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Static magnetization direction under perpendicular surface anisotropy
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The problem of depth dependence of the magnetization tilt angle 6(z) is solved analytically for an
exchange-coupled ferromagnet with dipole energy, applied field, and surface anisotropy K,. For
K, <(mM?A4)'*=K_, the surface magnetization direction remains in the plane, 8,=6(0)=1/2.
For K, Z K., the magnetization vector moves out of the surface, initially with d0,/dK,= — «, then
slowly approaches 6, =0 as K, approaches infinity. For Fe, K, is of order 4 erg/cm’. The results
indicate that a perpendicular component of magnetization at the surface relaxes to its bulk in-plane
orientation over a distance that is generally much shorter than the bulk domain-wall width. The
surface remanence and initial susceptibility of the surface magnetization for in-plane applied field
are calculated and provide useful expressions for interpreting experimental results. The experimen-
tally measured surface magnetization increases linearly with probe sensitivity depth.

I. INTRODUCTION

Significant advances have been made recently in
theoretical and experimental aspects of surface magne-
tism. Self-consistent local orbital calculations indicate
anomalously large perpendicular anisotropy for Fe sur-
faces.! These calculations are supported by a host of
measurements suggesting a significant perpendicular
component of magnetization in Fe films of a few mono-
layers.2”7 Recent results®’ indicate that the magnetiza-
tion reverts to in-plane orientation for films greater than
approximately four monolayers. Perpendicular surface
magnetization is suggested by the spin polarization of
electrons emitted from the [100] surface of iron single
crystals, while the bulk shows in-plane magnetization.?
This finding is challenged by the observed degeneration
of a bulk Bloch domain wall in single crystal Fe to a Néel
wall at the surface.” Finally, coupled magnetic layers,
often one with a perpendicular easy direction and the
other in plane,'”'? reveal the possibility of extrinsic fac-
tors causing a perpendicular component of magnetization
at the surface of an otherwise in-plane material.

Given the possibility of a strong perpendicular magnet-
ic anisotropy in the outermost layers of a bulk ferromag-
net, it is of interest to know the conditions on the applied
field, on the bulk and surface anisotropy energy densities,
and on the saturation magnetization M for which the sur-
face magnetic moment would have a component out of
plane. Further, it is important to determine how the
magnetization orientation varies from the surface to the
interior where only the bulk anisotropy operates. Does
the change in magnetization orientation from surface to
bulk occur over a distance comparable to a bulk domain-
wall width, and how do surface magnetic dipole fields
play a role? When the surface favors perpendicular mag-
netization in the outer few atomic layers, we expect that
dipole energy will restore in-plane magnetization beneath
the surface within a distance shorter than the bulk
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domain-wall width if the dipole energy cost of an out-of-
plane magnetization 277M? exceeds the bulk, in-plane an-
isotropy. Some of these questions were addressed by
Rado'* who solved a linearized torque equation to
deduce, among other properties, a characteristic length
for surface magnetization relaxation. In contrast to
Rado’s treatment, we assume a material that is isotropic
except for the surface-induced, perpendicular anisotropy.
Our surface anisotropy constant K should be compared
with Rado’s term for a (100) surface; otherwise it is a
mixture of his two terms K and K ;.

When the surface anisotropy favors in-plane magneti-
zation orthogonal to that in the bulk, dipole energy is not
a factor and the magnetization should reorient from its
surface direction toward that of the bulk over a distance
comparable to the bulk domain-wall width (a few hun-
dred nm in a soft magnetic material). This case is related
to the extensively studied'* problem of exchange coupling
across a clean interface between two magnetic media
each having a uniaxial anisotropy favoring a magnetiza-
tion at a different orientation but both in the plane of the
interface.

We consider the effect of perpendicular surface anisot-
ropy K, on the magnetization orientation both at the sur-
face and in the subsurface regions in a classical continu-
um model. Exchange, dipole, and Zeeman energies are
minimized by solving the Euler equation with appropri-
ate boundary conditions. The solution gives the local
equilibrium (experimental times are much longer than
those required to relax precession of M about H) magneti-
zation orientation everywhere in the material. We use
these solutions to calculate the strength of the perpendic-
ular surface anisotropy, which is needed to overcome ex-
change coupling to the bulk, and the depth to which a
given surface anisotropy perturbs the subsurface magneti-
zation. We also calculate the surface remanence and ini-
tial response to applied fields and use the results to inter-
pret existing empirical data. The origin of the surface an-
isotropy is not at issue here.
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II. SURFACE ANISOTROPY MODEL

Consider a semi-infinite (z 20) magnetic medium of
uniform saturation magnetization M and negligible bulk
anisotropy. This medium has a perpendicular surface an-
isotropy K, (erg/cm?) acting only at z =0. We define the
angle 6 between the magnetization vectors M and the
surface normal n and assume all the rotation of M takes
place in the plane containing n and the applied field H
(see Fig. 1). The total energy over the thickness d of such
a sample is expressed '’

E=f0d

2

A 46 —27M%sin?6
dz

—HM cos(6—1)+8(z)K,sin%0 |dz . (1)

A is the exchange stiffness coefficient, assumed to be in-
dependent of z. The Zeeman term is for a field applied at
an angle ¥ to the surface normal. The Dirac § function
gives the surface anisotropy term the appropriate units
and localizes it at the free surface, z =0. Minimization of
the energy using variational methods gives two torque
equations. One is the Euler equation,

2
2495 +2nM¥in20—HMsin(6—0)=0,  (a)
¥4

everywhere in the material 0 <z < «, and the other is a
boundary condition at z =0,

do,
2A—— —K;sin26,=0 . (2b)
dz
This boundary condition is the same as that derived by
Rado and Weertman from the Landau-Lifshitz equa-
tion.'® We take the value of 8(z) deep in the material to
be /2.

A field applied in plane (¢y=1/2) does not change the
asymptotic value of 6(w )=m/2 while affecting mainly
the magnetization near z=0. A perpendicular field
(¢=0) will affect the magnetization throughout the sam-
ple. In either case (d6/dz) =0 will be assumed.

A. Zero-field limit

In the limit where H approaches zero (H <<2mM =6
kOe), Eq. (2a) is identical to that for a Bloch wall in a ma-
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FIG. 1. Model for magnetic surface, z =0, showing magneti-
zation tilt angle relative to surface normal at z =0(6;) and in
the interior of sample 6(z).
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terial with uniaxial anisotropy K, =27M?. It has a bulk
solution'” z=b"!In[tan(§/2+7/4), which does not
satisfy the boundary condition (2b) for our surface prob-
lem. However, inverting it and generalizing it to the
form

O(z)=2tan" '[explag+boz)]—m/2
or, equivalently,
6(z)=tan ![sinh(a,+b42)] , 3)

exactly solves the surface problem for H =0.
Putting Eq. (3) in (2a) with H =0 gives the condition

bi=2TM?*/A , 4)

and with the boundary condition (2b), we get the addi-
tional condition

tanha, = 4b,/K,=(27M?*4)'* /K, . (5)

The parameter b, characterizes the distance over which
the value 6(0) due to surface anisotropy relaxes to its
bulk value 7 /2 and the parameter a, displaces 6(z) along
the z axis so that its slope at z =0 satisfied Eq. (2b). For
M=10"G and 4 =10"° erg/cm, we get bo_1 =4.0 nm,
much shorter than the bulk domain-wall width in a soft
magnetic material. (These values of 4 and M are taken
to characterize an arbitrary magnetic material, X, which,
together with Fe, is used in Table I to realize the parame-
ters of the present model.) In this case the demagnetiza-
tion field is acting on M as a bulk anisotropy to make
by ! small. Our b; ! plays the same role as Rado’s ex-
ponential decay length!® but will clearly be shorter be-
cause of its definition in terms of the tangent function
[Eq. (3)]. For the Fe parameters that Rado uses (Table I)
our b ! is of order 3.3 nm, while Rado’s exponential re-
laxation length is 1.28 nm.
Equation (3) for z =0 combines with (5) to give

csc, =K. (2rM*A4)"'?=K_ /K, , (6)

where 0, =6(0). Equation (6) has real solutions only for
K, = K_, i.e., the magnetization first moves out of the sur-
face when K exceeds a critical value K, (K, =2.5 and 6.1
erg/cm2 for materials X and Fe, respectively, Table I).
For K, <K_, physical intuition dictates that 8, =+7/2.
Thus a fairly strong surface anisotropy (3 or 6.5 ergs/cm?
for X or Fe, respectively) is required to overcome dipole
effects. Gay and Richter' calculate a surface anisotropy
of less than 1 erg/cm? for an Fe monolayer. The exact

TABLE I. Assumed magnetic parameters (4 and M) and pa-
rameters calculated from present theory for Fe and for a hy-
pothetical magnetic material X.

Fe X
A (107° erg/cm) 2 1
M (G) 1720 1000
by (nm) from Eq. (4) 33 4.0
K, (erg/cm?), Eq. (6) 6.1 2.5
H/H* (Oe), K, =K, 43200 25100
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FIG. 2. Variation of surface tilt angle 6, as a function of sur-
face anisotropy K, for zero in-plane field [Eq. (6)]. Material X
and Fe parameters, Table I, are used.

behavior of 6, versus K, from Eq. (6) is shown in Fig. 2,
where it is clear that M literally pops out of the surface
plane (having a component into or out of the material) as
K, first exceeds its critical value. This critical value is the
bulk domain-wall energy density for an in-plane anisotro-
py given by the demagnetization energy (magnetization at
the center of the wall points out of the surface). The total
magnetization is never perfectly normal to the surface for
weak fields and finite K.
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FIG. 3. Surface tilt angle as a function of distance from sur-
face [Eq. (3)] for several values of surface anisotropy and assum-
ing material X parameters (a) or Fe parameters (b) (Table I).
The K, /K, ratios chosen are the same for Fe as for material X.
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With the definitions of a, and b, from Egs. (5) and (4),
respectively, we can calculate 6(z) exactly for different
values of K. These results are shown in Fig. 3(a) for ma-
terial X parameters (K, =2.5 erg/cm? and K, =2.6, 3.0,
5.0, and 10 erg/cm?. Figure 3(b) shows results for Fe
(K.=6.1 erg/cmz) and K;=6.3, 7.3, 12.2, and 244
erg/cm’ [same ratios K, /K. for Figs. 3(a) and 3(b)].
Note that as K decreases from very large values toward
K., 0, increases from zero toward /2 [Eq. (6)] and a,
increases diverging at K, =K_ [Eq. (5)]. The set of ratios
K, /K, are the same for the two materials in Fig. 3 so the
sets of 6, values correspond. However, it is clear that the
larger dipole energy of Fe relative to X causes its magne-
tization to rotate toward in-plane orientation over a
shorter range. Compare b ' for the two materials.

B. Field dependence

We now consider the dependence of the solutions (3)
on in-plane (y=m/2) applied field. Using the zero-field
parameters a, by, and K_ defined above, we rewrite the
Euler equation and boundary condition:

0"+ (b3 /2)sin20+h cos=0 (7a)
and
0. —(boK, /2K )sin20,=0 , (7b)

where 0, =(d0/d,),-q, h =HM /2 A4, and b, and K, are
defined in (4) and (6).

We assume a solution of the form (3) but now allow a,
and b to become functions of the applied field, a and b,

6(z,h)=tan '[sinh(a +b2)], (8)

which reduces Eqgs. (7) to

b2>—b3—h /sinf=0 (9a)
and
Ab /K =sinf, . (9b)

Because sinf is a function of z, it is clear from Eq. (9a)
that (8) is not a solution because b was taken as indepen-
dent of z. However, we can seek approximate solutions
to Egs. (9) valid for bz << 1, which is the region of physi-
cal interest for secondary-electron spectroscopy.'® More-
over, we know the behavior in the limit of bz >>1, name-
ly 6= /2, unchanged by an in-plane field. Using Eq.
(9b) we rewrite (9a) at the surface

b3—b3b—hK, /A =0. (10)

This cubic equation in b may be solved by the usual
method for such equations with linear and constant terms
that are negative.!” Defining b =(2b,/V 3)cos¢, Eq. (10)
is satisfied for

cos3¢=3V3hK, /(2A4b3)=3V3H* .

The solution for the reduced surface magnetization,
sinf,=b A /K, =(2K,/K,V 3)cosp, which is exact in H,
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is plotted in Fig. 4. The solid lines are for material X, the
dotted lines for Fe and the dashed line is the low-field be-
havior for X (see below). For H* << 1 this solution gives

b=by(l1+H*), (11a)
and the boundary condition becomes
tanha = 4b /K, =(K . /K )(1+H*) (11b)

(for material X, H*~5X 107 °H, so the approximation
H* <<1 is good for H < 10° Oe). It is easily verified that
(8) and (11) solve (7) for small fields at the surface
(bz <<a). They are not valid for arbitrary z. Equation
(11b) gives the reduced magnetization at the surface

sin, =m,=(K,/K,)(1+H*)=m,+H /87M , (12)

which defines the low-field magnetic response of the
outermost layer of the material. This is shown for ma-
terial X by the dashed line in low fields in Fig. 4. The ar-
rows indicates the field H for which H*=0.1, below
which the low-field approximation is valid. The suscepti-
bility of the surface for a parallel field is

X, /M =dm,/dH =(87M)"" . (13)

Thus x,~0.04 regardless of the material parameters.
The initial surface susceptibility is constant even though
the m,—H curve begins from a different remanent point
for different surface anisotropies.

By analogy with Eq. (6) and Fig. 2, Eq. (12) also defines
the field dependence of the critical angle in the weak-field
approximation. The dotted and solid lines in Fig. 5 show
the exact surface magnetization angle for the two materi-
als in H = 1000 and 5000 Oe.

The abrupt knee at saturation, visible in Fig. 4 for
K,=2.6(6.3) erg/cm? at H ~1000 Oe is a consequence of
the infinite slope of the 6, versus K, curve at K;=K_.
For a given K, >K_, as H increases, 6, increases and
abruptly reaches 6, = /2 when the field causes the field-
dependent critical surface anisotropy to exceed K;. The

— X
Matenial .. (Fe)
0 1 1 ! 1 0

0] 1 2 3 4 5
Applied field H (kOe)

FIG. 4. Reduced surface magnetization (left scale) or tilt an-
gle (right scale) for material X (solid line) and for Fe (dotted
line) as functions of applied field [Eq. (10)]. Dashed lines show
reduced low-field susceptibility [Eq. (13)] for material X.
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FIG. 5. Dependence of surface tilt angle on surface anisotro-
py for Fe and material X at 1 and 5 kOe [Eq. (10)]. Zero-field
curves from Fig. 2 are shown as dashed lines for reference.

knee will not be observed for K greater than some limit-
ing value because the full field dependence of the critical
anisotropy indicates that it increases slowly with H and is
concave downward.

It is interesting to consider the magnetization over a
depth & near the surface (bz << 1), where £ is the charac-
teristic penetration depth of the experimental probe. We
write the magnetization measured by such a probe as

(m (D) =[€(1—e /9] [ “e~*/%5in0(H,2)dz
(14)

where sinf(H,z) is the reduced magnetization in the ma-
terial that satisfies Eq. (7). The surface susceptibility [Eq.
(13)] is independent of 6; (or equivalently of mg) for
H* <<1. We can, therefore, assume that {(m ) also
responds with constant susceptibility y=1/87 to weak
fields. Therefore, the low-field magnetization dependence
at the surface, Egs. (9) or Fig. 4, is a good first approxi-
mation to that over a shallow depth. That is,

(m(H))=sin,=m,+H/(87M) . (15)

III. DISCUSSION

We apply these results to some recent observations that
deal with the orientation of magnetization at a surface
and the possibility of magnetic depth profiling to deter-
mine M (z) or 6(z) by varying the experimental probe
depth sensitivity £. Allenspach et al.® have analyzed the
spin polarization of low-energy secondary electrons emit-
ted from a (100) Fe surface. By varying the primary- and
secondary-electron energy they have concluded that a
square loop with m, =1 (their measured remanent polar-
ization of 30% is close to that of Fe at saturation) is ob-
served for electrons probing up to 1.0 nm, whereas they
find that a slightly rounded M-H loop with m,=~0.3
characterizes the outer 0.5 nm of the crystal. (Their
magneto-optic Kerr effect (MOKE) loops probing 20 nm
also show a square loop.) They interpret their result
qualitatively to imply a significant perpendicular moment
in the outer 0.5 nm of the crystal with the moment re-
turning to an in-plane orientation by 1.0 nm. Other re-
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sults on an amorphous cobalt-based alloy, also using
spin-polarization analysis of secondary electrons and
magneto-optic Kerr effect, have been reported recently.?
These cobalt results show a rounded loop with very low
remanence (m,=0.2) for the outermost 0.5 nm by
secondary-electron-spin polarization and a square loop by
MOKE, again indicating a perpendicular surface magne-
tization relaxing to in-plane orientation well before a
depth of 25 nm. The magnitude we calculate for b, and
the curves shown in Fig. 3 indicate that a relaxation to
bulk orientation is possible over 5-10 nm. It is difficult
to justify (by) ' of order 1 nm unless the magnetization
were also reduced in magnitude near the surface.

The value of (m,)=0.3 from the near surface (0.5
nm) data of Allenspach et al.® for Fe(100) implies
6, ~17°. Using Eq. (9b) with the Fe values from Table I,
this 6, gives K, =20 erg/cm? [cf. Fig. 3(b)]. This surface
anisotropy is greater than the total surface spin-orbit en-
ergy of Fe (11 erg/cm?) calculated by Gay and Richter'
and further exceeds the magnitude of their calculated
perpendicular surface anisotropy energy (0.7 erg/cm?). It
also exceeds the values for Fe deduced from ferromagnet-
ic resonance data, 1.0 (Ref. 2), 0.1 (Ref. 5), and 3.0 (Ref.
21) erg/cm? and values for amorphous Fe,,B;, films 0.5
erg/cm? (Ref. 22). Thus, interpretation in terms of the
present model suggests that the magnetization at the sur-
face of the Fe(100) crystal was reduced in magnitude rela-
tive to that in bulk or that a strong, unaccounted for per-
pendicular anisotropy existed there.

To apply the results of the present model without the
approximations bz <<1 and H* <0.1, consider an experi-
mental probe whose depth can be varied (energy or in-
cident angle for electrons, wavelength for magneto-optic
Kerr effect). The polarization or Kerr rotation measured
parallel to the surface is proportional to the magnetiza-
tion in Eq. (14). We write these expressions for two
different experimental probe depths &, and &,:

J=[&(1—e 44D [ ¢ Fsin6(H,2)dz (16a)

L=[&0—e 17 [ ¢ 7 sing(H,2)dz . (16b)

For assumed values of &, £,, A, M, and K|, these in-
tegrals can be numerically evaluated. The ratio J,/J,
can be calculated for several values of K; and compared
to the ratio of the corresponding empirical polarization
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data to determine the actual K;. Our model has assumed
that A and M are independent of depth. Variations of
these parameters with temperature are expected to alter
the surface magnetization orientation.

IV. SUMMARY

The problem of magnetization orientation near a sur-
face with perpendicular anisotropy has an analytic solu-
tion

6(z)=tan" '[sinh(ay+byz)]

with by=(27M?/A4)"/? and tanha,= Ab,/K,, indepen-
dent of z. The magnetization remains in plane unless the
surface anisotropy energy density exceeds a critical value
K, > K, of order 2—6 erg/cm?.

The characteristic length b, ' over which the surface
orientation of magnetization relaxes to its bulk value is of
order 3—-4 nm for Fe and other soft ferromagnets. This
length scale is of the order of magnitude probed by elec-
trons or photons.

The magnetization at the surface responds linearly to
applied fields up to H*=0.1 (H of order 1 kOe) and the
in-plane susceptibility is independent of K, for weak
fields: x,=1/8w. The surface magnetization measured
by an experimental probe of exponential range £ shows a
weak-field dependence similar to that right at the surface.

Recent observations of perpendicular magnetization at
the surface of bulk magnetic materials suggest surface an-
isotropies at least an order of magnitude greater than
those measured by magnetic resonance unless the magne-
tization is considerably reduced at the surface relative to
bulk.

The surface anisotropy K, can be measured by combin-
ing experimental probes sensitive to different depths & of
order (10b,) ' to (by) .
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