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We have measured the coexistence-curve diameter and the critical density of xenon with very
high accuracy, using an optical technique which allows us to obtain data of the refractive index and
the density in the same experiment. Contrary to theoretical predictions, we observe no deviations
from rectilinear diameter in Xe, to an accuracy of at least 0.05% of the critical density. This finding
may give information about the dominant many-body interactions between the fluid atoms. The
critical refractive index was determined as the limiting value of the coexistence-curve diameter as
the temperature approaches 7,.. This method has the advantage of being entirely self-contained and
not depending on other data for the evaluation of p.. Two different samples of Xe were studied.
One of them yields n, =1.137 74+0.000 10 for the critical refractive index and p. =1.1160+0.0017
g/cm’ for the critical density, and the other yields n.=1.13743+0.000 12 and p, =1.1147+0.0017
g/cm®. These results agree within experimental error and are the most accurate measurements of

the critical density of Xe to date.

I. INTRODUCTION

We have carried out measurements of the refractive in-
dex and density of xenon in the critical region in an effort
to determine the critical density with as high an accuracy
as possible. Two different samples were studied, and thus
the reproducibility of the critical density for samples
from different suppliers (and therefore probably contain-
ing different impurities) could be investigated.

The refractive index and the density are related by the
Lorentz-Lorenz relation

p ni+2

) (1)

where .£, the Lorentz-Lorenz function, is a weak function
of density. If L is known, the density can be determined
from a measurement of the refractive index.

In a pure fluid, the order parameter Ap* is proportion-
al to the density difference between liquid and vapor
phases, i.e.,

*___pl—pu

(2)
2p,
Scaling theories predict that upon approach to the criti-
cal point, Ap* should obey a power law in the reduced
temperature ¢t =(T,—T)/T,, with an exponent B. The
exponent 3 is expected to be universal, i.e., its value de-
pends only on the dimensionality of the system, the num-
ber of components of the order parameter, and the range
of the microscopic interactions. Pure fluids belong to the
same universality class as the three-dimensional Ising
model.! Values of B have been calculated by both high-
temperature series expansions>® and € expansions,** giv-
ing 3 between 0.325 and 0.327. The pure scaling law is
exact only very close to the critical point for pure fluids
in a temperature interval ¢ <107 °. For larger reduced
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temperatures, corrections due to the irrelevant scaling
fields have to be taken into account,"® so that the order
parameter should be described by

Ap*=BytP(1+Bt*+B,t*+ -+ ), 3)

where B, B, and B, are (nonuniversal) amplitudes and
A is the universal correction to the scaling exponent. A
has been calculated to lie between 0.49 and 0.54.%%7

The average of liquid and vapor densities defines the
coexistence-curve diameter p,; of the coexistence curve,
which, close to the critical point, is expectedl to behave
like

Pa=(pi+p ) 2=p+ At A Ay (@)

Here, the term linear in ¢ corresponds to the “law of rec-
tilinear diameter.”® Recently, a microscopic theory’'©
has interpreted this deviation of the diameter from a
straight line as resulting from many-body interactions be-
tween the fluid molecules. If the dominant contribution
to the many-body forces are assumed to be due to dipole-
induced—dipole interactions of the Axilrod-Teller type,'!
it is found that both 4, and 4,_, are proportional to
the critical polarizability product a,p,, 10 where a, is the
polarizability and p, is the critical density. Since the po-
larizability product of Xe is unusually high,'? one would,
in the framework of this theory, expect Xe to exhibit a
large slope of the diameter A,, as well as a deviation
from rectilinear diameter A4,_,, which is more pro-
nounced than that found in other nonpolar fluids.” Mea-
surements on the coexistence-curve diameter of Xe thus
give valuable information on the validity of this theory.
Our objective in these experiments was to measure .£,
Ap*, and p,, and thus to get an estimate of the critical
density p.. There have been several previous measure-
ments of the critical density. Some of them use P-V-T
data to determine the critical parameters.'*~'® Other ex-
periments use optical techniques to measure the critical
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refractive index.'’~! These optical experiments also rely
on P-V-T data, however, as they measure refractive in-
dices as a function of cell pressures and have to use an
equation of state to relate the pressures to densities.

Our experiment had the advantage that it uses no pre-
vious data, but was entirely self-contained. We deter-
mined the critical density in the following way: (i) Mea-
surement of the Lorentz-Lorenz function .L, i.e., deter-
mination of the density p as a function of refractive index
n along the coexistence curve, as defined by Eq. (1). (ii)
Determination of the critical refractive index n, as the
limiting value of the average of liquid and vapor refrac-
tive indices as the temperature approaches T ,:

i n(T)+n,(T)

=] Ln}c > . (5)
The value of T, was obtained from a fit to the order pa-
rameter Ap* as given in Eq. (3). Knowing n_, the critical
density p. was then calculated from Eq. (1). (i) As a
check on consistency, we calculated the densities p;,p,
from our measured refractive index data n,,n,, using Eq.
(1). We then fitted the mean density p,; to Eq. (4) and
used the intercept (1 =0) to extract p,.

As slight changes of composition can influence the crit-
ical temperature and pressure of a substance quite
dramatically,” a small error in the measurement of p,
does not necessarily imply a high accuracy of the result.
In order to be of general use, the result must be reprodu-
cible for different samples of Xe. In an effort to verify the
reproducibility of our value of p., we studied two samples
from two different batches of Xe.

The remainder of this paper is organized as follows:
Section II describes the experimental technique. Section
ITI presents the results of the Lorentz-Lorenz measure-
ments and the order parameter and coexistence-curve-
diameter data. Finally, Sec. IV discusses the results and
compares our values with the literature. A detailed error
calculation is given in the Appendix.

II. EXPERIMENTAL TECHNIQUE

Experiments were performed on two different samples
of xenon. One of them (sample No. 1) was purchased
from Matheson Gas Products and rated 99.995% pure by
the supplier. We had obtained it just prior to the experi-
ments discussed below. Thus no long-term contamina-
tion in the gas cylinder took place while the gas was in
our possession. The other one (sample No. 2) had been
obtained from Professor R. Gammon at the University of
Maryland.

Figure 1 shows the experimental setup used for the ex-
periments. The sample cell had an aluminum body with
a prism-shaped head.?! It was filled with a given mass of
Xe and placed in a thermostat which controlled the tem-
perature to within 0.5 mK. A collimated laser beam
passing through the prism is deflected by an angle which
depends on the index of refraction of the fluid in the cell.
The beam is reflected into an autocollimating telescope
(Davison, model D275) by a micrometer-driven mirror
(Lansing Research Corp., model 10.253). By adjusting

ULRIKE NARGER AND DAVID A. BALZARINI 42

BEAM THERMOSTAT
EXPANDER MICROMETER-
DRIVEN
{ — MIRROR
« N
He-Ne LASER 4

IRIS

TELESCOPE

FIG. 1. Optical setup of the prism-cell experiment.

the mirror, the refraction angle can be measured. A
reference beam passing around the cell is used to monitor
the stability of the alignment.

In order to obtain precise measurements, a series of
calibrations had to be carried out. The Appendix de-
scribes these calibrations and shows the effects of the
various uncertainties on the resulting value of the critical
density.

The measurement of the Lorentz-Lorenz function pro-
ceeded as follows: The cell, containing a given mass of
fluid, was cooled into the two-phase region where the
fluid phase separates into liquid and vapor. Since the sys-
tem is on the coexistence curve, the density, and thus the
refractive index, of each phase is temperature dependent.
The temperature of the cell was then raised until the sys-
tem passed from the two-phase into the one-phase region
where the refractive index is independent of temperature.
The refractive index was measured just above the coex-
istence curve in the one-phase region. By repeating this
procedure for different overall densities, the Lorentz-
Lorenz function, and thus the relationship between densi-
ty and refractive index along the coexistence curve, could
be extracted.

When the overall density in the cell was close to the
critical value, measurements of the refractive indices
along the coexistence curve were carried out: In the
two-phase region, the refractive indices of both liquid and
vapor phases, n; and n,, were recorded as a function of
temperature. From these data, the order parameter and
coexistence-curve diameter could be determined.

Close to the critical point, the large compressibility of
the fluid causes the density profile to be strongly curved.
This gravitational effect smears the extended laser beam
traversing the cell close to T, and thus limits the accura-
cy with which the deflection angles can be determined.
In our prism experiment, we cannot approach the critical
point closer than 10™* in reduced temperature before
gravitational rounding begins to affect the accuracy of
the data.?!?

III. RESULTS
A. Lorentz-Lorenz function

The Lorentz-Lorenz function .£, as defined in Eq. (1),
provides the link between the refractive index and the
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TABLE I. Results of a quadratic fit to the Lorentz-Lorenz data of two Xe samples. The first fit is a quadratic fit centered around
p. =0.0085 mol/cm®. L, (fit) is the critical value of £, averaged over various fits. (.L_) is the average of £ measurements in the
density interval 0.88p. <p <1.12p,.

Ly L, L, L (fit) (L)
(cm’/mol) (cm®/mol?) (cm’/mol?) (cm®/mol) (cm*/mol)
Sample No. 1 10.410 24.80 — 1459 10.515+0.001
Sample No. 2 10.387 27.78 — 1634 10.505+0.002
Sample No. 1 10413 25.28 — 1569 10.515+0.001 10.510+0.008
Sample No. 2 10.382 26.19 —1377 10.505+0.003 10.504+0.006

density of a fluid. The data were fitted to a second-order
polynomial in the density p:

Lp)=Log+Lp+Lop? . (6)

For a first set of fits, the fitted parabola was assumed to
be symmetric around the critical density (p.=0.0085
mol/cm?). Table I summarizes result of these fits in the
density interval 0.3p, <p <1.4p.. Results of fits treating
the position of the maximum of the parabola as a free pa-
rameter are also given in Table I, together with the re-
sults of the critical value £ _=.L(p,). When the location
of the maximum of the fit to the Lorentz-Lorenz function
is treated as a free parameter, it is shifted to a lower den-
sity than p_ in sample No. 1, whereas it is shifted to a
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FIG. 2. Lorentz-Lorenz data of sample No. 1 (O) and sam-
ple No. 2 (@). The curves correspond to quadratic fits to the
data.

higher density than p, in sample No. 2. No systematic
shift is thus observable.

Because of the scatter of the data points, the error in
L . (fit), obtained from a fit to the data, is considerably
smaller than (.£_), which was calculated by averaging
the Lorentz-Lorenz values in the density interval
0.88p. <p<1.12p,.

Figure 2 shows the Lorentz-Lorenz data of both sam-
ples, together with the curves corresponding to the fit pa-
rameters given in Table I (treating the maximum of the
parabola as a free parameter). Note that the discrepancy
between the L, values of the two data sets is less than
0.1%. Within the accuracy of our measurements, we ob-
serve no anomaly of L close to the critical point, in
agreement with other researchers.!”!°

From the Lorentz-Lorenz data, the electronic (optical)
polarizability a, can be determined using23

4ra,
limL(p)= Ny, (7)
p—0 3

where N, is Avogadro’s number. For Xe, we find

a,=4.12+0.01 A’.

+

log, (Ap /1)
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FIG. 3. log-log plot of the order parameter data of Xe: Open
symbols correspond to data taken on sample No. 1, solid sym-
bols to data taken on sample No. 2. The dashed curves are fits
with two correction to scaling terms and keeping $=0.327 and
A=0.5 fixed.



6654

ULRIKE NARGER AND DAVID A. BALZARINI 42

TABLE II. Results of fits to the coexistence curve of Xe in the reduced temperature interval
107# <t <3X 1072 For these fits, the exponents $=0.327 and A=0.5 were held fixed.

B, B, B, T. [°ql
Sample No. 1 1.479+0.011 1.15+0.19 —2.6%1.0 16.602+0.001
Sample No. 2 1.470+0.010 1.20+0.17 —2.8+1.1 16.639+0.002

B. Determination of the critical temperature

The critical temperature was determined by fitting the
coexistence-curve data to a power law in the reduced
temperature with corrections to scaling, as given in Eq.
(3). Two coexistence-curve runs were performed on each
of the samples. Because of gravitational rounding effects,
the data are confined to reduced temperatures
t >5X107°, where the critical asymptotic behavior has
not yet been reached. Therefore, for fits of the order pa-
rameter, the exponents $=0.327 and A=0.5 were held
fixed, and the critical temperature and three amplitudes
were fitted as free parameters. Figure 3 shows a plot of
log,yA*p/tP as a function of reduced temperature ¢t. The
fit results are given in Table II. The values of the ampli-
tudes and critical temperature are the averages of several
fits to the combined data of the two runs in each sample.
The amplitudes of sample Nos. 1 and 2 are seen to agree
within error. There is a systematic difference in the
values of the critical temperatures, however. Both values
of T. are in good agreement with values found in previ-
ous experiments [7,=16.64°C (Ref. 24) and
T.=16.615°C (Ref. 16)]. The difference in critical tem-
perature between sample Nos. 1 and 2 may be due to
different impurities present in the two samples. It has
been shown that even small contaminations can cause
considerable changes in the critical temperature.’’ These
contaminations seem to have a negligible effect on the
values of the amplitudes.

C. Coexistence-curve diameter and critical density

In order to determine the critical refractive density p,,
the behavior of the coexistence-curve diameter,
pa=(p;+p,)/2, as a function of the reduced temperature
was studied. For each data set, the critical temperature
was held fixed at the value found from the coexistence-
curve fits.

Figure 4 shows a plot of the diameter data of Sample
Nos. 1 and 2 as a function of reduced temperature. In all
cases, the data exhibit no significant deviations from
straight lines. We thus do not observe any singularity of
the coexistence-curve diameter. Table III gives the
diameter-fit results. The first part of the table shows the
parameters obtained from a straight-line fit to the data
with reduced temperatures ¢ >8X 107>, For each sam-
ple, the data of the two runs were fitted together. The er-
ror is a measure of the difference between the two runs.
The second part of the table gives results of fits treating
A, and A4,_, as free parameters. The exponent a was
kept constant at a=0.11. When only a linear term is
fitted ( 4,_,=0), the values found for 4, agree very well
with the slopes of the straight-line fits in the outer tem-

perature range t >8X 10>, This indicates that there are
indeed no systematic deviations from rectilinear diameter
close to the critical point. Fitting both 4, and 4,_, as
free parameters does not give useful results, as indicated
by the large errors.

The limiting value of the diameter p,; as t—0 deter-
mines the critical density p,. We calculated the value of
p. for our samples by averaging the p, values obtained in
the various diameter fits. The results are the following:

sample No. 1: p.=0.008496(4) mol/cm*
=1.1156(5) g/cm? ,

sample No. 2: p,=0.008 489(4) mol /cm?
=1.1139(5) g/cm? .

For an evaluation of the uncertainty in the value of p,
due to systematic errors, it turns out to be easier to ex-
tract the limiting value of n. as t—0 of the refractive-
index diameter (n;+n,)/2, which is directly accessible
experimentally, and to calculate p. using the Lorentz-
Lorenz relation. The error calculation is presented in the
Appendix. The results are the following:
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FIG. 4. Coexistence-curve diameter p, of Xe as a function of
t for four experimental runs. Open symbols correspond to data
on sample No. 1, solid symbols to data on sample No. 2.



42 COEXISTENCE-CURVE DIAMETER AND CRITICAL DENSITY . ..

TABLE I11. Fit results of the coexistence-curve diameter of
Xe. Parameters in parentheses were kept fixed for the fit. The
exponent a was held fixed at «=0.11.

A4, A4,_, p. (mol/cm?)
Outer temperature range
(t>8%X107%)

Sample No. 1 0.70+0.04 (0.0) 0.008 495(4)
Sample No. 2 0.6510.04 0.0 0.008 481(8)
Total temperature range
(107°<r <2X107%)

Sample No. 1 0.69+0.02 (0.0) 0.008 497(2)

(0.0) 0.4710.02 0.008 492(1)

1.3x1.0 —0.5+0.3 0.008 502(2)

Sample No. 2 0.66+0.01 (0.0) 0.008 484(7)
(0.0) 0.43£0.02 0.008 481(6)

1.4£1.0 —0.5+0.3 0.008 488(8)

sample No. 1: n,=1.1377+0.0001 ,

p.=1.1160+0.0017 g/cm’ ,

sample No. 2: n,=1.1374£0.0001 ,

p.=1.1147+0.0017 g/cm* .

The small difference of the critical densities found in the
two evaluations are well within error.

IV. DISCUSSION AND COMPARISON
WITH OTHER EXPERIMENTS

The Lorentz-Lorenz function just above the coex-
istence curve can be fitted well by a quadratic function of
the refractive index. Within the accuracy of our experi-
ment, we observe no critical anomaly in the Lorentz-
Lorenz function; nor do we observe any discontinuities in
L. The Lorentz-Lorenz data measured in the two
different samples of Xe agree to within 0.1%. Our value
of the critical value of L(p.)=.L_.=10.510%0.005
cm?®/mol agrees well with other experiments which find
the Lorentz-Lorenz function to have an average value of
(L£)=10.52+0.02 cm’/mol  (Ref. 19) and
(L)=10.5340.07 cm®/mol (Ref. 17) in the density re-
gion 0.6p, <p <1.8p.. We measure the critical index by
extrapolation of the refractive-index diameter as T— T,
and find n,=1.1377£0.0001 for sample No. 1 and
n.=1.1374%£0.0001 for sample No. 2, in excellent agree-
ment with the value of Garside et al. who found
n.=1.1379+0.0008. '8

The critical density is determined from the Lorentz-
Lorenz relation at the critical point. Table IV compares
our value of p, to other experiments. Our results for £,
and n, carry a smaller error than the values of other
researchers, and thus our value of p. has a much smaller
uncertainty. (For a detailed error evaluation, see the Ap-
pendix.) Since our method is entirely self-contained and
no outside information was used to determine p., the
value is also probably very accurate.
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TABLE IV. Critical density of xenon.

Experimenter Pe
Habgood and Schneider (Ref. 13) 1.099 g/cm’
Levelt (Ref. 15) 1.091 g/cm®

Chapman et al. (Ref. 17)
Garside et al. (Ref. 18)
Baidakov et al. (Ref. 16)
Cornfeld and Carr (Ref. 25)

1.1055+0.004 g/cm’
1.119+0.011 g/cm’
1.1128 g/cm?
1.1128+0.0006 g/cm’
1.1113+0.0017 g/cm?

This work
Sample No. 1 1.1160+0.0017 g/cm’
Sample No. 2 1.1147+0.0017 g/cm’

In our data for the coexistence-curve diameter of Xe,
we observe no critical deviation from linear diameter, in
agreement with other experiments.”> We conclude that
any critical-diameter singularity, if present in Xe, is less
than 0.05% of p, close to the critical point. Thus we find
that the law of rectilinear diameter is obeyed to high pre-
cision in Xe. This is in contradiction with the theory of
Goldstein et al.,’ according to which we would expect
an anomaly whose magnitude should be proportional to
a,p.. For Xe, a,p.=0.021, larger than in any of the
nonpolar gases studied in Ref. 10 which all display criti-
cal singularities of the diameter. Thus we would expect
the anomaly in Xe to be larger than observed in other
fluids. However, there are indications?® that in the Xe
system the Axilrod-Teller interactions are not the most
important three-body forces. Rather, exchange interac-
tions play a dominant role. These, however, are not tak-
en into account in the theory of Goldstein et al. If ex-
change interactions were to partly cancel the effect of the
Axilrod-Teller interactions, this could explain why the
theory of Goldstein et al. does not correctly predict the
diameter anomaly in Xe.

The critical temperature is very sensitive to impurities,
leading to large shifts in critical temperature when small
impurities are added.”” Even though their critical tem-
peratures vary, the critical densities of sample Nos. 1 and
2 agree very well, indicating that whatever impurities
they may have contained, these impurities have a minor
impact on the critical density. The close agreement leads
us to believe that our value of the critical density is a very
good estimate of the critical density of research-purity
xenon in general.
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APPENDIX: ERROR ANALYSIS
FOR THE CRITICAL DENSITY

This Appendix describes how the refractive index of a
fluid inside the prism cell can be obtained from the re-
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fraction angle and presents an error evaluation for the
critical density obtained from a prism-cell measurement.

Calculation of refractive index from refraction angle

We assume that the incident beam is incident on the
first (straight) window of the prism at right angles. The
refracted beam leaves the prism at an angle « with
respect to the incident beam. Figure 5 shows the
geometry and defines the angles. All dotted lines corre-
spond to directions parallel to the incident beam. All
dot-dashed lines indicate normals to the window faces.
ng, n,, and ny. are the refractive indices of sapphire, air,
and xenon, respectively. 6, (6,) is the wedge angle of the
straight (tilted) window, and 6 is the prism angle. Angles
a; are between the beam direction and a surface normal,
k; are angles between the beam and the direction of the
incident beam, and « is the total (measured) refraction an-
gle. As the wedge angles of the windows 6, and 6, are
small, we can Taylor expand to obtain

sinf, =6, , sinf,=0,, cosf,=cosf,=~1 .

Using Snell’s law for refraction angles, one then obtains
the refractive index ny, as a function of the refraction an-
gle k, to first order in 6, and 6,:

Ny =(n, /sin@)(sin(k+0)+8, {cos(k+0)—[n2/n2—sin*(k+8)1'/2} +6,[sin(k+8O)cotd— (n, /n, )cosh]) .

Error estimates

The estimate of errors was essential for judging the ac-
curacy of the critical densities determined in the prism-
cell experiments. The following quantities were calibrat-
ed with the given accuracy. (i) Systematic errors:

(1) Prism angle 6=20.525°, with 66=0.010".
(

2) Sapphire window wedges: straight window:
6,=—0.00018, 56,=0.00002, tilted window:
6,=—0.00041, §6,=0.00003.

(;5) Volume of prism cell ¥V =12.066 cm?, §V'=0.003

cm”.

(4) Mass of empty prism cell: M;=179.3995 g,
dM;=0.0030 g. Items (1) and (2) limit the accuracy of
refractive-index measurements. They lead to errors on,,
on,, and 8n, due to the error in the prism angle 6, and
the tilt angles 6; and 6,, respectively. Items (3) and (4)
limit the accuracy of the density p=M /V. (ii) Random
errors.

(1) Mass readings.

(2) Micrometer reading.

(3) Temperature reading. These errors produce a ran-
dom error 8.L_ in the value of the Lorentz-Lorenz func-
tion at the critical point and a statistical error 8n, in the
critical refractive index. In our experiments we found
that

on,
n

¢ stat [4

5L
~1.8X10°4, { - } ~2.9X107% .
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FIG. 5. Refraction geometry of the prism-cell experiment.

For an explanation of the symbols, see text.

(A1)

f

The total error in the critical density can then be evalu-
ated to be

SpC_[ 8L, |° P on,
pc “Lf stat nC tot
2 112
op.
i =1.5x107?, (A2)
Pe sys
where
on, 2_ on, ? on . :
ne tot c stat nc
2
+ ons S_n,_
n, n.
and
sp. | [sm |* [sv ]
e ='~ + |9V <34x107¢.
Pec Sys M c c

The parameter C is obtained from a Taylor expansion of
the Lorentz-Lorenz relation around the critical point and
is given by

6n?
(n24+2)n2—1)
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