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Kinetics of quenched systems with long-range repulsive interactions
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The kinetics of a quenched system with a nonconserved order parameter having both an attrac-
tive and a long-range repulsive interaction {specifically a uniaxial ferromagnetic film) is studied.
The presence of the repulsive interaction leads to the formation of periodically modulated struc-
tures. For various physical situations, the kinetics is studied through numerical integration of the
appropriate Langevin equation. As the strength of the repulsive interaction is increased, we find

that at intermediate times the effective domain-growth exponent decreases continuously from one-
half to zero. For the case of a system in zero external field and at zero temperature, we have con-
structed a dynamical theory based on a singular perturbation expansion. The theory compares well

with the results of numerical simulation. It accounts for the formation of modulated domain struc-
tures with sharp interfaces and the saturation of the order parameter but not the late-stage phenom-
ena.

I. INTRODUCTION

When a system in a high-temperature homogeneous
state is rapidly quenched to a temperature well below its
ordering temperature it orders kinetically. A long-
wavelength instability amplifies the fluctuations in the in-
itial state leading to the formation of domains of macro-
scopic size. ' At late time, phase-separating systems are
usually characterized by a single time-dependent length,
the average domain size R (t), which grows as a power
law R -t". The growth exponent is a characteristic of
the mechanism driving the phase separation. Through it,
phase separating systems may be classified into a small
number of universality classes, where each member of a
given class shares the same kinetic properties. These
universality classes depend crucially upon the presence or
absence of conservation laws. For a system with a scalar
nonconserved order parameter (Model A), the growth is

curvature driven with n =
—,', while a long-range diffusion

mechanism gives n =
—,
' for systems with a conserved or-

der parameter (Model B).
This scenario assumes attractive interactions between

constituents. However, there are many systems which
are characterized by both short-range attractive interac-
tions and relatively weaker long-range repulsive interac-
tions. In equilibrium, system with both attractive and
repulsive interactions exhibit a rich variety of spatially
modulated phases termed supercrystals. Examples of
such systems include uniaxial ferromagnetic films, lipid
monolayers, ferrofluid systems, cholesteric liquid crys-
tals, charge-density-waves, and the primate visual cor-
tex.

In this paper, we study the dynamics of quenched sys-
tems with a scalar nonconserved order parameter and a
long-range repulsive interaction. As a specific example,
we treat the time evolution of quenched uniaxial fer-
romagnetic films. Here there is a competition between
the short-range attractive forces which favor alignment

and the long-range repulsive interactions which favor
anti-alignment. This leads to the formation of modulated
phases with either lamellar or hexagonal symmetry.

Introducing a long-range repulsive force changes the
intrinsic nature of the model from a local to a nonlocal
model. A novel feature is that by changing the parame-
ters which characterize the repulsive force, one can tune
the form of the linear growth exponent in such a way, as
to move continuously from a system where the long-
wavelength modes are unstable to a system where the
long-wavelength modes are stable. The effect of increas-
ing the repulsive force strength is such that (i), the maxi-
mally unstable wave number moves from a zero to a
nonzero value, and (ii) the linear growth exponent for
zero wave number decreases from a positive value
through zero to negative values where, unlike Model-A
or Model-B systems, the long-wavelength modes become
stable, so that it is a band of unstable modes which
amplifies the fluctuations in the initial state.

We find that the time evolution of these modulated
phases occur in two stages: an early-time and a late-time
regime. In the early-time regime, the instability amplifies
the fluctuations present in the initial conditions, saturates
them, and forms sharp interfaces. This time regime is
dominated by k,

„

the maximally unstable wave number
of the linear dispersion relation. In contrast, the late-
time regime is dominated by k, , the wave number of the
equilibrium modulated structure. The late-time dynam-
ics is therefore characterized by crossover phenomena, as
the characteristic wave number of the system changes
from kmax to keq. However, in some cases, keq and kmax
are not too different, so that this shift may be dificult to
observe. Because the late-time evolution of the system is
ultimately governed by a single time-independent length
scale, the system does not display self-similarity. Furth-
ermore, the free energy of many modulated system is de-
generate with respect to the directioI1 of keq i e., the free
energy is a function of k, , not k, . A quench from a
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high-temperature state to a state well below its ordering

temperature therefore results in the formation of a pat-
tern of modulated phase broken up by dislocations. The
presence of these unbound dislocations and the free-
energy barriers associated with these dislocations
effectively pins the interfaces at low temperatures and
prevents the system from forming modulated structures
on long-length scales. In this paper, we will concentrate
on the early-time regime, leaving a quantitative discus-
sion of the late stages for the future.

During the early-time regime, the unstable modes are
responsible for the increase of the order parameter. For
critical quenches we find in the early-time regime that a
convoluted and interconnected domain structure with
sharp phase boundaries is formed. We study the dynam-
ics of this regime by concentrating on a model modified
for a system with a long-range repulsive force. This leads
to a nonlinear time-dependent Ginzburg-Landau (TDGL)
equation. (In the absence of the repulsive force the model
reduces to Model A. In zero external field and zero tem-
perature the TDGL equation may be solved through
iterations. The resultant singular perturbation expansion
may be approximately summed in a manner similar to
that of Kawasaki, Yalabik, and Gunton (KYG). ' The
approximate solution obtained in this manner predicts a
nonexponential growth of the order parameter and its
saturation at values well within +1, the saturation value
for Model A systems. The growth rates and saturation
values compare favorably with those obtained from the
numerical integration of the TDGL equation.

The TDGL equations are given in Sec. II of this paper.
These equations are considered for the specific case of a
uniaxial ferromagnetic film, whose equilibrium phases are
also briefly reviewed. In Sec. III, the early-time dynamics
of the system quenched into the "stripe" phase is dis-
cussed. Both the linear solution and a solution based on
the KYG expansion are considered. In Sec. IV numerical
results are presented for quenches (to zero temperature)
both into the stripe and hexagonal region of the phase di-
agram. In particular, we have studied the domain
growth, the structure factor, and the one-point distribu-
tion function of the order parameter. A comparison be-
tween the early-time models and the numerical results at
zero temperature are also given. A summary of our con-
clusions is given in Sec. V.

II. MODEL

The model we consider is based on nonlinear TDGL
equations for a system with a scalar, nonconserved order
parameter with the free energy modified in such a way as
to account for the contribution of the long-range repul-
sive force. The time derivative of the order-parameter
(luctuations (P) is then related to the coarse-grained free-
energy functional in the following way:

to M through a fluctuation-dissipation relation:

(g(r, t)g(r', t')) =2kttTM5(r —r')5(t —t'), (2)

where kz is the Boltzmann constant and T the tempera-
ture of the system. The free-energy functional now con-
sists of both a local and a nonlocal term:

F (4 l =Fi l4'l+FN~t4l

where

Ft [P) = fd"r f(P)+ —(VP) (4)

FN~ [p) =—f d r d r'p(r')g( ~r
—r'~ )p(r'),

where v and o. are positive phenomenological constants
related to the range of the short-range attractive force
and the strength of the long-range repulsive interaction
g( r —r' ), respectively. The bulk free energy is assumed
to have a stable single-well structure if the temperature is
greater than the ordering temperature T„i.e.,

f(0)=

and a double-well structure if T & T, :

f(0)=
2

0'+ 40'+HI .

Here r, , r„„andu are also positive phenomenological
constants and 0 the magnitude of an external field which
couples linearly to the order parameter. Without FN„
(i.e., a=0), the aforementioned equations simply describe
the dynamics of a system with a nonconserved, scalar or-
der parameter, i.e., Model A. All of the new physics per-
taining to the long-range repulsive forces arises from the
extra term FNz.

The set of transformations
' 1/2

~ne

' 1/2

one

r=(Mr„,)t,
brings the equations of motion for the two-phase region
into a dimensionless form:

8 (x, r) =V f(x, r}+P(x,r) P(x, r} h- —
ag.

+ &ep(x, r) Pf d "x'g(x—', r)g ( ~x —x'~ ),

BP(r, t) 5F
at where

(9)

where M is the mobility which is assumed to be a con-
stant and g(r, t ) the Gaussian random noise which
derives from the coarse-graining procedure. It is related and

(p(x, 7-)p(x', r') }=5(x—x')5(r —7-')
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' d/2

nc nc

1/2
0

me ~nc
(10)

2kgTfp
p Knc

d/2

are the three main dimensionless parameters describing
the model. They represent the strength of the long-range
force, the external field, and the strength of the thermal
noise, respectively. [Note that the function g(~x —x'~)
may contain further parameters. ) Introducing the
Fourier transform

1tk(r)= J d"xe'""g(x, r),

converts (9) info

Bfk(r)
a7. Yk4k( } X X (('k'4k"1(k —k' —k"(

k' k"

—h 5(k)+ &elk,
with a linear dispersion relation

yk= 1 —k —Pg(k) .

(12)

(13)

Here g ( k) is the Fourier transform of g (x ).
The equation of motion for the single-phase region of

the phase diagram is readily found using (1}—(6}. The
corresponding stationary solution for the structure factor
( ~P~ (k, ~ ) ) has the modified Orstein-Zernike form

))=
1+k +Pg(k)

(14)

where er=e(r„,Tf/r, qT, ) in two dimensions. Here T;
and Tf represent the initial and final quench tempera-
tures, respectively. This is the structure factor for the
prequench state, and defines (

~ g~ (k, r =0) ) for the
quenched state.

As an example of the aforementioned, we consider a
uniaxial ferromagnetic film whose equilibrium properties
we now briefly review. Such systems have in the past re-
ceived considerable attention in connection with bubble
memory applications" and more recently in the context
of topological melting. ' The system consists of a finite
film of a strongly uniaxial magnetic material. The thick-
ness of the film in the z direction is denoted by I.. In the
xy plane the film is assumed to be very large and isotropic
(in the disordered phase). Assuming straight domain
walls in the z direction allows us to treat the film as a
two-dimensional system. The order parameter is taken to
be the magnetization averaged over the z direction. The
external magnetic field is oriented along the z direction.

This system is characterized by a balance between the
cost of forming a domain wall and its magnetostatic self-
energy. The latter gives a contribution

FD =
—,
' J dSo.4

to the free energy. Here, the integral is taken over the
surface of the formed domains, cr is the magnetic charge
distribution on the surfaces created by the nonzero mag-
netization, and 4 is the magnetic potential. The uniaxial
ferromagnetic film can reduce this magnetostatic energy
easily by forming domains of ordered phases with alter-
nating sign. The system which contains N domains has a
free energy which is about 1/N times lower than that of a
uniformly magnetized film. Hence, the formation of
modulated structures is favored. The free energy of the
system can readily be written in the form of Eq. (3), with
a long-range repulsive force given by

1

[(x—x') +L ]'

e
(1 e Lk)—

k

g(/x —x'/ ) = 1

fx —x'/

(16)

1.0 rm phase

H/H,

00 1.0

FIG. l. A sketch of the phase diagram for uniaxial fer-
romagnetic film, in normalized units. Here T, is the critical
temperature and 0, the critical field value marking the transi-
tion between the uniform and bubble phase.

with a strength a-(g ps ), where gp~ is the appropriate

gyromagnetic coeflicient of the material. ' For ~x
—x'~

large compared to L, g( ~x —x'~ } approaches
L /(2~x —x'~ ) which is like a repulsive dipolar force.

The equilibrium states of this system are obtained by
studying the solutions of 5F/5/=0, as discussed in detail
by Garel and Donaich. The phase diagram is illustrated
in Fig. 1. The system spontaneously forms two types of
supercrystal phases when quenched well below its order-
ing temperature: a lamellar or "stripe" phase and "bub-
ble" or hexagonal phase. The stripe phase is formed in
zero or small external field. Near the critical tempera-
ture, in one dimension, the equilibrium solution is well
approximated by a single-mode expansion g(x)
-cos(k', "'x). The amplitude and spatial period k,'"' may
both be found by minimizing the free energy. It is
straightforward to show that within the single-mode ap-
proximation, k,'„"'is given by

dy(k)
dk

i.e., k,'"' is the same as k,
„

the maximally unstable mode
of the linear dispersion relation. At low temperatures,
this single-mode approximation is no longer valid and k,
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will differ romf k . This approximation overestimates
the wall energy, so that k „provides an upper bound to
k . A lower bound to keq is found by approximating t eeq ower
modulated stripe structure is a series o. orna'f domains with
hard domain walls. Then, k,'" is the solution o

d 1

(2n +1)'
—(2n +1)Lk )(1 —e =0.

The two approximations are shown in 'g.Fi . 2. Note that
k, '„' is always less than k,„.In the limit of large L (at

p) the stripe width is relatively narrow so that
the amount of wall energy is considerable. Here, g(x is
well approxima e yt d b the single-mode expansion so that
k, is close to,„.nk On the other hand, if I is small, the
stripe width is very large so that domain walls appear as

ll d then k'" provides a better approximation
will whileto k, . Thus, we expect that the exact k, wi, w ie

remaining within the two bounds shown in Fig. 2, move
from the lower bound for small L, to the upper bound or
large L.

~ ~ ~ ~ ~ ~In two dimensions the equilibrium solution is still a

disordered state results in configurations broken up y
dislocations because of the degeneracy of the free energy
with respect to the orientations of vector eq s a
the morphology created has a labyrinthian appearance.
It h b en shown, that these dislocations are always un-t as een
bounded. As a result the system displays short-r g
but no long-range order.

The hexagonal phase, which exists only in relative y
h h ro fields is similarly characterized. A quench
from a two-dimensional disordered system resu s in
formation of configurations broken p yu b dislocations. In
contrast to the stripe phase, however, there is a finite-
temperature Kosterlitz-Thouless transition temperature,
below which the dislocations will be bound. The transi-

s is a first-ordertion between the two modulated phases is a
transition and will not be discussed in this paper.

III. EARLY-TIME THEORY

( q ') («)= (
~ 1( ~

)(k) T=0)e
', T 227' T ~ke ' —1 2 1 —e+E +h )

2'V k

=1—k —p(1 —e )/k. Figure 3 illustrates
versus k in threethe linear dispersion relation yk versus in

(2O)

1.0

In this section we consider the dynamics of a system
which has been quenched from an initially disordered
paramagnetic state in ot the stripe phase. We first present
the linear solution, which is valid for very early times

the nature of the initial instability: depending on the pa-

eter ma orwavelength Auctuations in the order parameter may
may not e unsta e.ble. The maximally unstable wave num-
ber occurs at a nonzero k value, as long as p O.

An approximaA roximate solution to (12) with p=O was given
by Kawasaki, Yalabik, and Gunton (KYG). e

which is based on a singular perturbation ex-solution, w ic is ase
resent inpansion accoun s ort for some of the nonlinearities presen in

the TDGL formulation. Specifically, it correct y pre ic s
the saturation o e of th rder parameter and the formation
of sharp inter aces.f It does not account for the coarsen-

we describeing effects. In the latter part of this section, we descri e

between this solution and a numerical integration of the
TDGL equations is given in Sec. IV.

Linearizing (12), and introducing the two-point corre-
lation function,

( (k, r)g(k', r) ) =(2n. )"5(k—k')( ~P )(k, r), (19

one readily obtains the linear structure theory,

A
~O5

0.2

0.0 0.;) 1.0

0.0

0.0 10.0 20.0 45.0 50.0

FIG. 2. The variation of k,q as predicted by the single-mode
approximation (solid line) and from a model with hard domain

r bound and thewalls (dashed line). The solid line gives an upper boun
dashed line gives a lour bound to k,q.

FIG. 3. Linear-dispersion relation yi, vs fo yfor a s stern with a
nonconserved order parameter an g- gion -ran e repulsive force.
P t v k values are unstable. Three cases are possible: sys-
tems with unstable long-wavelength modes shown by e upp
solid line (parameters L =5 and = ~, y

=0. 1) s stems with the k =0
=0. 1) s stems withmode being marginally stable (L =10 and P=O. 1); systems wit

stable long-wavelength modes shown byb the lower solid line
(L =50 an d ~~=0. 1). For comparison the dashed line shows the
dispersion relation for a Model-A system.
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2k,„=P(1—(1+k,„L)e '") . (21)

If Lk »1, then ye =1—k I3/k, —which is independent
of L. On the other hand, for small values of I.k,
y), =1 PL+—PL kl2. Clearly, if L (I/P, then the
k =0 mode is unstable, so that the order parameter of the
system is not conserved. On the other hand, if L & I/P,
then the long-wavelength modes are stable and decay
away, so that it is a narrow band of unstable modes
which amplifies the fluctuations in the initial state.
L = I/P is a special value because there is a cancellation
of the k-independent terms arising from the bulk free en-

ergy on one hand, and the long-range repulsive force on
the other. This has the consequence that the leading
small-k behavior of rI,. is linear in k. For such a system,
the linear term is absent for the k =0 mode and the non-
linearities determine its evolution; however, because these
nonlinearities are small at early times, the average order
parameter f), 0(r) appears time invariant at early times
in the simulations.

While the linear solution correctly identifies the unsta-
ble modes, it incorrectly predicts an unbounded, ex-
ponential growth of the order parameter for these wave
numbers. Such a solution can only be valid for very early
times. To obtain a nonzero growth rate, on the one hand,
and the saturation of the order parameter on the other,
the nonlinearities must be taken into account. Formally,

I

different limits, and compares it to the more familiar case
of a Model A phase-separating system. The effect of the
long-range force is to move the maximally unstable k
mode away from k =0 to a finite value k,„.It is this

maximally unstable mode which determines the period of
the initial modulated formed.

For a uniaxial ferromagnetic system, with a repulsive
interaction as given by (16), the instability is controlled

by the strength of the long-range force (P) and the thick-
ness of the film (L). The maximally unstable wave num-

ber k,
„

is given as the solution of the equation

Eq. (12), for zero field and at zero temperature can be
written in an integral form

where
(22)

1(),(r) =p„(r=0)e '
(23)

g„(r)=g (2n —1)!!D„.
n=0

(24)

Graphically, this is illustrated in Fig. 4. Here, the thick
line represents the solution P&, while the thin line
represents the linear solution P), . The general nth order
diagram is

is the linear solution. This equation may now be solved
iteratively using the linear solution. The result is an
infinite singular perturbation expansion. The difficulty
with this approach is that each term grows more ex-
ponentially in time than the one preceding it, so that all
terms must be retained in order to obtain a physically
meaningful solution. Kawasaki et al. ' extending the
work of Suzuki, ' were able to obtain an approximate
solution for a Model A system. Even though the struc-
ture of the equations for a system with long-range repul-
sive interaction and Model A are forma11y identical, they
differ in the evaluation of the vertex, i.e., y&, whereas for
Model A the maximum of y), occurs at k=0, for the
problem defined by (12), (13), and (16), the maximum is
shifted to a nonzero k as shown in Fig. 3.

The steps required to obtain an approximate solution
are now sketched. Details are similar to those given in
Ref. 10, so we will only highlight the differences. ' The
first step is to note that asymptotically the nth order term
in the expansion can be written in terms of a diagram D„,
multiplied by the appropriate combinatorial factor; i.e.,

2n+1

ki k2 k2n+1 i =1

2n +1
(r=O) f„(Is„I;r),

i=1
(25)

where

n —
1

n

f„(I j;x)=rf dr& f dr& f dr„exp $x, r,
Q Q Q

(26)

with

(27)

where S, =g,." 2,.'+,k, and Sz=g." z'. ,k, . The time
integrals may be evaluated in a straightforward way, by
taking the Laplace transform of D„,splitting the resul-
tant term into partial fractions, and performing the in-
tegration for the dominant term only. This introduces an

error of order &r/4ln4e '" . Then, assuming that
the dominant contribution to the integrals occurs when

l

k, =k,„,one is able to evaluate D„using the method of
Laplace. This approximation is necessary here because
the long-range interaction has shifted the maximally un-
stable mode away from the origin. This assumption im-
plies that all of the k vectors arrange themselves in an
isotropic fashion about k,„.This is, to a large extent, an
uncontrolled approximation. As a result, the KYG-type
of solution to the model is incapable of describing any
shift in the position of k,„~ This feature makes it
difficult to apply the KYG approach to systems in which
coarsening phenomena play a major role (e.g., Model B).
KYG-type solutions seem, at present, to be restricted to
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with

Xkmax Xk

~7k
(29)

where 1(| (x, r) is the inverse Fourier transform of 1(k(r).
Substitution of this result into (24) readily gives the result

1(„(r)=g e'" "f (x, r)F( —,', 1;a„;z), (30)

with

FIG. 4. Graphical representation of the KYG expansion, for
which the nth order branched diagrams are given by the nth or-

der pine tree diagram D„Here., a thick line indicates g&(r),
while gk is indicated by a thin line.

systems having a single dominant and stationary wave
vector.

For a uniaxial ferromagnetic film, the inability of the
KYG solution to incorporate a shift in k,„restricts its
validity as a description for the system's dynamics to the
early-time regime. During the early-time regime, the dy-
namics of the system is dominated by k,„.However, at
equilibrium the system is characterized by stripes having
wave number k,„.Therefore, at late times, a crossover
must take place as the modulation length changes from
A. =2m /k,

„

to A, =2rrlk,„.Our KYG solution does not
incorporate this shift, and so cannot account for this
late-time crossover phenomena. In many cases, especial-
ly when PL ) 1, k,

„

is so close to k, that no late-time
crossover is observed.

Straightforward but rather tedious algebra gives the
nth-order diagram

&(ai, )
D —

( 2Y )
—n y eik a[qQ( )]2n + I

I'(n +al ) maa

(28)

—[1( (x, r)]
~k

mdx

(31)

where F is the hypergeometric function. ' This equation
may be regarded as the central prediction of the KYG-
type solution. Approximating ai, = 1 (Ref. 17) gives a re-

sult similar to the one derived by Kawasaki et al.

(32)

tt (x, r)=1((x,r)/[I g(x, r) /yk— ]'~ (33)

into the initial probability distribution function, which is

assumed to be a Gaussian distribution centered about

$=0.' The time-dependent probability function is,

therefore, always a Gaussian in terms of the nonlinear

variables defined above with a time-dependent variance.
Note that the value of g has a predicted saturation value

of (yi, )' . Finally, with the use of (32) the structure
max

factor is readily obtained as'

This solution may be regarded as a time transformation
f(r=0)~g(r) The pr. obability distribution function
may now be obtained in a straightforward way, by substi-
tution of the nonlinear, inverse transformation of the or-
der parameter

X XI' 2

xyS (r ) /2y k

(1+x Y/2y k
)' (1+y Y/2yk )'~

(34)

2p 1

with S (r)=e "(~1t~ )(k, r=0) and Y= gkS (r) and

y„being the Fourier transform of yk.
12

IV. NUMERICAL INTEGRATION

In this section, we give details of our simulations and
compare the results with the early-time theory outlined in
Sec. III ~ Most of the simulations which we conducted
were for quenches to zero temperature. The TDGL
equation [Eq. (9)] was discretized using a standard finite-
difference scheme. ' The discretized equation was then
integrated using both a Euler scheme and a fourth-order

Adams-Bashford predictor and an Adams-Moulton
corrector technique. ' The simulations were performed
on a CRAY XMP and a SUN 3/260 workstation. All the
simulations were performed on an N= 128 sized system
with periodic boundary conditions. The dimensionless
mesh size hx and the dimensionless time step A~ were
chosen in such a way as to avoid possible spurious un-

physical solutions resulting from the subharmonic bifur-
cation. ' For the Euler scheme, we chose Ax=1 and
6~=0.01. Using the predictor-corrector method it was
possible to use a larger time step of 5~=0.1. To check
the stability of the predictor-corrector method, we corn-



6664 CHRISTOPHER ROLAND AND RASHMI C. DESAI 42

pared the solution it generated to a solution generated
through a Euler scheme (br=0. 01), finding that they
differed at v.=30 through a negligible relative error of less
than 0.05%.

In the discretized TDGL equation, the integral term
was evaluated by transforming into k space, multiplying
by the discrete form of of g (k), and then transforming
back into real space. This proved to be particularly ad-
vantageous because of the availability and accuracy of
fast-Fourier-transform routines. ' We concentrated on
quenched systems at zero temperature, since a detailed
comparison between theory and simulation results is pos-
sible there. However, we did study a small number of
systems at nonzero temperatures (i.e., E(0.1) finding,
however, no significant qualitative differences from the
T =0 results.

The specific form of the long-range repulsive force
chosen was for a uniaxial ferromagnetic system as de-
scribed in Sec. II. The parameters characterizing the
force were chosen in such a way as to obtain a linear
dispersion relations yk as shown in Fig. 3. We studied
systems with both stable and unstable long-wavelength
modes. Table I summarizes the various parameters used.
In all cases, except run E, the initial state was approxi-
mated by a random configuration with ~f(r=0)~ ~0.01.
In run E, the initial state was a random configuration
with ~1((v=0)~ 0.05. The parameter values were chosen
because they gave rise to patterns whose wavelengths
were small compared to the system size. This is impor-
tant, because finite-size effects can play a significant role
if the stripe width is of the order of the system size. In
such a case, it is diScult to observe the formation of
modulated structures and the system configurations qual-
itatively resemble a Model-A system that is phase
separating through domain growth. We tested a range of
other parameter values, but they in no way altered the
essential features of the model. Rather, changing the pa-
rameters allows one to tune the nonuniversal features
such as the saturation value of the order parameter and
the wavelength of the pattern. The predicted variation of
these with the strength of the long-range repulsive force
are shown in Fig. 5, for the case of a system with stable
long-wavelength modes. Note that in the limit of P=O,
the saturation value predicted is +1, and the wavelength
of the pattern formed diverges so that the system is de-
scribed by a phase-separated solution.

30.0

10.0
1.0

&sai,

0. 1 0.2 0.3 0.4

FIG. 5. (a) Variation of the predicted wavelength of the equi-
librium ordered structure with the strength of the long-range
force. Here X=2m/k, „,where k,

„

is the k vector for which

y„is maximum. (b) Variation of the order parameter saturation
value P„,=(yk,. „)'~', with the strength of the long-range
repulsive force. Here L =50.

A. Critical quench into the stripe phase

In this section, we present numerical results for critical
quenches from the paramagnetic state into the stripe
phase. System with both stable and unstable long-
wavelength modes are considered.

Figure 6 shows the time evolution of the order parame-
ter morphology for a system with stable long-wavelength
modes (run E) at different times, as well as the order pa-
rameter contours of an arbitrary cut through the system.
Small inhomogeneities in the initial conditions are
amplified by the band of unstable modes, giving rise to
stripe-like patterns broken up by dislocations. These
dislocations arise because the free energy of the system is
degenerate with respect to the direction of the unstable k
vectors. Therefore, in a quenched system, each point in
the system selects an independent direction, which leads
to a convoluted and interconnected pattern. Initially, the
dynamics is dominated by short-ranged attractive forces
so that the early-time configurations [Figs. 6(a) and 6(b)]
are similar to early-time Model-A configurations. Later

TABLE I. Parameters used in simulations.
number of independent quenches.

k,
„

is the maximally unstable wave number. X is

0
0.1

0.1

0.1

0.1

0.1

0.1

0.5
5

10
50
50
50

0
0
0
0
0
0
1.0

kmax

0
0.006
0.270
0.351
0.368
0.368
0.368

5

5

5

5

5

30
10

+max

200
200
200
200
200

30
30

0.47q+0. 06
0.46~+0.05
0.16+0.05
0.06+0.06
0.045+0.05
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times ~ igs. c an[F . 6(c) and 6(d)] are dominated by the long-
th of therange repurepulsive force, which limits the growth o t e

n thdomains, building up stripe-like patterns on short lengt
scales. Notice that between ~=30 and ~=300, the stripe
thickness has remained essentially unchanged. During
this time interval the system tries to reduce its surface
free energy by annealing away the curvature present in its
interfaces and form stripes on long length scales. Howev-
er, this process is highly ineffectual since the system is
unable to overcome the large free-energy barriers associ-

ated with the dislocations. As a result, there is very little
system evolution beyond ~=100. Notice that the order
parameter saturates at values well below + 1.
Configurations for systems with L = I /P at low tempera-
tures exhibit similar behavior.

The time evolution of the one-point distribution func-''
ll thetion p + or(+) for run E is shown in Fig. 7(a). Initia y, t e

t =0. Thedistribution is a single peak centered about g= . e
peak then collapses and broadens. Finally, two sym-
metric peaks are built up about the saturation values of

IL

p~

L~
(b)

0

0

n F: =0.1; L =50; h =0). Posi-= 128' s stem with stable long-wavelength modes (runFIG. 6. Evolving domain structure of a X = sys em w

ark the osition of the order-parameter contours are marked. The solid line through the configurations mar t e posi itive order-parameter values are mar e . e so i
'

ar t e osi i

plots shown beneath the configurations. Times shown are (a) ~=, ~=, c ~—
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I I «I

0 0.5 1.0

FIG. 7. Time evolution of the one-point distribution function
p(1( } (run E) (a) For .a quench into the stripe phase, i.e., h =0,
in order of the decreasing peak about /=0 the times are
~=1,3,5, 10,20, 30. The distribution function shown is the re-
sult of an average over 30 different runs with independent initial
conditions. (b) For a quench into the bubble phase with h =1,
in order of decreasing peak size about /=0. 25, for times
/=1, 2, . . . , 10, 15,30. The distribution function is averaged
over 10 different runs. Note the asymmetry in the final peak
heights.

the order parameter.
To monitor possible domain growth, we studied the

amount of interfaces present in the system. Figure 8
shows the inverse perimeter density (R ) for a uniaxial

P
ferromagnetic system. R~, which is defined as the ratio

S(k, r)= —g g(x;, r)e (35)

where k(2rr/&N )(m i+ n j ), m, n = 1,2. . .&N, where
N is the system length. The circularly averaged struc-

ture factor is

S(k, r)= QS(k, r) gl,
k k

(36)

of the total number of sites to the number of interface
sites, was calculated as follows: Any site with
I2( 20.36$„,was counted as an interface site, otherwise,

it was taken to be part of the bulk. The resulting data for
these intermediate times were tentatively fit to a power
law, i.e., R = At "+B with growth exponent n. The
values of these effective growth exponents are given in
Table I. Our results indicate that systems with unstable
long-wavelength modes exhibit growth at intermediate
times. This is because, for such systems, k, is smaller
than k,„sothat after stripe patterns of period 2rrlk
are formed on small length scales, these stripes begin to
thicken and coarsen until they are of thickness 2m/k eq'
At the same time the system tries to reduce the amount
of surface free energy present by annealing way the cur-
vature present in its interfaces. This process continues
until the dominant length scale of the system corresponds
to 2n /k, . Because the system is dominated by a single
time-independent length scale, the growth process is not
self-similar. The measured value of the effective growth
exponent n changes continuously from n =—' for a system

2

with no long-range force (i.e., P=O), to a possible n =0
value if the k =0 mode is stable. For a system with
stable long-wavelength modes there is significant growth
only in the early states. At late times the system still tries
to reduce the curvature present in its interfaces and pro-
duce stripes on long length scales. This process is, how-
ever, hampered by the presence of the dislocations, which
at low temperatures eventually pin the interfaces.

We also obtained the two-dimensional structure factor,
which is

20

10

I I I I

100 150 200

FIG. 8. R~, the inverse perimeter density vs time. The lines

at late times from top to bottom are for runs 8, C, D, and E.
Note that for systems with stable and marginally stable long-
wavelength modes (runs D and E), the lines are almost coin-
cident.

with k =2rrn /&N, n =0, 1,2, . . . &N and the sum~ is
over a circular shell defined by n —

—,
'

~
k

~
&N /2rr

1n+ —,. S(k, r} is illustrated in Fig. 9. For a system
with marginally stable long-wavelength modes (run D), as
shown in Fig. 9(a), S (k, r) is peaked about a nonzero k
vector, k,„.There is no significant wandering of the
peak of the structure factor over the time regime con-
sidered indicating that crossover effects are negligible;
here k,„=k,. There is, however, a crossing of the tails
of the structure factor.

In contrast, crossover effects play an important role at
late times if k, differs from k,„.This effect is observed
if the long-wavelength modes are unstable, becoming
more and more marked as P approaches zero (runs 8 and
C). This is illustrated by Fig. 9(b). At early times (r ~ 20)
the system builds up a stripe-like pattern of period k max'
as ts reflected in the initial peak of S(k, r}. After the
contribution of this mode has saturated, the system dy-
namics is dominated by the k, which is smaller than
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)

l,"f)k, "7T 128k/Hn

FIG. 9. Circularly-averaged structure factor S(k, ~) as ob-
tained by numerical integration. (a) For run D in order of in-

creasing peak size S ( k, ~) at ~= 5, 10, 15,20, 25,
30,40, 60, . . . , 200. (b) For run C in order of increasing peak
size v =5, 10, 15,20, 25, 30,40, 60, . . . , 200.

k,„.This results in a thickening of the stripe-like pat-
tern. The phenomena of mode saturation is a conse-
quence of the nonlinearity. The rate of achieving this sat-
uration is k dependent with smaller k modes taking a
longer time to saturate. The consequent coarsening of
the peak of S(k, r) is a subtle effect, which is absent in
KYG-like theory. For this system, crossover phenomena
and the late-time interfacial dynamics are not yet fully
explored and wi11 be the subject of a future investigation.

%'e now compare our simulation results with those of
the KYG solution. Figure 10 illustrates this by showing
the time evolution of the order parameter contours taken
from an arbitrary cut through a configuration generated
by the simulation of a system with stable long-wavelength
modes (run E) and the KYG equations. Both correspond
to the same initial random configuration. There are no
significant deviations between the simulation and KYG
results for ~&8. Small deviations then occur, with the
growth rate being consistently overestimated by the

KYG solution. This is not surprising considering the ap-
proximations made: KYG technique takes the growth
rate of all the modes to be that of the maximally unstable
mode k „,which is incorrect and an overestimate for all
other wave numbers. Note that the KYG solution pre-
dicts the saturation value of the order parameter at
l(„,=(yk )', which agrees with the simulation results

max

to within S%%uo. Note also that the KYG solution is a
theory with a single length scale. It is therefore unable to
correctly generate the finite interface width, any late-time
coarsening phenomena, or the crossover from k,

„

to
k, . Similar behavior was observed in the KYG solution
for a system with unstable long-wavelength modes.

To obtain a more quantitative comparison between the
simulation and the KYG solution, the variance of S(k, r)
was studied (Fig. 11), i.e.,

KYG( )
—'

y [Ss(k ) SKYG(k )]2yy Ss(k )2
' 1/2

k k

(37)

where the sum is over all the k vectors, the index s
denotes the simulation results, and the index KYG
denotes the KYG solution. Figure 11 shows a similar
comparison between the simulation and the linear theory.
In a relatively short time the errors between the simula-
tion and linear theory diverge exponentially, while the er-
rors between the simulation and the KYG solution
remain relatively constant. It seems, therefore, that the
KYG solution provides an excellent description of the
early-time dynamics of a system with a scalar noncon-
served order parameter and with a long-range repulsive
interaction.

B. Quenches into the bubble phase

%e have also studied quenched from the uniform
phase into the bubble phase, using the numerical methods
discussed in Sec. III. In particular, ten independent
quenches with h =1.0 were carried out (run P.

Figure 12 shows an example of such an evolving

0.6

0.4

O. H

0.0

FIG. 10. Comparison of time evolution of order parameter as
obtained through numerical simulation (marked by x, for run E)
and the KYG solution (marked by a solid line). The contour
plots shown represent arbitrary cuts through an evolving
configuration. Shown from the top to the bottom panel are
~=3, 7, 11, and 30.

FIG. 11. Variance as defined in Eq. (33) vs time for (a) linear
solution (squares) and KYG solution for run E (crosses), (b)
KYG solution for run D (triangles), and (c) KYG solution for
run C (solid line).
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phases, e.g., cluster-size distributions.
We have also investigated the growth of the dro let

over time, finding no significant differences from the
h =0 case. Initially, there is extensive growth as the Auc-
tuations in the initial state are am lifi d Thpi e . corder pa-
rameter, however, soon saturates. Th ere is very little
growth in mean droplet size after about ~=30 1th h, a oug

dro
ystem still continues to evolve so t fo as o orm circular

rop ets and rearrange them as to attain a hexa onal
symmetry.

a ain a exagonal

3( Ic

I

V. CONCLUSIONS

0

FIG. 12G. 12. Evolving domain structure of the long-range force

system with nonzero external field h =1.0 ( g). Prun g j. ositive de-

viations from the average value of g are marked. The time is

~=30. The solid line marks the position of the order-parameter
contour plot shown below the configuration.

, posi ive deviationscon guration at time ~=30. Here po 't d

from the system's average value of g are marked. In con-
trast to the percolating domain structure obtained from

quenches into the stripe phase, the configuration consists
of a sea of droplets. In many ways, this is visually similar

to configurations obtained from off-critical quenches in

Model-A of Model-B systems
The time-evolution of the one-point distribution func-

tion is shown in Fig. 7(b). Initially, the system is peaked
about a single, nonzero value of P. This peak then begins
to collapse as the phase separation proceeds, and later
two asymmetric peaks are formed about the equilibrium
values of g.

S~k ~&, ~& was found to display very similar features to
t ose of an h =0 quenched. Namely, S(k, r) is peaked at
about the same valalue of k and remains stationary over

~ ~

the time regime examined. The peak is, however, slightly
roader and less sharp, narrowing slightly over time.

This feature is most likely due to d' t 'b ' fo a is ri ution or droplet
sizes. We have not studied the angular correlations of
the structure factor, which are expected to display a hex-

circularly-averaged structure factor for the bubble phase

c aracterized by studying topological features of the two

We have studied the dynamics of pattern formation of
a Model-A s stemystem with a long-range repulsive force. The
presence of the long-range repulsive force leads to the
formation of modulated structures. It h hc anges t e strict-
y ocal model, Model A, into a nonlocal model. By tun-

ing the parameters describing the long-ong-range repu sive

md fh
orce, one is able to alter stabilit of the 1

mo es o t e system.

' '
y o e ong-wavelength

Thehe dynamics of the formation of these modulated
phases may be separated into an early- and a late-time re-
gime. The early-time regime is dominated by the most
unstable mode of the linear dispersion relation. This re-
gime is we11 explained through an approximate solution
based on a KYG expansion of the appropriate TDGL
equation. This solution accounts for some of the non-

yie s a nonexponen-linearities present in the model. It '
ld

tia growth rate of the order parameter, and a saturation
value which seems to be correct within 5/o of the value
obtained in the numerical simulation. There are no
significant differences between the KYG solution and
simulation results at early times. At late times the system
tries to evolve in such a way as to reduce its surface free
energy. If t e wave number of the equilibrium ttpa em

i ers significantly from the most unstable mode of the
inear dispersion relation, a crossover takes place at late

times which is not described by the KYG solution.
These results indicate the usefulness of the KYG ap-

proach in providing early-time solutions to a variety of
time-dependent Ginzburg-Landau equations. In the fu-

ture we will investigate systems with both long-range
repulsive interactions and a strictly conserved order a-
rameter.

e or er pa-
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