unit cell. At
finite temperatures ®(T) is obtained by equating, at each
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FIG. 2. Plot of calculated ¢,(T)/T" vs T.
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temperature, the Debye specific-heat expression
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to the calculated value of ¢,(T), and inverting Eq. (3) to
obtain O(T). (Here V is the volume of the unit cell.) In
Fig. 3(a) we show ®(T) in the range O to 350 K and in
Fig. 3(b) the low-temperature region (0 to 40 K) is en-
larged (solid lines). As we have already seen from c, / T3,
the true Debye region where ®(7T)=®(0)=465 K exists
only for T <3 K, i.e., for T <0.0060(0). In the range 3
to 20 K ®O(T) drops from 465 K down to 325 K, i.e,
spanning the entire range of experimental ®(0) values
quoted for Y-Ba-Cu-O in the literature (cf. Ref. 3). This
is a direct result of the fact that these experimental ®(0)
determinations are based on BT terms of fitting func-
tions, which either do not contain the appropriate powers
of T or have been fitted over a temperature range where
¢, is no longer Debye-like.

Having established the general low-temperature behav-
ior of ®(T) [Fig. 3(b)], one can obtain a quick indication
of the presence of nonlattice contributions in the mea-
sured specific heat, by expressing the experimental data
directly in a @(T) plot. As an example we have used the
data of Shaviv et al.,'® which were available to us in nu-
merical form. The “experimental” function ®,,,(T) so
obtained is also plotted in Fig. 3 as dots. It is seen that
O, ( T) drops precipitously for decreasing T below 15 K.
Since decreasing ® means increasing c,, this drop in @,
indicates the presence of a significant nonlattice contribu-
tion to the measured specific heat at these temperatures.

Fitting of c¢,(T): In an attempt to extract anomalous
contributions to the low-temperature specific heat of Y-
Ba-Cu-O, many investigators have fitted the measured
data with polynomial expressions, containing some or all
of the following powers of T: T2, T, T3 T (cf. Refs. 3
and 4). We caution against attaching too much
significance to the physical meaning of the various terms
in such an expansion. To get a feeling for how successful
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such fit can separate specific-heat contributions of
different origin, we have carried out fits of our calculated
lattice specific heat, which obviously does not contain
any other contributions. This exercise showed that the
relative importance of the various fitting terms depends
on which terms are included in the fitting functions, and
over which temperature range the fitting is carried out.
In particular, if different fits (to the same data) lead to
different values for the coefficient B of the cubic term,
these fits will predict different values for ®(0), according
to Eq. (2). [This may be a partial explanation for the
large range of ®@(0)’s found for Y-Ba-Cu-O (cf. Ref. 3)].
Another source of error may be the absence in the fitting
function of the leading power of T, for a certain tempera-
ture range. For instance, from Fig. 2(b) one sees that in
the range 5 to 10 K, ¢, /T should be well approximated
by ' +67T, so that for those temperatures the optimum
fitting function for ¢, would be B'T>+8T* (B is different
from S in BT, which gives the best fit for 0 to 3 K). But
of course, if a T* term is not included in the fitting func-
tion (as it has not been in any of the fits in the literature)
then terms of different powers of T have to take up the
slack, and one may be led to suspect the presence of
anomalous (nonlattice) contribution in the specific heat.
The most desirable procedure to isolate the nonlattice
contributions and establish their temperature dependence
would be to subtract an accurate (calculated) lattice
specific heat from the measured data and perform an ap-
propriate fit to the remainder. Unfortunately, such a pro-
cedure is not a viable option at this time, for a variety of
reasons: (1) The lattice dynamical calculations were per-
formed with structural parameters determined at room
temperature.'* Correction for thermal expansion re-
quires knowledge of the linear thermal expansion
coefficient and the bulk modulus of the ideal crystal, but
these are experimentally not accurately known. (2) Be-
cause of the uncertainties in the model parameters, errors
of up to 10% can exist in the calculated frequencies, and
therefore up to 30% in the calculated lattice specific heat.
(3) Finally, the measured data reflect variability in the
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FIG. 3. Plot of temperature-dependent Debye temperature ©(T). Solid line is from calculated lattice specific heat; dots (@) are

from specific-heat measurements of Shaviv et al. (Ref. 13, Table I).
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TABLE I. Calculated sound velocities of YBa,Cu;0; in 10*
m/s. The propagation directions [g00], [0g0], and [00g] are
along the a, b, and c axes, respectively. The polarization direc-
tions are given in parentheses. The averages are taken over all
directions in the Brillouin zone.

Propagation
direction vL piueh vl
[400] 8.14(a) 5.03(b) 1.81(c)
[0g0] 8.51(b) 4.96(a) 3.82(¢c)
[00q] 7.59(c) 4.09(b) 2.76(a)
Average 8.35 4.00 3.04

quality and preparation of the experimental samples (cf.
Fig. 1).

Sound velocities. For comparison with measurements
we give in Table I the longitudinal and transverse sound
velocities averaged over directions, as well as for propa-
gation in the ab plane and in the ¢ direction. These
values are substantially larger than the measured ones for
ceramic samples,>!>!'® which contain effects of porosity,
microstructure, and grain size.

We have presented a calculation of the lattice specific
heat and the Debye temperature of YBa,Cu;0, based on
full-scale lattice dynamical treatment. Although for a
number of reasons our results cannot be used for a direct
numerical reduction of the measurements, the low-
temperature behavior of the calculated lattice specific
heat provides important clues for the separation of the
lattice contributions from the measurements, thus allow-
ing for a better determination of the other (partly anoma-
lous) contributions and their temperature dependence.

Both ¢,(T)/T? (Fig. 2) and the Debye temperature
O(T) (Fig. 3) give a direct measure of the extent of the
Debye region [i.e., ®(T)=®(0)]. The cause for the onset
of non-Debye behavior above 3 K is a noticeable curva-
ture of the transverse acoustic dispersion curves already
below 0.4 THz. This results from the repelling effect of
the hybridization of the transverse acoustic and optical
branches close to I'. The full 30% drop in O(T) in the
range 3-25 K arises from ¢, contributions due to optical
frequencies below 2 THz in the outer parts of the Bril-
louin zone.
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The small extent (0 to 3 K) of the Debye region calls
into question the low-temperature polynomial fitting pro-
cedures carried out in a number of experimental studies,
which in some cases may lead to spurious nonlattice con-
tributions. Aside from polynomial fits to the measured
specific heat, it seems to be a useful procedure to display
measured data directly in terms of the ®,,,(T) function
(dots in Fig. 3), because deviations of such a function
from the general shape of ®,;..(T) (solid lines in Fig. 3)
is a very graphical indication of the presence of nonlat-
tice contributions in the measured specific heat.

In conclusion, we point out that our lattice-dynamical
model was developed to give an overall coherent dynami-
cal description for an entire series of high-temperature
superconductors, and to obtain reasonable agreement
with the measured optical phonons of these compounds.
It is therefore not surprising that the model does not lead
to optimum agreement with the measured acoustical
dispersion curves!” and the sound velocities of a single
crystal of YBa,Cu;0,. If one would be only interested in
the sound velocities and the specific heat of this particu-
lar compound, one could modify the lattice-dynamical
model to minimize the deviations between measured and
calculated acoustical dispersion curves, and probably ob-
tain results which could be used for the numerical separa-
tion of the lattice contribution from the measured total
specific heat. However, the primary aim of this work was
to explore the consequences of our general lattice-
dynamical model for the specific heat of YBa,Cu;0,.

Note added in proof. We thank Dr. J. C. van Milten-
burg (University of Utrecht, the Netherlands) for making
available to us unpublished heat capacity data for
YBa,Cu;0,_; in the range 9.4-340 K. The ¢, and O(T)
plots of these data are essentially identical to those of
Shaviv et al.'’ obtained by similar techniques.
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