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Metallic non-Fermi-liquid fixed point in two and higher dimensions

X. G. Wen
School ofNatural Science, Institute for Advanced Study, Princeton, New Jersey 08540

{Received 14 May 1990)

Quasi-one-dimensional electron systems in two and higher dimensions are studied. It is shown

that the interchain electron hopping is renormalized to zero in the infrared limit if the intrachain

repulsive interaction is strong enough. In this case the higher-dimensional electron system flows to
metallic non-Fermi-liquid fixed points —a Luttinger liquid. Some experimental consequences, in

particular the transport properties, of this infrared fixed point are studied. It would be interesting

to observe this state in quasi-one-dimensional electron systems,

Electron systems are known to have four infrared fixed
points which respect the spin rotation and the translation
symmetries. Those fixed points are insulator, supercon-
ductor, Fermi liquid (metal) and Luttinger Liquid (LL)
(also a metal). Up to now, the LL fixed point is only
known (theoretically) to exist in one dimension. Recent-
ly Anderson suggested that the high-T, superconductors
are described by a two-dimensional LL based on some ex-
perimental and theoretical considerations. In this paper
we will show the existence of a new kind of metallic fixed
points in two and higher dimensions. These fixed points
resemble the one-dimensional LL and will be called the
LL in higher dimensions. We will give a suScient condi-
tion for an electron system to flow to a LL fixed point.
Our strategy is to consider quasi-one-dimensional systems
and to treat interchain hopping and interchain interac-
tions as perturbations. We ask whether those interchain
perturbations as relevant or not in the infrared limit. If
all the interchain interactions and the interchain hopping
are irrelevant operators, the LL fixed point on the chain
will survive in the higher dimensions. We will also study
some experimental consequences of the high-dimensional
LL.

Let us first briefly summarize some results of one-
dimensional LL. In one dimension, LL are generic fixed
points for interacting electrons. Thus we may use a
weakly interacting one-dimensional electron system

8=tyc.'c„

ttrL „(x) are smooth functions of x and describe the elec-
trons near the two Fermi points. In the continuum limit
the free-electron Hamiltonian ( V =0) has a form

d t d
Hf~ee dx vF LI L

—~i R e

dx dx

[JL,k JR,k'] 0

[Hfree& JL, R;k ] + F L, R;k

(4)

JL z.k are the electron densities for the right moving and
the left moving excitations:

J . ,
= d — ''L

They are also proportional to the electrical currents of
the left movers and the right movers. It can be shown
that the Hamiltonian satisfying (4) has a form quadratic
in currents:

H free 1TUF dx J&Jz +JLJL

The best way to study the low-energy properties of in-
teracting one-dimensional electron systems is to use
current algebra. It is known that one-dimensional spin-
less electrons are described by the U(l) Kac-Moody (KM)
algebra

1
[JL,R;k&JL, R;k'] +

2
k~k+k'

kl +k2 =k3+k4
V(k, )k2, k3rk4)(ck ck )(ck ck )

Equation 4 completely determines the low-energy dynam-
ics of the system.

The electron operators satisfy the algebra

to understand LL fixed point. The Fermi momentum kF
is assumed not to commensurate with the lattice. For
simplicity we will start with spinless electrons. The low
energies excitations are near the two Fermi points. Fol-
lowing Ref. 3 we may write the electron operator as a
sum of the right moving and the left moving electron
operators

ikFan —IkFan
a 'r c„=e QL(an)+e QR(an) .

[JL R(x), qL ( Rx)]=5( —x x')ttL R(x),

[JtR(x), QR L(x., ')]=0,
[Hfree~ PL, R ( ) ]—+ VFk 4L, R (

The electron operators can be written in terms of the
current operators

L R
4L R =n:e

where g is a cutoff-dependent constant and 4L „ is given
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by JL R =( I /2m. )c}„4LR. One can check explicitly that

fL „ in (8) satisfy the algebra (7). Using the correlation
function of 4L R [which is determined by (4)],

—
2g( 2k2 2)g

COO

L R( k)~L R( k}~ + (18)

&4L R(t, x)4L „(0)) =ln(x+UFt),

we find the electron propagator to be

L R(t, x)QL R(0) ) (x+vFt)

or in the momentum space,

(9)
From (18) it is clear that the interacting electrons are not
described by FL theories, since the propagators contain
no single-particle poles.

Now let us consider a two-dimensional electron system

&q'„(,k)1(, „(,k)) = 1

+vFk
(10) + g V(m n—)(c c )(c„c„).

m, n

(19)

Thus the electron operators are indeed given by (8).
The interaction term in (1) can also be written in terms

of the current operator (in the continuum limit):

5H= f dx[m5u(J. LJL+J„J„)+A,,JLJ„], (11)

where

The Hamiltonian (12) can be diagonalized by introducing

JL R =ch(8)JL R +sh(8) JR L

We find that

H = f dx vru(JL JL+JR JR )

(13)

(14)

if we choose th(20) =A, , /2mU. Here v is given by
U = U /ch(26). One can easily check that jL R also form a
U(1) I& M algebra:

1
[JL,R;k&JL, R;k'] —+

2
5k+k'

[JL,k jR, k 1=o

[H&JL,R;k ] + UkJL, R;k

(15)

Therefore the interacting electron system is exact soluble
in the infrared limit. The low-lying excitations have only
two velocities +v. In terms of new fields jL z the electron
operators have the form

4L, R 2):exp+t [ch( 0 )pL „—sh( 9)QR L ]:

where PL R are given by jL R =(I/2')B PL R. Note due
to the mixing (13), the electron operators contain both
the right moving and the left moving excitations. We
find that

1
&qL R(t, x)qL„(0))

(x+Ut)(x —
U t )

where g =sh (8}. In the momentum space we have

(17)

I, , =2 V(0) —2Re V(2kF )

and V(q) is the two-body potential. The first term in (11)
just renormalize the velocity UF ~u =UF+5U. The
second term is responsible for the LL behavior of the in-

teracting electrons. The total Hamiltonian is

H=Hfee+5H= f dx[mv(JLJL+JRJR)+&&JLJR] .

(12)

First let us assume the potential V(m n) t—o have zero
range in the y direction:

V(m n) =5(m— n)V,—(m, n„), — (20)

and concentrate on the effects of the y hopping term.
When t =0 the Hamiltonian (19) becomes decoupled
one-dimensional chains and is exact soluble in the in-
frared limit. The ground state is described by LL. In fol-
lowing we will consider the situation when ty ((t V. In
this case we may treat

ty dX L y
+ L p p p

+ p y
n

as a perturbation. We ask whether the LL at t =0 is

stable or not against such a perturbation. This question
can be answered in a renormalization-group (RG) ap-
proach. Because the unperturbed theory has no disper-
sion in the y direction, we will consider the following RG
scaling:

(x,y, t) ~(2)x, t, hatt) . (21)

From (17) we see that the operator gL R scales like
ggL „.This implies that pL R has a dimen-

sion —,
' +g under the RG scaline (21). (x and t have a RG

dimension —1 while y has a RG dimension 0.} An opera-
tor is relevant, marginal or irrelevant if its RG dimension
is less, equal or greater than 2, respectively. Because H
has a dimension 1+2g, it is an irrelevant perturbation if
(and only if) g )—,'. In this case t flows to zero in the in-

frared limit. The system behaves like decoupled chains in
the low-energy limit and ground state remains to be a LL.
When g (—,', H is relevant and t getting larger and

larger in the infrared limit. Eventually the renormalized
t becomes comparable with the renormalized t and V
[because the velocity is unchanged under the RG scaling
(21), the renormalized t„and V is of the order v/a*,
where a* is the cutoff scale]. In this case the renormal-
ized electron system has strong hopping in both the x and

y directions. The perturbative analysis break down and
we do not know what is the true ground state.

Now let us assume that t =0 and study the effects of
weak interchain two-body interactions. In the continuum
limit (in x direction) such an interaction has a form
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oH= f dx g t V, (ny —m )[JL(ny)JL(m )+J„(ny)J„(my)]+ Vz( n —my)[Jt (n )J„(m )+Jtt(ny)JL(m )]
n„, rnV'

(23)

+ V3(n —m )[i//t(n )gz(n )g/t(m )ft (m )+H. c. ]I . (22)

Let us first concentrate on the operator PL(n )g//(n )g„(m )/t/t (m ). In terms of the bosonic field PL/t, the operator
g„(m )QL(m ) has a form

gz gz ~ expi I [ch(8) —sh(8) ]PL + [ch( 8) —sh(8) ]P/t ) .

Therefore hatt ( my )QL ( my) has a dimension

[ch(8) —sh(8)] =1—2sh(8)[ch(8) —sh(8)] .

This implies that the V& term in (22) is irrelevant if and only if the intrachain interaction is attractive [to be exact
/(i =2 V(0) —2Re V(2kF ) &0]. In this case 8 &0 and the dimension of the V& term is greater than 2. We find that the
LL ground state is stable against a small interchain interaction if the intrachain interaction is attractive. The V& and
V2 terms in (22) are marginal operators. It may modify 8 a little bit. But when 8 is finite and V„V2 are small, the first
two terms in (23) cannot change a irrelevant operator to an relevant one (or uice versa) Th. e V& term remain to be ir-
relevant even in presence of the V, and V2 terms.

After dropping the irrelevant V3 term the total Hamiltonian becomes

H= fdx+Imv[JL(n )JL(n )+Jx(n )Jtt(n )]+)L,JL(n. )J/t(n ))
n

+ f dx g I V&(n —m )[JL(n )Jt (m )+Jtt(n )Jtt(m )]+V&(n —m )[JL(n )J (/mt)+JR(n )JL(m )]I
n, m

(24)

The currents satisfy the following algebra:

l
[JL,R;k(ny ) JL,R;k'™y)I = +

2
k&k+k''|i

[JL /, (n ), J/t /, (m )]=0 .
(25)

jL, (k ) =/[Uk'"„Jtt (ny )+ Uk'„Jt. (ny )] .
n

(26)

The matrix U can be chosen to preserve the algebra (25)
and at the same time diagonalize the Hamiltonian.
Therefore (24) is exactly soluble. We find that ground
state of (24) is a LL (i.e., a non-Fermi-liquid state with
gapless charge fluctuations). We would like to remark
that although the electron cannot hop from one chain to
another (since t =0), the charge density disturbance in
one chain can cause a charge disturbance in other chains
due to the interchain interaction. Therefore the charge
fluctuations can propagate in both x and y directions.
But j always remain to be zero.

Summarizing the above results we conclude that the
ground state of a two-dimensional spinless electron sys-
tem is a LL if (a) the interchain hoping and the interchain
interactions are weak, (b) the interchain interaction is
strong enough such that g ) —,

' and (c) the intrachain in-

teraction is attractive (A,
&
&0). In other situations (i.e.,

when a —c are not all satisfied), the ground-state proper-
ties are unclear because of the strong interactions. The
above results obviously also apply the higher-dimensional

The above Hamiltonian can be diagonalized by a general-
ized transformation of (13):

j„(k )=yg[U "„kJ„(n )+yUk" „JL(ny)],
y F y

n

systems.
The condition (a) is required because we are using per-

turbative RG theory. The condition (b) implies that all
the interchain hopping are irrelevant. If the condition (c)
is satisfied, there will be no relevant interchain interac-
tions. Therefore all the perturbations wi11 remain to be
small as we go to the infrared limit, if a —c are satisfied.
Most interchain interactions are irrelevant except the V&

and the Vz terms in (22) which are marginal operators.
To describe the infrared fixed point we need to include
those marginal interactions in the total Hamiltonian. It
turns out that the total Hamiltonian is exactly soluble
(after dropping the irrelevant interaction and hopping
operators). We find the system flow to a new infrared
fixed point —LL—which contains gapless charge fluctua-
tions but is distinct from the Fermi liquid and the
superfluid. The LL fixed points in high-dimensional sys-
tems studied here span a infinite dimensional manifold.
The different LL fixed points are labeled by two functions
V, (n) and V2(n) together with two real parameters v and
g. We would like to emphasize that the LL liquid fixed
points studied above are generic because all the perturba-
tions about those fixed points are either irrelevant or
marginal which just connect to another LL fixed point.
There are no unstable directions around the LL fixed
point.

In order to get a clearer picture about the two-
dimensional LL, we will try to calculate the electron
propagator. For simplicity we will ignore the interchain
two-body interaction and only consider the effects of the
y hopping term. Because T(f g) —:PP: is not a c num-
ber, the Wick theorem does not apply. The electron
propagator is not given by the Feynman diagram in Fig.
1. The vertex corrections like the one in Fig. 2 are not in-
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ty cos k

W/ X/

FIG. 1. The approximate electron propagator with the inter-
chain hopping. The vertex corrections are not included.

The propagator (27) is at least correct to the first and
second orders in t . Note that when V=g =0 (27) be-
comes the exact free-electron propagator (to all the or-
ders in t ), and when t =0 (27) becomes the propagator
for decoupled chains. This gives us some confidence that
(27) is probably a reasonable starting point.

Let us analyze the properties of a two-dimensional
electron system described by the propagator (27). The
Fermi surface is determined by the poles of
G' '(co=0, k). The Fermi momenta are given by the
equation

+vk„coo (u k„) +tycos(ak )=0 . (28)

When g & —,
' we find that (28) has no solutions for small k„

and small t . In this case G' ' has no poles for small cu

and there is no Fermi surface. The ground state of (19) is
not a FL. Comparing to the first term in the denomina-
tor of the propagator (27), the second term can be ig-
nored in the low energy and the long-wavelength limit.
This implies that H is irrelevant and agrees with the RG
results obtained before. Equation (19) becomes decou-
pled one-dimensional chains at low energies if g & —,. The
above result is not surprising. When g is large the elec-
tron spectral weight becomes so low near the Fermi ener-

gy that the electrons can hardly have any coherent inter-
chain hopping. Because the similarity between (18) and
(27), we will call the ground state of (19) with g & —,

' Lut-

eluded in Fig. 1. This makes it very difficult to calculate
the exact electron propagator. The best we can do at the
moment is to ignore the vertex corrections and to study
the approximate electron propagator given by Fig. 1:

GL R'(Cv, k)=(tg R(CO, k)qL R(~ik))

~—2g(u2k 2 ~2)g

(~+uk„)+ tycos(aky)&o-2g(u 2k 2 ~2)g—

(27)

Ja;RL'4a;L, , R(+)Va;L, R(X) ~ +~ (29)

The currents J .R L satisfy the U(1) X U(1) KM algebra:

tinger liquid. Some properties of (19) with g & —, are simi-

lar to the two-dimensional Luttinger-liquid behaviors
proposed by Anderson.

When g (—,', H is relevant. In this case (28) has solu-

tions and G' ' has quasiparticle poles at small co. The re-
siduals at the Fermi surface are given by
Z =coo (v k„) . Z is nonzero except at k =+ /2a.
The single-particle poles have nontrivial dispersion in
both the x direction and the y direction. The electrons
can hop coherently in two dimensions. The appearance
of the quasiparticle poles at low energies and the ex-
istence of the Fermi surface imply that the ground state is
a FL. However, this result is less reliable. When the ver-
tex corrections at higher orders in t are included, the FL
state might be unstable and becomes, e.g. , a CDW state
or a new LL state.

From (15) we see that (19) with zero t contains only
two kinds of excitations at low energies, i.e., the right
movers with velocity U and the left movers with velocity
—v. The electron operators are composite operators of
the right and the left movers. This is reflected in that the
electron propagators have no poles. As we turn on the ty

hopping, a pole is developed in the electron propagators
if g & —,'. The pole in some sense can be regarded as a
bound state of the right movers and the left movers. The
right movers and the left movers by themselves are
confined in each individual chain in the x direction. Only
some proper bound states of the right movers and the left
movers correspond to the physical electrons and can
coherently hop in the y directions. When g (—,

' an
infintesimal y-hopping term is sufficient to make the
electron-like bound states and induce a coherent hopping
in the y direction. When g & —,

' a small y-hopping term

cannot induce the electron-like bound states. In this case
the LL is stable against small hopping terms in the y
direction.

The above results about the spinless electrons can be
easily generalized to spin- —, electrons. In one dimension

the interacting spin- —,
' electrons are described by the

U(1)SSU(2) KM algebra at low energies. The U(1) KM
algebra describes the charge fluctuations and the SU(2)
KM algebra describes the spin fluctuations. At low ener-
gies, the charge fluctuations and the spin fluctuations
decouple. "

Here we will describe the spin- —,
' electron system by the

currents of the spin-up electrons and the spin-down elec-
trons,

ny

ny

V. '

ty
ny +1

'. V ny +1

1
~a;L, R;k~ Ja', L, R;I j +

2
kfik+k'8a, a'~

lJa;L, k»a;R, l, 1=0.
(30)

ty

FIG. 2. The lowest-order vertex corrections appear at the or-
der (t~ ) .

In this formalism the spin-rotation symmetry is not mani-
fest.

For free electron system with velocities of the spin and
the charge fluctuations are the same. We have
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[Hf ree& J rsL, R;k ] + uFkJrr;L, R;k (31)

(30) and (31) give a complete description of the electron
system in the low-energy limit. In terms of the total
charge current J, =g J and the total 2S, spin current

J, =g crJ, the algebra (30) can be written as

due to the mixing between the right moving current and
the left moving current. The electron propagators now
become

GL R( t, x)= G). LR(t, x)G2 LR.(t,x),
1/2

1
[Jc;L,R;k~J cL, R;k'] +

2
kfik+k'

= — 2
s;L, R;k' s;L, R;k']= +

2
k~k+k' (32) Gp; LR( ~tx}

x+u, t

x ~+u't2)

x+u„t
(36)

others=0 .

The Hamiltonian has a form

Hfree p~uF f dX( JcR JCR +JCL JCL +JSR JSR +JSL SL }'

(33)

where g =sh (8) /2. In the momentum space we have

1
Gi;L, R(fu "}

[(u, k+fv)(uk k+cu)]'

Gz LR(fu, .k) (ukk' —fu )

(37)

P.;L,R
= :e

where

—"~'LR+~~ LR j/2

The electron operators can be written in terms of the
current operators

The total propagator GL R(fu, k) is quite complicated in

the momentum space. It has a simple form in two cases:
g =0 and u, =u~. When g =0, we have GL R =6
When v, =

uk
= u, GL R is given by (18). For generic situa-

tions we would like to approximate GL R by

and

J, .L „=( I /2vr)r3„Cs, LR. vk —m)g
GL R(fu, k) =

[(v, k+fu)(uk k+fu)]'
(38)

= 1
Js;LR

2
~x@sLR

free;L, R(t, x) x+uFt

' 1/2
1

1/2

x+uFt
(34)

The operator:e' " '": (the holon) carries an unit elec-
tric charge and:e " '": (the spinon) carries spin
S,=o —,'. The correlation function between two spinon

&~~s I R /2
operators:e " ":has a form [I/(x+uFt)'~ 5
The correlation function between two holon operators

I+, .L R/2:e ":also has the form [1/(x+vF)t]' . Thus we
find the free-electron propagator to be

(38) has several correct features: (a) (38) is exact at g =0
and/or at u, =vk. (b) the spectral weight of (38) is
nonzero only when (fu, k) can be regarded as the total en-

ergy and the momentum of several right (or left) moving
spin excitations and the charge excitations. In this case
(fu, k) has a form

(cu, k) =(+u, k& + ukk2 —ukk» gk, ),

where +k, , k2 and —k3 are greater than zero. The +
signs are for GL and GR, respectively. (c) (38) satisfies the
scaling condition

GL, R(gfu~rtk)=el 'GL R(cork) .

as expected.
The interaction in the spin- —, electron system is much

more complicated than the interactions in the spinless
electron system. Here we will only consider a simple sit-
uation where the electron interactions only involves small
momentum transfer. In this case the interaction Hamil-
tonian 6H only contains the charge current

5H = f dx [mfiv( J,LJ,L +J,R J,R )+A, iJ,LJ,R ] . (35)

Here

A, , =2V(0) —ReV(2kF)=2V(0) .

As we turn on the electron interactions the velocity of the
charge fluctuations v& and the velocity of the spin fluc-
tuations u, are no longer the same. The charged operator

i+L. I R /2
:e ' ":is replaced by

:expi[ch(0}p, LR
—sh(8)Q, . R L ]/2:. ,

This scaling condition can be directly obtained from (36).
Because of those properties, we expect (38) correctly
represents the qualitative features of the exact electron
Green function. From (c) we find that the exact electron
Green function takes a simple form at co =0:

GL R(ru=0, k) cck IkI g . (39)

The retarded spectral weight satisfies A ' '(E)=0 for
E (0. From (37) we find that

Therefore (38) can be made exact at fu=0 if we choose duo

properly.
To calculate GI R exactly, let us consider the retarded

Green functions. The spectral weight 3,' ' of the retard-
ed propagators G,

' ', i = 1,2 are given by

A ."'„(E,k)
G.L'R(co, k)= f de

CO 8+15
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»4 ).L 8 (ct)» k) ~(R)

[( —
u, k +8')(vhk+8i)'

X B((—
u, k+ ~)(v, k+~))B(~), (40)

(41)

Unfortunately (41) is complicated and I cannot obtain an
analytic result. However, (41) is probably useful for nu-

/12 Lt((. (v, k) cc(co uh—k )8 '~sin(ger)~B(co —vhk )B(8i) .

Note (40) is valid only for small co and k. From A,
' ' we

are able to calculate the spectral weight A' ' of the re-
tarded Green function GL z ..

merical calculations.
It would be interesting to calculate the spin-spin corre-

lation function (S,(x, t)S, (0) ) in our model and to com-
pare with the results obtained in Refs. 4 and 2. The spin
operator in the continuum limit takes the following form:

a 'S, =a 'c Oc

2&kFx —2ikFx=J.L+J. 2(+ 8 A&.4t. +8 &L~.A
(42)

The first two terms contribute to the spin-spin correlation
function a term proportional to (x —v, t) . The contri-
bution from the last two terms can be evaluated by using
the KM algebra. In terms of the current operators we
may rewrite ][„o,][)r as

iC» R/2 ai»t» &/2 iC» &!2 ei4,&/2
aCT L

— '.8 8::8 8

cri@,i(l2 ui»t», Ll2»[ch(8)»t» 8
—sh(8)((t L]/2 ([eh(8)S) ~

—sh(8)»(» «]/2sR e sL ~ ee

—ei4,& l2 oi»t», L l2 (»/2)[ch(8) —sh(8)]»t», &
(i/2)[ch(8) —sh(8)]»t» R~ oe (43)

where s] is a cutoff-dependent constant. From (43) we
find that the contribution to the spin-spin correlation
function from the last two terms in (42) takes the follow-

ing form:

1 1 ]4kFx

(x —vt)' (x —ut) (44)

where

a =
—,'+ sh (8)—ch(8)sh(8)

=
—,'+2g —sgn(8)+2g +4g (45)

If 0&0 we see that the contributions from the first two
terms in (42) dominate at long distances and

(S,(r)S,(0))-r . If 8) 0 the contributions from the
last two terms in (42) dominate at long distances and
(S,(r)S,(0)) -cos(4kFr)r ' . We would like to re-
mark that the exponent 2 in J, correlation function and
the exponent —,

' in the first term in (44) are determined by
the spin fluctuations and are exact even after we include
the interaction between spin fluctuations. Those ex-

I

ponents are completely fixed by the SU(2) II M algebra,
which is expected to be exact at low energies as long as
the spin rotation symmetry remains unbroken.

It is shown that 2g =
—,
' for the U = Oo Hubbard mod-

el. ' In this case a=1 if 8(0 and a= —,
' if 8)0. For

on-site repulsion interaction, k„and hence 0, are greater
than zero. We find

(S,(r)S, (0) ) -cos(4kFr)r

Thus the result in Refs. 4 and 2 can be recovered from
our calculation.

Now let us study the two-dimensional spin- —,
' electron

system described by (19). First we will use the RG ap-
proach to study effects of the y-hopping term. From (27)
we see that 1t has a RG dimension —,'+g under the scaling
(21). Therefore the y hopping term is irrelevant if and
only if g ) —,'. Therefore when g )—,

' the two-dimensional
electron system remain to be a LL after turning on a
small y-hopping term. The approximate electron propa-
gator given in Fig. 1 is found to be

(uo (u„k„'—iv )

Q(co+u, k„)(co+uhk„)+t cos(ak )8io 8(uhk„—co )8
(46)

Again when g ) —,', 6' ' has no poles at small co and the two-dimensional electron system behave as a LL. This agrees
with the RG result.

Now let us consider the effects of the interchain interactions assuming t =0. Again we will only consider the long-
range interactions. The interaction Hamiltonian in this case contain charge current only:



42 METALLIC NON-FERMI-LIQUID FIXED POINT IN TWO AND. . . 6629

6H= f dx g [ V, (n —m )[J,t(n )J L(m )+J,.~(n )J,„(m )]+Vz(nf —m, )[J,.t(n )J,ti(m~)+J, ti(n )J,t (m )]].
n, m

V

(47)

(47) can be diagonalized as before and the interacting
electron system is exactly soluble. We find that the
ground state is a LL. Therefore the LL state is stable
against long-range interchain interactions.

The short-range interchain interactions are very com-
plicated. Their effects are unclear at the moment. We do
not know for the spin- —,

' electron system whether the LL
state of the decoupled chains is stable or not against
short-range interchain interactions.

The LL studied in this paper appear in quasi-one-
dimensional systems t « t, . When V=O the ground
state is a FL and (19) behave like a metal in both the x
and y directions. As we turn on an intrachain interaction
V, the renormalized y-hopping amplitude t* becomes
smaller and smaller. When V exceeds a critical value,
t*=O and the hopping in the y direction is completely
turned off at low energies. In this case (19) behaves like
an "insulator" in the y direction [i.e., the conductance in

y direction o~ ( T)~0 as T~0] and the ground state be-
comes a LL. We see that a LL may behave like a metal
in some directions and an "insulator" in others. This
resembles the opposite T dependence of the conductances
O.,b and 0., in the high-T, , superconductors. Such an op-
posite T dependence suggests that the electrons in the
CuO plane probably do not form a Fermi liquid. '

Let us discuss the T dependence of oyy in more detail.
In real samples the intrachain electron relaxation time ~
is finite due to impurities and phonons. From (46) we see
that the interchain electron hopping rate is of order

rhop(e) =ty(s/coo) s,
where c is the energy of the electron. The renormalized
bandwidth in the y direct is of order

=t (ty/co )
'' 'e(1 —2g),

which satisfies rh, z(e~ ) =a~. When

(48)r «r„.,(e,),
where c0 is the largest one of ~ ', T and c, the electron
transport in the y direction can be described by inter-
chain tunneling. The interchain tunneling current is
given by

I =2egt f 3 (k, co) A (k, ~+eV )[nz(cu)

—n~(co+eV)],
(49)

where 3 (k, m) is the electron spectral function in a chain,
n~ is the Fermi distribution function and V is the voltage
difference between neighboring chains. Because the spec-
tral function satisfies a scaling condition

A(rtk, r)co)=r) s 'A (k, co),

we have

g A '( k, cu ) ~ co ~

A..

From (49) we see that

o (T)= dI
=dv cc T4&

r'=0
(50)

Therefore the exponent in the electron propagator (36)
can be directly determined by measuring the temperature
dependence of o, (T) provided that the condition (48) is
satisfied.

We would like to stress that the above result is ob-
tained by using the interchain tunneling picture which is
valid only when the condition (48) is satisfied. If instead

r & r„,„(co), (51)

we can still estimate Oyy by using the Drude model. In
this case rh, '(eo) can be regarded as the renormalized y
hopping amplitude t * which determines the effective
mass in the y direction. The ratio between O.„and O.

yy
is

given by

0
yy mxx

myy

or

a /t,
0

CC g~&

rhoi( Eo)d

(52)

7
cr ~ ~~K g

m'
myy

where m *'s are the renormalized electron effective
masses, d is the interchain distance and a is the lattice
constant of the chain. If T & (r '( T), E ) we have
cr /o, „~T ~ If r (T.) & (T, E, ) we have o,
and 0. ~~. In this case O. „x and 0. have opposite T
dependence only when g & —,'. If E &(r '(T), T),o /
o.„x should be a constant. We see 0. may different T
dependences under different conditions. The above
analysis also apply to high-T, superconductors. It is in-

teresting to see which conditions [(48) or (51)] are
satisfied by the high-T, samples. We may also control
the impurity concentration to make the samples satisfy
(48) or (51).

In this paper we studied quasi-one-dimensional elec-
tron systems. The low-energy effects of various inter-
chain perturbations were discussed. The interchain hop-
ping terms were shown to be irrelevant if the interchain
interaction is strong enough such that g ) —,'-. In this case
the system flow to a metallic non-Fermi-liquid fixed
points —the LL fixed points even in two and higher di-
mensions. The LL states studied in this paper behave
like a metal in one direction and an insulator in other
directions. This indicates that the motion of the elec-
trons in LL is confined in one direction. In our model,
the very existence of the LL is closely related to this
dynamical confinement. In a more general LL state, the
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motion of electrons may be confined in several discrete
directions. If this happens, the LL may behave like metal
in all the directions.

We studied the transport properties of the higher-
dimensional LL states. We found that the conductance
perpendicular to the chains, o ( T), has a power-law
dependence on temperature. Measuring o «( T) can
determine the exponent g in the electron propagator.
Even when g & —,', O.„„and oyy still show some kind scal-

ing properties if T or ~ ' is larger than the renormalized
bandwidth in the y direction,

s« t«(t«/coo) e(1 2g)

We also studied low-energy effects of the interchain in-
teractions in a spinless electron system. We found that
all interchain interactions are inrelevant if the intrachain
attractive interaction is attractive. In this case the LL
state is robust against arbitrary interchain perturbations
provided that g & —,'. However for a electron system with

repulsive intrachain interaction, the interchain interac-

tions in general may induce CDW or SDW states at zero
temperature. But above the CDW or SDW transition
temperature the system might resemble the LL state at
finite temperatures.

The LL, as a generic infrared fixed point, should ap-
pear in nature. Based on the discussions in this paper,
the LL are likely to appear in quasi-one-dimensional elec-
tron systems. Recently the edge state of the two-
dimensional fractional quantum Hall (FQH) states are
shown to be (chiral) LL with the anomalous dimension

g =(I —1)/2. Here 1/I is the filling fraction. Thus two-
dimensional LL may also appear on the surface of the re-
cently discovered three-dimensional FQH states.
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