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Nucleation in a time-dependent Ginzburg-Landau model: A numerical study
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We study the nucleation of the stable phase in a time-dependent Ginzburg-Landau model with an
asymmetric double-well structure. The system is taken to be initially in the metastable phase and is
then driven toward stable equilibrium by thermal noise or by randomness in the initial conditions.
Results are presented as a function of the field h, which splits a pair of degenerate minima, and the
noise strength or dispersion in the initial field values. Over the rather wide range of parameter
values that we have considered, we find that the nucleation rate can be fairly accurately described
by an activated form. The activation energy is a stronger function of h for intermediate values of h

than predicted by classical theory, and it is a weak analytic function of noise strength.

I. INTRODUCTION

The process of nucleation is central to the evolution of
a metastable state towards its final stable equilibrium
state. Classical nucleation theory' was pioneered for Quid
systems by Becker and Doing. Subsequent theoretical
development ' focused on simple field-theoretical models
governed by effective Ginzburg-Landau-Wilson (GLW)
Hamiltonians. Cahn and Hilliard and Langer worked
out, in detail, the dynamics of a nucleating droplet in an
undercooled background in the context of a time-
dependent Ginzburg-Landau (TDGL) model. In this pa-
per we discuss the direct numerical solution of this
Langevin model in the appropriate metastable cir-
cumstances. Our results are qualitatively consistent with
the classical results of an activated nucleation rate and
give estimates for the range of validity of the weak-field
and low-temperature limits where analytic results exist.

Direct comparison between nucleation theory and re-
lated experiments has been difficult. Nucleation experi-
ments in Auids are complicated by a number of factors
not present in the simple GLW models and it is difficult
to check quantitative details of the theory. It seems clear
that it is desirable to have a direct check of the classical
theory in the context of the simple TDGL model. Some-
what surprisingly, there has not been a direct confronta-
tion between the classical theory and direct numerical
simulation of the models for which the classical theory
has been established in detail. One of the main motiva-
tions of this paper is to provide a set of numerical results
for the TDGL model against which theoretical results
can be compared in the future. Early simulational
efforts on unstable and rnetastable systems focused on ki-
netic Ising models. Unfortunately it is difficult to make a
direct connection between kinetic Ising models and the
TDGL models treated by the usual field theories. The
statistical problem of rare nucleation events in the kinetic
Ising model seems to account for the lack of any sys-
ternatic studies of nucleation rates. In our work here we

describe a systematic numerical study of the TDGL mod-
el over a substantial range of parameters.

We study the classic nucleation problem. Consider a
field P(x), which is a function of position, governed by an
asymmetric double-well potential V(g) with a metastable
minimum at 1('t=lt and a stable minimum at g=g+. It
is assumed that the energy difference between the two
states

b, V = V( Q )
—V(f+ ) )0

is governed by an asymmetry parameter h. In the case of
a "P "field theory, h is simply an applied magnetic field
or chemical potential favoring the g+ state. The pro-
cedure that we follow is to place, at some time t = to, the
system in a state where, on average, (g) =P . Thus, we
have prepared our system in a metastable state. We dis-
cuss in Sec. II the various ways in which we prepare this
initial state. One is then interested in the length of time
it takes for the stable phase to nucleate in the system,
driven by thermal noise or initial random fluctuations,
and for the system to find its way to the final stable equi-
librium state near 1(+.

Our results are qualitatively clear. The nucleation rate
is of the expected general form

'7=7 e0

where c is a dimensionless measure of the randomness
driving the system (the temperature or the variance in a
random Gaussian initial distribution) and E is the associ-
ated activation barrier which is a weak analytic function
of c. as @~0. ~o is also found to be a weak but not analyt-
ic function of c as c ~0. We also find the activation ener-
gy E has a strong field (h) dependence. As h ~0 the field
dependence appears to be compatible with the predic-
tions of the classical theory, E-h '" " in d spatial di-
mensions. For larger values of h, where the classical
theory need not be valid, we find a much stronger varia-
tion of E with h than predicted by the classical theory.
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II. MODEL AND METHODS

As explained in the Introduction, we will study in this
paper the simplest Langevin model for the dynamics of a
system evolving from a metastable towards a thermo-
dynamically stable state. The static properties of our sys-
tem are determined by a GLW eA'ective Hamiltonian

F= f ddx' ——P4+ —P"+ (V—P }' HP— , (2.1}
2 4 2

where P(x', t) is a scalar field variable. We define the res-
caled variables

P(x', t ) =
' 1/2 1/2

F=f d x[—,'(VP) ,'g + ,'—P —hg]——
= fd"x[—,'(Vg) + V(Q)] . (2.2)

The quantity h is a dimensionless measure of the magnet-
ic field or chemical potential. It determines the asym-
metry of the potential V. It is sufficient to consider posi-
tive values of h. For 0 & h (h, , where
ho=2/3&3=0. 3849. . . is the classical spinodal value,
the potential V (2.2) has, viewed as a function of g, an
asymmetric double-well structure, with two minima, one
at negative l(—:g and one at positive g—= t}'j+ separated
by a maximum at g—:$0. For h ~ho, only the second
minimum survives, while at h =0 one recovers the famil-
iar symmetric double-well form. At the classical spinodal
h =ho, the values of g and $0 coincide at

=$0= —I/&3. Clearly the shallow well at P=P is
associated with the metastable initial state and the deeper
well at g= g+ with the stable state.

Our objective is to study the time evolution of the sys-
tem from initial conditions representing the metastable
state to the final equilibrium state. The dynamics under
which the time evolution takes place is assumed to be
given by the Langevin equation

(2.3)

where I is a dissipative coelficient and rt(x, t) a Gaussian
white-noise field with the strength

( g( tx) }( 7tx') =2I s5(x —x')5(t —t') . (2.4)

Here, the noise strength parameter c. is a dimensionless
measure of the temperature. We choose our units of time
so that I =

—,'. With the units set up in this way, there are
two parameters, h and c, in the problem, and the behav-
ior of the system is to be explored as a function of these
two parameters and of the initial conditions which are
discussed below.

Our method is to solve (2.3) by numerical integration.

F=Fu/r

~~ 1/2y 3/2

and we take the quantity (E/r)' as our unit of length.
We then have

where the brackets denote an average over noise and,
where appropriate, also over initial conditions. In prac-
tice this average is achieved by solving (2.3) for a
sufficient number of "runs" and for each run and time,
performing a spatial average and then an average over all
runs.

For metastable states which are at least modestly long
lived, nucleation phenomena can be studied in terms of
the single quantity M(t) This .is not the case if we work
very close to the classical spinodal. ' In that case
thermal fluctuations of comparatively short duration can
attain the size of nucleating droplets, since there is, in
this case, a low barrier between the metastable and the
stable phases. However, the parameter region explored
in our study is sufficiently removed from the spinodal re-
gime so that, as we shall see, the characteristic nucleation
time can be unambiguously determined from M (t) alone.

It is worthwhile discussing the expected qualitative be-
havior of M (t) We trea. t only sitations where the system
is metastable. Thus, we dismiss situations, e.g. , @=0
p(x, t =0)=l(, where the system does not evolve, and
we consider situations in which initially M(t =0)=g
and the system then evolves away from the metastable
state toward a final equilibrium state near g+. In gen-
eral, for c. & 0, the equilibrium value of M is smaller than
g+. We are interested in characterizing the evolution of
M(t} from g to g+ through some characteristic time
that can be identified with the time scale for the nu-
cleation of the stable phase. This can be done in several
ways. A useful and computationally convenient
definition of the characteristic time of this evolution is
the time r when M(t) crosses zero:

M(r)=0 . (2.6)

As our results in the next section show, the region of
fastest growth for M(t) is centered in all cases we have
studied, around the time region of t =~, with earlier and
later time regions showing slower growth. It is therefore
sensible to interpret ~ as the characteristic time of the nu-
cleation event. Thus, in our data, at times t =~ the sys-
tem is irrevocably committed to evolving all the way to
the stable state. Note that w will depend on c. and h, and
that the determination of the function r(E, h) is one of the
objectives of this paper.

An alternative definition of the characteristic time,
which we will denote here as ~ is obtained by determin-
ing, at each run, the time at which the site-averaged
values of g(x, t) equals zero, and then averaging the time
values thus obtained over all runs. A moment's thought
reveals that one would have ~=r if g+ and P were sym-
metric with respect to zero. The actual asymmetry

The numerical techniques used for the solution and the
generation of Gaussian noise are standard and have been
thoroughly discussed previously. The system sizes and
time ranges required, and other technicalities of this na-
ture, will be given in the next section.

We have focused our study on the time-dependent
"magnetization" defined as

(2.5)
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causes 7 to be ~~ v, but the discrepancy is very small.
The characteristic time can also be obtained from de-
tailed fits ofI(t) to time, as we shall see in the next sec-
tion.

We must now discuss the initial conditions to be used.
Consider first the zero-temperature case (v=0). If we use
the simplest initial condition, g(x, t =0)—=P, then for
c=O the system will not change with time and the stable
phase will never nucleate. Intuitively speaking one needs,
in the absence of noise, to have, in the initial conditions, a
sufficiently broad distribution of fields values to ensure
that somewhere within the system there will be initial
clusters, with field values sufficiently close to those of the
stable phase, of sufficiently large size to serve as nu-
cleation centers for the stable phase. In order to achieve
this, we work, at c=O, with random initial conditions for
g characterized by a Gaussian centered at l( and having
a width c.; which is an additional parameter in the prob-
lem. For an infinite system one expects that the stable
phase would nucleate somewhere for any finite value of
c, , no matter how small. In practice, even moderately
small values of c; require the use of quite large system
sizes, as we shall see.

The situation is different when c &0. In that case the
Gaussian noise will eventually cause the stable phase to
nucleate since there is always a finite possibility that a nu-
cleating event will eventually occur. It is therefore not
necessary to have an initially broadened distribution and,
to avoid introducing an additional dimension in our pa-
rameter space, we have used the sharp initial distribution
P(x, O)—:g whenever e&0. We have also obtained re-
sults for an initial distribution g(x, O):——I, but these re-
sults do not differ in any significant way from those ob-
tained by centering the distribution at the metastable
minimum.

Thus, in the next section we will present our results as

0.25
0.3
0.3
0.3
0.35
0.35
0.35
0.35
0.35

1.5
0.7
0.9
1.1

0.3
0.4
0.5
0.7
0.9

136.8
227.0
102.7
59.9

290.0
96.4
88.6
26.0
16.3

200
400
150
150
600
300
150
150
100

a function of c, , and h, at c.=O, and for finite c.)0, as a
function of c. and h. We will see that c and c, , play, as ex-
pected from the above qualitative considerations, a rather
similar role.

III. RESULTS AND ANALYSIS

The calculations have been performed in a two-
dimensional square lattice. In numerical calculations one
must necessarily work with a finite system and one must
carefully choose the time duration spanned by the calcu-
lation. The parameters of the problem must be chosen so
that nucleation takes place within this time. The system
sizes required in order to have results free of finite-size

TABLE II. Parameter values h, c, studied at v=0 (see text).
The resulting values of ~ and the required system sizes are also
indicated.

TABLE I. The parameter values h, c chosen for study and the
resulting values of ~, as defined in (2.6) found in each case.

0.7

0.4

0.15
0.15
0.15
0.2
0.2
0.2
0.25
0.25
0.25
0.25
0.3
0.3
0.3
0.35
0.35
0.35
0.35
0.35

0.275
0.3
0.4
0.2
0.3
0.4
0.15
0.2
0.3
0.08
0.1

0.15
0.2
0.3
0.04
0.05
0.1

0.2

246.4
137.6
37.8

209.1

35.0
19.7

103.1
37.8
18.2

168.3
60.6
24.8

17.0
194.5
61.5
39.2
17.6
10.9

0.1
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-0.5
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time
300 400

FIG. 1. Results for M(t) vs time for h=0. 15 and c, =0.275,
0.3, 0.4 {dotted curves from right to left). The solid lines are the
fits given by (3.1) with the fitting parameters in Table III. Be-
cause of the high quality of the fits, the solid lines partly obscure
the dots. M(t) is defined in (2.5).
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TABLE III. For each pair of values (h, e), the values of the parameters m+, a, a, r [defined in (3.1)]
are given. The product Q~ and the fitting range At are indicated in the last two columns.

Q7

0.15
0.15
0.15
0.2
0.2
0.2
0.25
0.25
0.25
0.3
0.3
0.3
0.3
0.35
0.35
0.35
0.35
0.35

0.275
0.3
0.4
0.2
0.3
0.4
0.15
0.2
0.3
0.08
0.1

0.15
0.2
0.03
0.04
0.05
0.1

0.2

1.065
1.018
0.956
1.062
1.018
0.979
1.194
1.069
1.035
1.156
1.181
1.095
1.083
1.152
1.144
1.14
1.125
1.1

1.30
1.24
1.90
1.27
1.70
4.58
1.53
1.77
1.89
1.53
1.64
1.96
2.06
1.53
1.82
2.17
2.15
4.06

0.0179
0.0297
0.133
0.0202
0.152
0.292
0.0443
0.1511
0.205
0.0286
0.0843
0.257
0.344
0.0228
0.103
0.199
0.394
0.589

239.4
133.0
37.3

199.5
34.3
18.5

101.2
37.1

17.7
163.2
59.3
24.3
16.6

180.9
61.6
38.8
17.0
10.2

4.29
3.95
4.96
4.03
5.21
5.40
4.45
5.60
3.62
4.67
5.00
6.25
5.71
4.12
6.34
7.72
6.70
6.01

100—400
50—300
30—100

100—400
20—100
20—100
50-150
20—100
10-100
50—300
30—100
10—100
10—100

100—400
40-150
30—100
10-80
10-80

cleation of the stable phase begins. The time ~ falls, as
explained above, in this region of rapid growth. Eventu-
ally, M(t) saturates at its final equilibrium value. It is ob-
vious from the figures that, while the qualitative behavior
of M(t) is quite general, the values of r are a very strong
function of h, c., and c, One sees that the characteristic
times increase rapidly as e (or s; ) decreases and also, at
constant c, when h decreases. This is all as one would ex-
pect.

We have fitted the M (t) data curves in Figs. 1 —8 to the
form

( I e
— (t —ar))/( I +&e a(r —T)

) (3.1)

In (3.1) m+ represents the value of M(t) at long times.
The fits are shown as the solid lines in Figs. 1 —8. The
values of the parameters obtained in the fits are given in
Tables III and IV, where we also indicate the time region
ht included in the fit. The initial transient has been ex-
cluded. We note that the values at ~ obtained from the
fits are in very good agreement with the actual values in
Tables I and II, and the values of m+ have the expected

temperature dependence. One can see that the fits are ex-
tremely good in the intermediate time range and of very
good quality at the approach to equilibrium. Thus, (3.1)
is a good representation of the overall results.

We now proceed with the analysis of the characteristic
time. We will develop this analysis in terms of the values
of ~, as given in Tables I and II. The results change very
little, and the conclusions not at all, if one uses instead
the fitted values of Tables III and IV, or the alternative
definition ~, of the characteristic time, as given in the pre-
vious section.

In the regime we are considering, where there is a clear
separation between the metastable state and the unstable
(g= gp) values, it is natural to keep in mind the Becker-
Dohring activated form (1.1) for r. Of course, we expect
the activation barrier E to be a function of H, but, at
most, a weak analytic function of the reduced tempera-
ture c.. The situation for ~o is harder to guess. One cer-
tainly expects ~0 to be a function of h. For the tempera-
ture dependence, one might expect a temperature in-
dependent rp or, possibly, a rate 1I'Tp proportional to e'
reflecting an attempt rate proportional to a thermal ve-

TABLE IV. As in Table III, but at c, =0 with the quantities given as a function of c, .

QT

0.25
0.3
0.3
0.35
0.35
0.35
0.35
0.35

1.5
0.7
1.1
0.3
0.4
0.5
0.7
0.9

1.15
1.17
1.14
1.09
1.17
1.15
1 ~ 15
1.15

1.05
1.13
1.21
1.17
1.28
1.34
1.40
1.50

0.0187
0.0109
0.0450
0.0086
0.0267
0.0560
0.1010
0.1440

134.6
220.0

58.6
277.7
94.3
47.9
25.3
15.6

2.52
2.40
2.64
2.39
2.52
2.68
2.56
2.25

50—300
50—500
30—200
80—600
30—300
10-350
10—100
10—100
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TABLE V. For each value of h, the parameters ~p(h) and E(h) as defined in (1.1) are given, together
with the coefficient of determination of the fit of the data to (1.1). The classical barrier value E,~

and its
ratio to E are also given. The quantity b is defined in (3.4).

0.15
0.2
0.25
0.3
0.35

7 p

0.636
1.62
3.07
3.47
6.26

1.63
0.963
0.520
0.30
0.979

7, 2

0.998
0.990
0.992
0.985
0.984

E,l

9.172
6.919
5.325
4.310
3.504

E /E

5.63
7.18

10.24
14.32
35.79

0.1175
0.0817
0.0507
0.0252
0.006 62

locity. We have performed our fits assuming E to be in-
dependent of c, and for ~p both constant or inversely pro-
portional to c.

' . The latter set of fits turned out in all
cases to be of worse quality and will be ignored here. The
results are shown in Table V. For the case a=0, fits of a
form similar to (1.1)

E/r,
7 =ape (3.2)

(3.3)

have also been performed. The results are shown in
Table VI. We see from this table that the fits are quite
good at c =0, with ~p and E both being functions of h and
showing the expected trends. On the other hand, it is
difficult to reach more general conclusions from the c=O
results, since we have less data there.

We therefore turn our attention to c)0 (Table V). We
see that there the quality of the fits to the activated form,
while improving somewhat at smaller fields, is only ade-
quate at larger fields. The parameters 'Tp and E depend
quite strongly on the fields. wp varies by an order of mag-
nitude, and E by a factor of —17 as h varies from 0.15 to
0.35.

For the field values where we have data for a
sufficiently large (at least four) number of values of e, we
have found that an excellent fit to the results for ~ can be
obtained by assuming that E is an analytic function of c.

and including in our fitting procedure the coefficients of
the first two nonzero powers of c. in the power expansion.

The classical activation energy associated with the
creation of a droplet of the stable phase for our problem
can be obtained by the two-dimensional analog of the
standard calculation described in Ref. 4. One easily ob-
tains, in our units,

1.0

0.8
0.6
0,4

0.2
o.o

-0.2
-04
-0.6
-0.8
-10

~ mam i
~ ~ ~ ~ snIs ~ ~ I ~ s ~

Ianna

~ I

where the potential V(g) is defined in (2.2). As h~0
(3.3) leads to E,~

—1/h (in general, E,~

—1/h" ' in d di-

mensions). It should be understood that a constant factor
of order unity might exist between the values of the bar-
rier calculated from (3.3) and the measured values due,
for example, to differences between the geometrical shape
of a droplet on a square lattice and the circular shape as-
sumed in deriving (3.3).

The values of E,~
are indicated in Table V. We see that

the ratio E,~/E is not a constant, but it increases from
5.63 at h=0. 15 to 35.79 at h=0.35. The change in this
ratio does diminish at smaller fields, and one can very
tentatively conclude that (3.3) would agree with the com-
puter results in the limit of very small fields.

Monte Carlo simulations for lattice-gas models' '"
lead, for nucleation near the critical point, to results for
the nucleation barrier that are also smaller than the clas-
sical values. This seems to be the case for experimental
results' as well. It has been shown' that such a decrease
can be explained, for quenches near the critical point, as
the result of finite-size effects within the nucleating clus-
ters of the stable phase. These effects lead to a lowering
of the bulk part of the free energy for droplets smaller

TABLE VI. As in the first four columns of Table V, for the
v=0 data.

0.0 0.5 1.0 1.5

scaled time
2.0

0.3
0.35

Vp

5.912
3.840

2.557
1.300

2

0.9997
0.9984

FIG. 9. The data in Fig. 1 replotted in terms of the "scaled
time" t/~. In this and subsequent figures the symbols used
(squares, circles, triangles, plus signs, and crosses) denote, in
this order, decreasing values of c or c, .
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FIG. 10. As in Fig. 9, for the data shown in Fig. 2 (h =0.2) ~
FIG. 12. As in Fig. 9, for the data shown in Fig. 4 (h =0.3).

than the correlation length. Our results, however, are ob-
tained well away from the critical region. It appears,
therefore, that a more general mechanism must be at
work.

Noting from Table V that E,~
varies only by a factor of

-2.6 over the range of h considered while E, as noted
above, varies by a factor of —17 over the same range, one
may query whether there is any free-energy barrier in the
problem which varies by the required factor over this
field range. A rather careful search has unearthed only
one candidate, namely,

(3.4)

This quantity, also listed in Table V, varies by a factor of
17.7 in the range of h considered. The ratio E/b is in the
range 10—14 for all fields considered, although it is not
precisely a constant. One might, of course, be tempted to

interpret this ratio as the "volume" mr of a droplet of
the /=$0 phase of radius r-2. Such an argument, al-

though appealing on the grounds that a "droplet" of $0
would evolve towards a value of g=g+, neglects the sur-

face energy of the boundary separating it from the meta-
stable phase, and one can readily see that such a surface
energy term cannot a priori be neglected. The formation
of a region of /= $0 with soft walls cannot be ruled out.
Overall, we conclude that our nucleation rates are indeed
given by an activated form, but that the values of h that
we use are beyond the region where the simple formula
(3.2) is valid. We note that this intermediate region has
been neglected in theoretical work, which has largely
concentrated on the classical nucleation region and on
the region very near the spinodal. '

The results at E =0 are consistent with these con-
clusions with the proviso that the width of the initial con-
ditions, c„plays the role of the temperature. There ap-
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FIG. 11. As in Fig. 9, for the data shown in Fig. 3 (h =0.25). FIG. 13~ As in Fig. 9, for h =0.35 (data shown in Fig. 5).
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FIG. 14. Similar to Fig. 9, but at c =0, h =0.3 (see Fig. 7). FIG. 15. As in Fig. 14, for h =0.35 (data in Fig. 8).

pears to be a large proportionality factor (of order 10) re-
lating an effective temperature c,,z to the parameter c,;.

We have also plotted our results for M(t) as a function
of t/r. The results are shown in Figs. 9—13 (for e) 0)
and Figs. 14—15 (E=O). We see that, except for the ini-
tial transient, the data fall, to reasonable accuracy, on the
same curve for a given field regardless of the value of c.

(or e, ). This is rather remarkable, since the data plotted
span a rather wide spread set of values of ~. It indicates
that 8 (or e, ) controls only the overall time scale and the
qualitative behavior of M(t) which is relatively universal.

The behavior shown in these figures can be related to
(3.1) which may be written as

time) only. This should not be interpreted, of course, as
implying that there is a scale-invariant regime, as in sym-
metric order-growth problems.

In conclusion, we have seen that over the parameter re-
gion studied, which is intermediate between the "classical
nucleation" and the "classical spinodal" regimes, the nu-
cleation rate is of an activated form. The energy barrier
is not given by the result (3.3), but appears to tend to-
wards it in the limit of small fields. The attempt rate is
only weakly dependent on the temperature. The region
studied is one for which theoretical work is yet to be per-
formed.

( 1 e att t /r t )
) /( 1 + t2e
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