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Infrared conductivity in superconductors with a finite mean free path
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We discuss the form of the infrared conductivity and reflectivity in strong-coupling superconduc-
tors with a finite mean free path. We restrict attention to the local limit, in which the London
penetration depth is much larger than the coherence length. We further assume that the fluctua-
tions responsible for electronic pairing may be treated within a conventional Eliashberg approxima-
tion. The conductivity typically exhibits two onsets: one at 250 and another at 260+~0, with coo a

typical fluctuation energy. The strength of the latter onset relative to the one at 250 increases as the
ratio of the mean free path to the coherence length increases, and in an extremely clean system

(250&)~ ) becomes the dominant feature in both the conductivity and reflectivity.

I. INTRODUCTION

Infrared reflectivity measurements, which probe the
particle-hole excitation spectrum of a solid, have for
many years provided an effective means for studying su-
perconductivity. In the superconducting state, finite-
frequency absorption onsets at a frequency co=25(T),
where b,(T) is the temperature-dependent energy gap.
For frequencies below 25, the reflectivity is unity. In dir-
ty inetals (i.e., systems with a short mean free path), the
reflectivity drops sharply above 2b, in a manner first cal-
culated by Mattis and Bardeen' and by Nam.

Reliable measurements of the gap are of particular in-
terest for the new high-temperature oxide superconduc-
tors where the nature of the pairing mechanism and the
strength of the coupling are in question. While a number
of experimental groups have now obtained data in sub-
stantial agreement, "controversies remain on the inter-
pretation of the data and the possible extraction of an en-

ergy gap. We briefly summarize the experimental situa-
tion below: for the a bplane of Y-Ba2Cu307 (fully oxy-
genated), infrared response showing a feature at an
unusually large energy scale (700 K —8 T, ) is seen in the
superconducting state. More recent data confirm this
and suggest, in addition, the presence of a lower-energy
feature. This has been associated with a smaller BCS size
gap in the a-b plane or alternatively with the c-axis
response. In samples of oxygen-deficient YBa2Cu307 y,
evidence for a BCS size gap has also been reported by
Thomas et al. ; ' in the same samples, a second
reflectivity feature appears near the large-energy scale ob-
served in fully oxygenated samples. This feature persists
to temperatures above 100 K (i.e., significantly above T, ).
Finally, it has been suggested" that none of the infrared

features observed so far are associated with the supercon-
ducting gap. Kamaras et al. argue that in highly
stoichiotnetric crystals the in-plane mean free path may
be sufficiently long compared with go that the change in
reflectivity at 260 is unobservably small.

The intention of this paper is not to offer a conclusive
argument favoring one of the interpretations for infrared
measurements mentioned above. A conclusive argument
would require quantitative fits for the temperature depen-
dence of spectra above and below T, in both fully oxy-
genated and oxygen-deficient samples. In fact, we have
found it impossible to obtain a consistent description of
spectra aboue T„assuming a temperature-independent
fluctuation spectrum and constant impurity scattering
rate (the assumptions of conventional strong-coupling
theory). This is hardly surprising, in view of the anoma-
lous behavior of other properties (e.g. , the Cu spin-lattice
relaxation rate and the Raman scattering intensity) which
cannot be explained within a conventional approach. It
might conceivably be possible to obtain a consistent
description using a temperature-dependent fluctuation
spectrum while retaining the other assumptions of Eliash-
berg theory. To be meaningful, however, such a spec-
trum should be calculated explicitly within a model
framework or constrained by comparison with other ex-
periments. We have not attempted to address this prob-
lem. Instead, we consider here a much more limited
problem, namely the dependence of the complex conduc-
tivity and reflectivity on the elastic scattering mean free
path I in a conventional strong-coupling superconductor.
This study addresses in detail the following question:
how dirty must a superconductor be to see a clear gap
signature in infrared rneasurernents? We expect the
answer to be largely independent of the dominant source
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of scattering (impurity or electron-electron) and the de-
tailed form of the fluctuation spectrum.

Since the early 1960's, the interpretation of energy-gap
data and more detailed measurements of excitation spec-
tra has been based on Eliashberg theory. ' This theory
makes a number of assumptions which may be called into
question in the new cuprate superconductors. The cen-
tral assumption, which justifies the neglect of vertex
corrections, ' is that the ratio of the characteristic fre-
quency of the pairing excitations to the Fermi energy is
small, i.e., coo/EF ((1. This assumption additionally al-
lows the restriction of calculations to the Fermi surface,
reducing (2+1)-dimensional integral equations to one-
dimensional equations in the frequency variable. This as-
sumption may be violated if pairing in the cuprate sys-
tems is mediated by electronic excitations (excitons or
magnons), rather than lattice vibrations. In this case, a
more detailed calculation, which retains the momentum
and frequency dependence of spectra, as well as summing
at least a limited class of vertex corrections, is likely to be
crucial. In this paper, we assume that such a treatment is
not necessary and pursue the effects of a finite mean free
path within conventional Eliashberg theory.

Computationally we find it convenient to (i) solve the
Eliashberg equations' along the Matsubara imaginary
frequency axis, (ii) evaluate the conductivity cr(ice ) at
the Matsubara frequencies iso, and then (iii) apply a
Pade approximant to analytically continue cr(ice } to the
real frequency axis. This procedure, originally' ' used
to determine H, 2 and T„has proved convenient for
evaluating thermodynamic as well as dynamic proper-
ties. ' The remainder of this paper is organized as fol-
lows: in Sec. II, we discuss the details of our calculation
of the conductivity and reflectivity. In Sec. III, we
present and discuss results for mean free paths varying
between the clean (1/'$0)) 1) and dirty (l /go (( I ) limits.
Finally, in Sec. IV we summarize our findings and discuss
their relevance to the cuprate superconductors.

II. CALCULATION

We assume the applicability of the Migdal-
Eliashberg' ' approximation for the description of the
normal and superconducting states. In this case, the cou-
pling of electrons to fluctuations (phonons or collective
electronic excitations} may be described by a single
frequency-dependent function a F. This function mea-
sures the weight in the fluctuation spectrum and the
strength of the electron-fluctuation matrix element, ap-
propriately averaged over the Fermi surface. The Nam-
bu matrix Green's function for electrons takes the form

i &n Zn +ckr3+ 0n rl

(Z„co„) +Ei,+P„
(2.3)

This form is valid for both the superconducting state and
the normal state, where $„=0.

Assuming particle-hole symmetry, the functions Z„
and P„are real, and

(2.4)

In the Eliashberg approximation, the contributions to X
from interaction with impurities and fluctuations take the
diagrammatic form shown in Fig. 1. The double lines in-
dicate that the electron Green's functions must be deter-
mined self-consistently. After carrying out the momen-
tum sums implied by the diagrams, the self-energy
reduces to

1 nZn
co„(1—Z„)=-

[(z )2+y2 ]1/2

m Zm
mT 'VA.„—n Ill [(Z )2+F2 ]i/2

(2.5)

[(z )2+y2 ]i/2

+m A,„II Ill

[( Z )2 +y2 ]i /2

Here ~ ' is the impurity scattering rate, and

= J deva F(a))
0 CO +(CO„CO~ )

(2.6)

Thus, the self-energy follows from solution of two cou-
pled matrix equations in the single variable co„.

,~,k-k', 0

Here Z„ is the mass renormalization function, and
p„=z„b,„ is the renormalized gap function. The Green's
function may be rewritten as

G(k, ice„}= (i co„z„e—i,r3 P—„~,)

G (k, i ~„)= (i co„—e„r3—X„) (2.1) k', n —n'

X„=(1—Z„}ico„+P„~, . (2.2}

where co„=(2n +1}mT is a fermion Matsubara frequen-

cy, e& is an eigenvalue of the electronic Hamiltonian, ~3 is
a Pauli matrix, and X„ is the self-energy due to scattering
from static impurities and fluctuations. The self-energy
may be divided into particle-hole diagonal and off-
diagonal parts as

(b)

FIG. 1. Contributions to the electronic self-energy X. The
self-consistent Nambu Green s function is indicated by a double
line. (a) Static impurity scattering. (b) Dynamic fluctuation
scattering.
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After solving for the Green's function, it is necessary
to evaluate the current-current correlation function to
find the conductivity. One could imagine using a Pade
approximant to continue (Z„,P„) to (Z(co), P(co)) and
then calculating o (co) as a real-frequency integral involv-

ing Z(co) and P(co). However, we believe that, having
found Z„and P„, it is better to proceed by evaluating the
current-current correlation function Iliv ) within the
Matsubara formalism. After this is done, a Fade approxi-
mant' may be used to carry out the analytic continua-
tion directly on the physical quantity of interest. Thus,
we have

K, fl+ rr&

FIG. 2. Current-current correlation function H(iv ). The
solid dot represents the lowest-order vertex U„=ek„/m. Only a
single complete vertex I „appears, to prevent double counting.

i II(iv ~co+i0+ )
cr(co) = (2.7)

with

ek„
II(iv ) = QTr G(ki(, co +„v ) )G(k, i co„)I

m

(2.8)

This correlation function is represented diagrammatically
in Fig. 2. Note that v =2m'. T is a boson Matsubara
frequency. The factor of 2 follows from a sum over spins,
and the trace is taken over particle-hole degrees of free-
dom. The momentum transfer q has been set to 0, as is
appropriate in the local limit (go ((k).

To lowest order, the vertex I „ is just ek„/m; however,
in order to be consistent with the Eliashberg approxima-
tion used to evaluate single-particle self-energies, the ver-
tex should properly include a ladder summation of im-

purity and fluctuation scattering processes. For isotropic
impurity scattering, the effect of such corrections is to re-
place the quasiparticle lifetime ~ with a transport time ~„.
The transport time is longer than the lifetime, since for-
ward scattering events (i.e., those with small momentum
transfer) are inefFective in reducing the current. Qualita

I

2e X(0)(U ) =ne Im =co~14m, (2.9)

with n the electronic density and cop the plasma frequen-
cy. This identification rigorously holds for a spherical
Fermi surface. The energy integration gives

tively, the effect of vertex corrections for dynamic scatter-
ing is expected to be similar: the coupling function a I
should be replaced by a transport function a,g, which in-

corporates a reduced matrix element for small-
momentum-transfer processes before calculating Fermi
surface averages. We do not attempt to address this com-
plication, but instead assume the replacement a F~a,g
is suf5cient. Note that this phenomenological treatment
of vertex corrections prevents a rigorous simultaneous
calculation of the conductivity and static properties, such
as T, . This is because the relationship between a I' and

a,g can only be established by an ab initio calculation
based on a Fermi surface, fluctuation spectrum, and ma-
trix elements; neglecting the differences in these spectra
amounts to neglecting vertex corrections entirely.

As usual, the momentum summation in Eq. (2.8) may
be reduced to a Fermi surface average and an energy in-
tegration. The Fermi surface average gives

f dek TrG(k, i (co„+v )}G(k,ice„)=mS„

$„(co„+co„+ )+P„(P„—P„+ ) co„+ (co„+ +co„)+P„+ (P„„,—P„)
Rn~nm Rn+m ~nm

(m =0)

1

R„
(m = 2n —1), —

(2.10)

where Q)p
Ii(i v ) = mTQS„.4' (2.12)

R„=(co„+Q„)'~

~nm ~ n ~ n+m +An 4n+m
(2.11)

Thus, the current-current correlation function reduces to

The conductivity must still be calculated by an analytic
continuation to the real axis. It is convenient to separate
the imaginary-axis conductivity into separate contribu-
tions from the superconducting condensate and addition-
al excitations:
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o (iv ) =o (i v )+rr,„,(iv~ ),
. 11(o)o„.(i v )=i

lVm
(2.13)

TABLE I. Ratio of the mean free path and zero-temperature
coherence length I/gp=rrkp(A/'T) ' for the scattering rates R/r
assumed in Figs. 5-9.

I /gp

Note from Eq. (2.10) that o vanishes identically in the
normal state. The analytic continuation of cr„ is just

0
5 meV
50 meV

500 meV

8
0.8
0.08

~ (~)=~11(0)S(~)+i. II(0)
CO

(2.14)

with e the frequency-dependent complex dielectric func-
tion. For a system in which the response of the back-
ground ions may be modeled entirely by a constant con-
tribution e„,the dielectric constant may be written

The analytic continuation of o,„, is nonsingular. We
have employed the Fade approximant technique of Vid-
berg and Serene' to perform this continuation numeri-
cally. The accuracy of the continuation may be checked
by a number of means, including the conductivity sum
rule, ' which states that the integrated weight in the real
part of the conductivity rr, must be the same in the su-

perconducting state and in a hypothetical normal state at
the same temperature:

f dcoo, z(co)= f der rr~N(ro) .

This sum rule simply indicates that the weight removed
from the spectrum at low energies in the superconducting
state must reappear in the 5 function at zero frequency.

Finally, the real-frequency conductivity may be used to
calculate the reflectivity measured experimentally. For
normal incidence, the reQectivity takes the general form

2

R= (2.16)
&@+I

with A chosen to normalize the spectrum to unity. With
this convention, the coupling constant a„has units of en-
ergy.

For the plots shown here, we have chosen the following
set of generic parameters: coo=50 meV, I O=5 meV,
I,=3I O=15 meV, and a =25 meV. We have assumed
impurity scattering rates fi/r of 0, S, SO, and Soo meV.
Finally, we have arbitrarily chosen a plasma frequency
cop of 1 eV. With these parameters, the pure-metal cou-
pling strength A, , defined by the relation

Z(0)=1+1, , (3.2)

is 0.94. The zero-temperature superconducting energy
gap is defined by the relation

Red, (bo)=bc . (3.3)

This value is independent of impurity scattering and is
calculated to be 12.1 meV. The associated value of
2b,o/kT, is 4.2. A dimensionless measure of the strength
of impurity scattering is the ratio I/go. Assuming I =UFO'
and (o=hUF/mho gives ilgo=rrbo(filr) '. " The ratios
i/go for each assumed value of A/~ are given in Table I.

In Figs. 3 and 4, we display the frequency-dependent
renormalization function Z and gap function 6 which
follow from the solution of the Eliashberg equations for

e ( ci) ) =E ~ + 4mi cr
(2.17)

3.0
For simplicity, we have assumed e„=1 in our calcula-
tions.

III. RESULTS AND DISCUSSION

To illustrate the effects of a finite mean free path on the
conductivity and refiectivity, we show below results for a
model Auctuation spectrum with impurity scattering
which varies from the clean to dirty limit. In each case,
we assume the electrodynamics remains local in the su-
perconducting state, i.e., that g&((A, . (This is thought to
be the situation in all the high-temperature cuprate ma-
terials. )

For simplicity, the fluctuation spectrum is assumed to
be a single truncated Lorentzian with peak position cop,

width I o, and truncation width I, :

2.0

1.0—

0.0
0

I

l

I
l

/

20

1 1F(co)= A
(co —cop) + I p I,+ I o

—0 !N QPo! ) I ~

!co coo[ ( I ~

(3.1)

FIG. 3. Frequency-dependent renormalization function
Z(co) in the superconducting state. The impurity scattering rate
is 0. Parameters for the fluctuation spectrum are given in the
text. The solid line indicates the real part Zl and the dashed
line the imaginary part Zz.
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4.0

2.0

~(~)/~o

—2.0

—4.0

20

Fig. 4. Frequency-dependent gap function b(co). Parameters
are as in Fig. 3. The solid line indicates the real part 6& and the
dashed line the imaginary part L2.

7 =0. These functions have been calculated on the real
axis using the Pade approximant technique of Vidberg
and Serene' to analytically continue imaginary-axis data.
The imaginary-axis calculation was carried out at a tem-
perature of 1 meV (effectively the zero-temperature limit)
using 200 positive Matsubara frequencies, a number
suScient to insure convergence. The continuation was
performed using 190 frequencies.

Both Z and 5 are plotted as functions of co/60. The
peak in the fluctuation spectrum occurs at cop/kp=4. 1.
The real part of the renormalization function Z, is 1+A,
at low frequencies, passes through a maximum near
b,o+coo, and decays rapidly to unity at higher energies.
The imaginary part of the renormalization function Zz is
strictly zero below 60, the lowest allowed quasiparticle
energy; a peak occurs at 60+coo, where single-phonon
emission is resonant. A weaker shoulder reflecting two-
phonon emission occurs near ho+2coo. The real part of
the gap function 6, reflects the sign of the frequency-
dependent electron-electron interaction induced by ex-
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FIG. 5. Real part of the conductivity a& for various impurity scattering rates fi/~. In each plot, a solid line indicates the
superconducting-state conductivity o &z and a dashed line the normal-state conductivity cr». The scattering rates are (a) 0, (b) 5 meV,
{c)50 meV, and (d) 500 meV.
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For a pure system [Figs. 5(a) and 6(a)], the normal-
state conductivity is particularly simple: in the zero-
temperature limit, o.

&N diverges at ~=0 and vanishes at
finite frequencies below the threshold for creation of real
fluctuations, near coo. (The electronic system has essen-
tially the behavior of a pure electron gas below this fre-
quency. ) In the superconducting state, the conductivity
vanishes below the pair-breaking threshold at 2hp, and in
the region between 2bp and 2hp+cop, the conductivity
remains extremely small. This additional gap in the ab-
sorption spectrum has the same origin as that in the nor-
mal state: In the absence of impurities and dynamic fluc-
tuations, a photon in this energy range cannot be con-
verted to a particle-hole pair with conservation of both
energy and momentum. The feature distinguishing cr &z

from 0 i' is the shift in the threshold for creation of fluc-
tuations by 25p. Thus, in the clean limit, the gap can, in
principle, be measured indirectly by detecting this shift,
but not by directly observing where o,z rises from zero.

In a system with weak impurity scattering [Figs. 5(b)
and 6(b)], the normal-state conductivity is a superposition
of Drude and fluctuation terms. As before, the fluctua-
tion contribution onsets near cop. The width of the Drude
contribution is proportional to the scattering rate. In the
superconducting state, the threshold for scattering with
creation of fluctuations is again shifted to 2bo+ruo.
However, in this case, the presence of impurities allows
photon absorption arbitrarily close to the particle-hale
threshold at 2bp. The detailed variation of ~,z near the
threshold is determined by a competition between the de-
creasing rate for impurity-assisted absorption and the in-
creasing phase space provided by the frequency-
dependent coherence factors in the super conducting
state. ' The energy scale for variations in the irnpurity-
assisted absorption rate is filr and the scale for variations
in the coherence factors is 2hp. In general, one expects a
peak in o,s near 2b,o when these scales are comparable,
or alternatively when i/go-1. So long as filr is smaller
than or of order cop, this peak should be distinguishable
from the onset of absorption with creation of fluctuations
at 2hp+cop. This behavior is clearly exhibited in Fig.
5(b). As in Fig. 5(a), the gross difference between a,s and
o. ]N is an overall shift in the superconducting spectrum
by 2b,o. So long as the peak in a,s at 25o is distinguish-
able above the background, the gap may now be read off
directly from o,z. However, as discussed below, while
the peak at 2b,o appears clearly in a, (co) it is much more
diScult to see in the reflectivity.

When the impurity scattering is further increased so
that I =go, the qualitative features of the conductivity
[Figs. 5(c) and 6(c)] remain as above. As expected, the
clear separation of Drude and fluctuation contributions
begins to disappear as A/~ becomes comparable to cop.

Finally, when the impurity scattering becomes very
strong [1/$0=0.08 in Figs. 5(d) and 6(d)], the conductivi-
ty assumes the classic form for a dirty superconductor.
The normal-state conductivity o.

&N is, in this case, dom-
inated by the Drude contribution and is nearly constant
on the scale of 25p. This fact simplifies the behavior in
the superconducting state: since scattering is strong and

nearly frequency independent just above the threshold
2hp, the variation of o. ,z is controlled by the density of
states and the coherence factors. This should be con-
trasted with behavior in the clean limit [Figs. 5(b) and
6(b)].

The ratio o.&&/o. ,z, shown in Fig. 7, assumes a simple
form only in the dirty limit I/go((1. In the clean limit
l/$0»1, the ratio is complicated by the appearance of
two distinct contributions to o. ] in both the normal and
superconducting states and the relative displacement of
the spectra by 2hp. In contrast, in the dirty limit, the ra-
tio assumes the strong-coupling form first obtained by
Narn: the normal-state conductivity is essentially con-
stant, and variations in the ratio are controlled by the
energy-dependent coherence factors in the superconduct-
ing state. The result for o,s/o, N is a slight modification
of the universal curve obtained by Mattis and Bardeen'
for dirty weak-coupling superconductors: as shown in
Fig. 7, the only effect is a mild depression in the ratio
near 2hp+cop and a comparable enhancement at high en-
ergies (both reflecting the shift in the fluctuation emission
threshold).

Experiments in the infrared generally measure the
reflectivity R (co). Although the conductivity may be ex-
tracted by performing a Kramers-Kronig analysis or
making various model fits to the data, it is interesting to
use the theoretical results for o. to calculate R directly
from Eq. (2.16). In Fig. 8, results for R in the normal and
superconducting states are plotted for the impurity
scattering rates discussed above. The ratio of
superconducting- and normal-state reflectivities Rs/Riv
is plotted in Fig. 9.

In the clean limit [fi/v=0 in Fig. 8(a)], the normal-
state reflectivity Rz remains close to unity for frequen-
cies up to cop, the fluctuation emission threshold. In the
intermediate regime, where ~ is roughly comparable to
250 and coo (shown by the long-dashed curve in Fig. 8),
two clear breaks are observed in Rz, corresponding to
the onset of absorption with impurity scattering at zero
frequency and the onset of absorption with fluctuation
emission at coo. In the dirty limit (A'/v=500 meV in the
figure), RN assumes a conventional Drude form, and the
effects of finite-frequency fluctuations are masked by the
large impurity contribution.

Each superconducting reflectivity Rs [Fig. 8(b)] closely
resembles the corresponding RN with an overall shift by
2hp. As in the case of the conductivity, the energy gap
2hp is obscured in the extreme clean limit by the absence
of strong low-frequency scattering. Only for values of
1/(0 ~ 1 is a large drop in Rs observed at the gap energy.
In both the intermediate regime (I/go= 1) and the dirty
limit 1/go ((1),a drop in Rz is observed at the gap ener-

gy. In the clean limit, the drop in Rz occurs at 26p+ cop.

Finally, the ratio Rz/R~ is plotted in Fig. 9. This ra-
tio shows two characteristic features, a gap at 2b p and a
Holstein step at 2hp+cop. We note that the gap feature
at 2hp is absent for ~ '=0 and grows relative to the Hol-
stein step as ~ ' is increased. The magnitude of the gap
feature relative to the Holstein step scales roughly as
ko/i.
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FIG. 8. Reflectivity in the normal (a) and superconducting
(b) states. The impurity scattering rates are 0 (dash-dotted line),
5 meV (short-dashed line), 50 meV (long-dashed line), and 500
meV (solid line).

1.4
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10 '===~

0.9
4

U/26p

FIG. 9. Superconducting-to-normal-state reflectivity ratio,
Rz/R&. The impurity scattering rates are 0 (dash-dotted line),
5 meV (short-dashed line), 50 meV (long-dashed line), and 500
meV (solid hne).

IV. CONCLUSIONS

The short coherence length of the recently discovered
high-temperature cuprate superconductors implies that
they obey a local electrodynamics, even in the clean limit.
In these systems, gp is thought to be of order 10—30 A.
Estimates of the mean free path at T, in YBa2Cu307 y
range from tens to hundreds of angstroms. Within the
conventional model investigated above, the precise value
of I/gp determines whether the system falls in the inter-
mediate regime (1/gp-1) or the extreme elean limit
(I/g'p»1). (In YBazcu,07, the mean free path is
strongly temperature dependent, and the value of I at the
transition temperature should be used in determining this
ratio. ) In the intermediate regime, both the gap 2b, p and
the Holstein feature at 2ho+coo should be observable;
however, in the extreme clean limit, as we have seen in
Sec. III, it becomes diScult to determine 25o experimen-
tally. As shown in Fig. 8, a change in reflectivity at ap-
proximately the l%%uo level is expected at co=26,p even for
1/gp-10. Based on this line of reasoning, the gap in

YBa2Cu307 y
should be barely visible in infrared mea-

surements, i.e., the system should be dirty enough to
measure 2b, o.

As emphasized in Sec. I, the interpretation of experi-
mental reflectivity data for YBa2Cu307 y remains con-
troversial. Furthermore, the present Migdal-Eliashberg
study, based on a temperature-independent fluctuation
spectrum and constant impurity scattering rate, is not
suSciently general to argue conclusively in favor of a
particular experimental interpretation. Nevertheless, it is
possible to point out qualitative features which folio~
from applying the Migdal-Eliashberg analysis to the in-
terpretations of Thomas et al. and of Schlesinger et al.
We do not describe here the arguments for and against
these interpretations.

A change in rellectivity of order 1%%A was detected by
Thomas et al. in oxygen-deficient samples of
YBazCu307 at a frequency consistent with BCS-like
behavior. As argued above, a reflectivity change of this
size seems consistent with estimates of I/gp in this sys-
tern. Within the simple Migdal-Eliashberg picture, the
higher-energy excitation detected in the Thomas et al.
study would correspond to the fluctuation peak (or Hol-
stein feature} at 2b,p+cop; indeed a conductivity spectrum
resembling Fig. 5(b) has been obtained experimentally. '

Since the peak in the fluctuation spectrum may itself be
temperature dependent [i.e., cop=cop(T)], we hesitate to
draw additional conclusions based on the temperature
dependence of this feature. The high-energy feature in
fully oxygenated samples would also necessarily be
identified as a fluctuation peak within this scenario.

Within the alternate scenario of Schlesinger et al. , a
drop in reflectivity at co-700 K=8T, in fully oxygenated
samples is interpreted as the superconducting gap. The
reflectivity and conductivity spectra above this energy are
relatively featureless, providing no evidence for a fluctua-
tion peak of the type expected within a Migdal-
Eliashberg analysis. A fluctuation peak might not be
detected if (a} cop is anomalously large, i.e., the coupling is
actually "weak" and the large 26o/kT, ratio is due to
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unrelated pair-breaking processes near T„or (b) the
relevant fluctuation spectrum is broad, featureless, and
temperature dependent.

In summary, our main conclusion with regard to
YBa2Cu307 y is that the infrared gap should be visible,
i.e., the scattering rate is not small enough to make the
gap undetectable. While the Migdal-Eliashberg picture
can be applied qualitatively to several conflicting inter-
pretations of the experimental data, the present assump-
tions are not suf6ciently general for a quantitative

analysis, i.e., fits for the full temperature dependence of
spectra in both oxygenated and oxygen-deficient samples.

ACKNOWLEDGMENTS

We wish to thank A. J. Millis and J. Orenstein for use-
ful discussions. This research was supported in part by
the National Science Foundation under Grants Nos.
DMR86-15454, DMR89-13850, and PHY82-17853, sup-
plemented by funds from the National Aeronautics and
Space Administration.

D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).
2S. B.Nam, Phys. Rev. 156, 470 (1967); 156, 487 (1967).
3J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 18 (1986); M.

K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L.
Gao, Z. J. Huang, X. Q. Wang, and C. W. Chu, Phys. Rev.
Lett. 58, 908 (1987).

4Z. Schlesinger, R. T. Collins, D. L. Kaiser, and F. Holtzberg,
Phys. Rev. Lett. 59, 1938 (1987).

5G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, A. J.
Millis, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev.
Lett. 61, 1313 (1988).

T. Timusk, S. L. Herr, K. Kamaras, C. D. Porter, D. B.
Tanner, D. A. Bonn, J. D. Garrett, C. V. Stager, J. E.
Greedan, and M. Reedyk, Phys. Rev. B 38, 6683 (1988).

7J. Schutzmann, W. Ose, J. Keller, K. F. Renk, B. Roas, L.
Schultz, and G. Saemann-Ischenko, Europhys. Lett. 8, 679
(1989).

T. Timusk and D. B. Tanner, in Physical Properties of High
Temperature Supereonductors I, edited by D. M. Ginsberg
(World-Scientific, Singapore, 1989), p. 339.

R. T. Colhns, Z. Schlesinger, F. Holtzberg, and C. Feild, Phys.
Rev. Lett. 63, 422 (1989).

' J. Orenstein, G. A. Thomas, A. J. Millis, S. L. Cooper, D. H.
Rapkine, T. Timusk, L. F. Schneemeyer, and J. V. Waszczak,

Phys. Rev. B (to be published).
' K. Kamaras, S. L. Herr, C. D. Porter, N. Tache, D. B.

Tanner, S. Etemad, T. Venkatesan, E. Chase, A. Inam, X. D.
Wu, M. S. Hegde, and B. Dutta, Phys. Rev. Lett. 64, 84
(1990).

'zG. M. Eliashberg, Zh. Eksp. Teor. Fiz. 3$, 966 (1960) [Sov.
Phys. —JETP 11,696 (1960)].

t3A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov.
Phys. —JETP 7, 996 (1958)].

' E. D. Yorke and A. Bardasis, Phys. Rev. 159, 344 (1967).
' C. S. Owen and D. J. Scalapino, Physica 55, 691 (1971).
' H. J. Vidberg and J. Serene, J. Low. Temp. Phys. 29, 179

(1977).
R. A. Ferrell and R. E. Glover, Phys. Rev. 109, 1398 (1958);
M. Tinkham and R. A. Ferrell, Phys. Rev. Lett. 2, 331 (1959).

' In the presence of low-energy fluctuations, the width of the
Drude peak measured in infrared experiments is not 1/v, but
1/~*, with ~ =(1+A,)~. This renormalization must be taken
into account in extracting an experimental estimate of I/go
for comparison with the theory.

'9Similar results, showing the effect of I/$0 on the onset of ab-
sorption at 250, for the weak-coupling BCS theory, have been
reported by J. J. Chang and D. J. Scalapino, Phys. Rev. B 40,
4299 (1990).


