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We have developed a technique to replace hashing in implementing the Lanczos method for exact
diagonalization of quantum-spin models that enables us to carry out numerical studies on substan-

tially larger lattices than previously studied. We describe the algorithm in detail and present results

for the ground-state energy, the first-excited-state energy, and the spin-spin correlations on various
finite lattices for spins S = 2, 1, —,', and 2. Results for an infinite system are obtained by extrapola-

tion. We also discuss the generalization of our method to other models.

I. INTRODUCTION

Studies of quantum-spin models have been an impor-
tant subject in many-body physics for a long time. Ex-
perimental and theoretical studies have shown, in many
magnetic materials, electrons are quite localized because
of strong Coulomb repulsion, and from first-principles
calculations it can be shown that the interaction between
electrons may be well represented by model Hamiltonian
describing a set of interacting spins S;. An important
class of such interacting spin models consists of spins
coupled bilinearly to their nearest neighbors on a finite
lattice of size N. The Hamiltonian for such a system
takes the form:

H= g (J„S;"S,"+J S,ySf+ J,S,'S'),
t', i,j )

where (i,j ) denotes all nearest-neighbor pairs on a lat-
tice. S; is spin operator on site i and has the value of
S,'= —S, —S+1, . . . , S. This Hamiltonian describes
the antiferromagnetic (ferromagnetic) Heisenberg model
when J„=J =J,=—J)0( (0), the XF model when J, =0
and J„=J, and the XXZ model when J„=J„~ In one di-
mension the XXZ model has been diagonalized analyti-
cally by means of the Bethe Ansatz. However, the use of
the Bethe Ansatz solution is quite limited. Using exact
diagonalization techniques, quantum-spin models have
been studied numerically by many people. The pioneer-
ing calculations on finite lattices in one dimension were

performed by Bonner Fisher in 1964 for the Ising-
Heisenberg model and in two dimensions by Oitmaa and
Betts in 1978 for the antiferromagnetic Heisenberg mod-
el the XY model with spin S=

—,'. Later many exact diag-
onalization studies were carried out for spin- —,

' and

higher spins, especially for spin-1 chains to test Haldane s
conjecture that for integer-spin chains there is a gap in
the excitation spectrum whereas for half-integer-spin
chains the gap is absent. The biggest lattices studied by
exact diagonalization techniques in previous studies have
been 27 sites for S =

—,', l4 sites for S =1, 12 sites for
S =

—,', and 10 sites for S =2, etc. Using our new coding
technique, we have been able to perform exact diagonali-
zations on 32 sites (square lattice) and 30 sites (ring) for

S =
—,', 18 sites for S =1, 14 sites for S =—'„and 12 sites

for S =2.
In the following section we describe in detail the new

coding technique we have developed for diagonalizing
quantum-spin models and illustrate the method by an ex-
ample. In Sec. III we study the ground-state energy and
spin-spin correlations on various lattices and give our es-
timates for the infinite system. Finally, we discuss the
generalization of our technique to other models in Sec.
IV.

II. METHODOLOGY

The simplest way to study the model Hamiltonian
defined by Eq. (1) numerically is simply to obtain the ma-
trix eletnents of H in a basis of IS,';i =1,2, . . . , NI,
where we chose the z axis as the quantization direction,
and then diagonalize the H matrix by using standard ei-
genvalue routines on computer. For a spin-S system of
size N the number of degrees of freedom is (2S+1) . To
date the biggest matrix that can be diagonalized by this
direct approach on a modern computer is about
10000X10000, which corresponds to a spin- —,

' system of
size 13. In order to be able to study the model Hamil-
tonian on larger lattices certain methodological improve-
ments must be made.

The first thing one can do is to use various symmetry
operators in order to write the H matrix as a direct prod-
uct of several smaller matrices. Usually, these sym-
metries consist of conservation of total magnetization
along a chosen quantization direction, say, the z direction
(Sz conservation); translational invariance (if we impose
periodic boundary conditions); rotational invariance; and
reflection invariance of the system. Use of these syrnme-

try operators one can reduce the size of the H matrix
significantly. For example, the biggest size of the H ma-
trix of a 4X4 periodic square lattice with spin S =

—, is

153 when all symmetries are applied. Obviously this is
much smaller than 2' =65536. One can also use total
spin S to reduce further the size of the H matrix. Howev-
er, this constraint is rather complicated to program, espe-
cially if one intends to vectorize the code to take advan-
tage of the architecture of certain machines. Moreover
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A. Coding with only total S, conservation

We start with our method for the case in which no
symmetries except total S, conservation are used. This
not uncommon in practice. For instance, periodic
boundary conditions cannot be imposed when the in-
teractions between spins are different on different bonds
that connect spin pairs. Consider a system with spin-S of
size N and total z-component of spin S,'. The Hilbert
space is composed by all possible spin configurations
[S;i = 1, . . . , N j consistent with the given value of total
magnetization S,'=gP iS, and its dimension is
M(M «(2S+1) ). Note that the choice of the labeling
of the basis state is quite arbitrary, but once the basis
states have been labeled, it must be treated consistently.
Any vector is a linear combinations of these basis states,

y=pc, lj&, (2)

where C are the coefficients. To implement numerical
calculations we need to know how to represent efficiently
both a given spin configuration and the action of H on
this spin configuration. The first part is readily solved by
the widely used method of defining an integer I according
to

the total spin S is a conserved quantity only when the
Hamiltonian is rotationlly invariant in spin space and
that is a severe restriction on the parameter space
(~J„~ =~J

~

= ~J, ~
at least). So we will usually not use this

symmetry.
The second thing one can do is to calculate the eigen-

values and eigenvectors of only a few states, say, the
ground state and the first excited state. By doing so, one
needs not to store the whole H matrix, which requires a
memory of M XM words where M is the size of the Hil-
bert space, but only a few vectors of length M. In appli-
cations, we usually need at most three vectors of length
M. Nevertheless, this forms a strong limit on the max-
imum system size one can study. There exist several
well-documented algorithms for obtaining the largest or
the smallest eigenvalue and eigenvector; the Lanczos
method is one of them. Using symmetries and the
Lanzos method, we have been able to calculate properties
of the ground state and the first excited state for a spin- —,

'

system on a two-dimensional square lattice of size 32.
Needless to say, the direct approach, leading to matrix of
size 2, is unfeasible.

We are in position to describe the new coding tech-
nique we used in diagonalizing quantum-spin models on
finite lattices. For clarity, we will describe our method in
two subsections. For purposes of illustration, we will use
a six-site spin- —, system with total magnetization zero as
an example to explain things in detail when necessary.
The total number of spin configurations of the system is
6!/3!3!=20.

of the spin configuration [S,', S, , . . . , S, ]. This is a
one-to-one correspondence between a single integer and a
spin configuration. If there were no restriction on S,',
then all I's from 1 to (2S+1) would be allowed. Since
we are considering only the restricted subspace of fixed
S,', only M of the I's actually occur and we to have to in-
troduce a "storage/lookup table" labeling them in an ar-
bitrary way ~1), ~2), . . . , ~M). When the Hamiltonian
H operates on one such configuration, many other
configurations are generated because of the spin-Aip
terms in Eq. (1). The problem is to find the locations of
these configurations in the storage table. A naive way of
performing search is to introduce a vector defined by
J(I)=position of the configuration represented by in-

teger I in the storage table, as shown in Table I for our
example. However, one immediately sees that the length
of this vector J(I) can be as long as (2S+1) and will, in

general, contain many null entries. For a spin- —,
' system

of size 24, the length of the vector J(I) already exceeds
memory space of the most advanced present computers.
Hence this is certainly not an appropriate approach,
especially when studies on large lattices are desired.

A better way of searching is to use the "hashing tech-
nique. " The main idea is to construct a hashing function
h (I) which gives a correspondence between the represen-
tatives [I ) and a position vector h (I). For example, we
can define a hashing function by

h (I)= [I(mode ) ]+1,
which is commonly used in practice. It is easy to see
that the size of memory to be used is about K, which is
the order of M (in practice, one usually picks K to be the
smallest prime number that larger than M). In general, it
may occur that different representatives I, ,I2, . . . , cor-
responding to the same value of the hashing function, a
phenomena called "collisions;" this is shown in Table I
for I =26 and 49 if K =23, for example. Although one
can try hard to find a good hashing function so as to min-
imize the number of collisions, it is almost impossible to
construct a hashing function that has no collisions at all.
Readers interested in using the hashing technique can
find a detailed description of this algorithm in most books
of computer science, say Ref. 9. Gagliano et al. have
used the hashing technique in finite lattice calculations
for rings up to 24 sites. '

It is obvious that calculations can be more efficient if
one can construct an algorithm that is both a one-to-one
correspondence between a representative I and its posi-
tion in the storage table and also requires very little
memory space. A hint for how to develop such an algo-
rithm comes from observing that the length of vector
J(I) is so long because we are in e6'ect doing a one-
dimensional sequential search. Therefore, it is naturally
to try a two-dimensional (2D) search. Let us divide the
lattice into two parts 3 and B and define two integers by

[X/2]
I, = g s(i)(2S+1)'

I = g s(i)(2S+1)' (3)

where s(i)—:S,'+S =0, 1, . . . , 2S, as the representative

f N +1/2]
Ib= g s(i +[X/2])(2S+1)'

(4)
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TABLE I. Spin configurations, their representations I, their positions in the storage table J(I) by us-

ing a naive way of searching (see the text) for a spin- —,
' system of size 6. A hashing function

h (I)= [I(modK) j+1 with K =23 is also shown.

Configuration

000111
00101 1

001 101
001110
01001 1

010101
0101 10
01 1001
01 1010
01 1 100

7
11
13
14
19
21
24
25
26
28

1

2

3

4
5

6
7
8

9
10

8
12
14
15
20
22

2
3
4
6

Configuration

10001 1

100101
100 1 10
101001
101010
101 100
1 10001
1 10010
1 10 100
1 1 1000

35
37
38
41
42
44
49
50
52

56

11
12
13
14
15
16
17
18
19
20

13
15
16
19
20
22

4
5

7

11

where [X] means the integer part of number X. Corre-
spondingly, we define two vectors J,(I, ) and Jb(I„) so
that the position of the configuration represented by in-
teger I is given by

J =J,(I, )+Jb(Ib ) .

We show this method of coding for our example in Table
II. Note that this division can be applied to an arbitrary
lattice. It is easy to see that

I =(2S+1)( i )I, +Ib

and that (J„Jb)behaves just like a two-dimensional coor-
dinate (x,y); thus we call one of the J's the "base vector"
and the other the "position vector. " The advantage of in-
troducing vector J, and Jb is that the maximum length of

J,(I, ) and Jb(Ib) is (2S+1)(' +" 1 which is about the
square root of that of J(I). This is certainly a consider-
able improvement, since for a spin- —,

' system of size 32
this number is only 2' =65536. When a configuration
represented by I is changed to another configuration
represented by I due to spin-flip operator, we can find I,
and Ib, and then J easily. It is easy to see that this
method of coding gives a one-to-one correspondence be-
tween configurations and their position in the storage
table and uses very little memory space for searching. It
is also automatically vectorized on a vector machine.
One can reduce still further the memory space used for
searching by generalizing this method to three or higher-
dimensional searches. In principle, the minimum amount
of computer memory space needed is (2S+1)N. Howev-
er, one needs more computations to accomplish such a

TABLE II. Spin configurations, their representations I, and Ib, their base vectors J,(I, ) and posi-
tion vectors Jb(Ib) and their positions in the storage table J(I) by using the new coding technique for
unsymmetrized basis (see the text) for a spin- —, system of size six.

Configuration A

111
011
101
110
011
101
110
011
101
110
001
010
100
001
010
100
001
010
100
000

Configuration 8
000
001
001
001
010
010
010
100
100
100
011
011
011
101
101
101
110
110
110
111

0
1

1

1

4
4
4
7
7
7

10
10
10
13
13
13
16
16
16
19

J=J.+Jb

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
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high-dimensional search, so there is a balance between
use of computer time and memory. Recalling that the
real limitation is the ability to store a few vectors of
length M, we think that two-dimensional search is good
enough in practice.

B. Coding with translational symmetry

The method described in the previous subsection is
simple. The way of dividing the lattice into two parts is
arbitrary. However, this is not the case when additional
symmetries are used. Suppose we impose periodic bound-
ary conditions and use translational symmetry to reduce
the size of the H matrix by a factor of N. For the exam-
ple we are using, the total number of independent basis
states under the translation operator is four. As we can
see from Table II, several configurations correspond to
the same basis under the translation operator. The vec-
tors J, and Jb are different for these configurations, so
the relation between the translationally invariant basis
and its position in the storage table is not unique unless
one can find a way to overcome this dif6culty. Fortunate-
ly, we have found a way of dividing the lattice that can
utilize fully periodic boundary conditions and other sym-
metries such as reflection; we call it "sublattice coding. "
For simplicity we illustrate this approach on a bipartite
lattice. Let us divide the lattice into the two natural sub-
lattices so that each point in a sublattice has all its
nearest neighbors in the other sublattice. Then for a
given total magnetization in one sublattice, say the sub-
lattice 8, we distribute all possible spin configurations
and record them as position vector J&. Correspondingly,
for spin configuration in sublattice A we record only
those configurations that are distinct under the transla-

tion operator in its own sublattice and record them as
base vector J, . We show all these for our example in
Table III, where the symmetrized basis states are printed
in bold. Note that the total magnetization in one sublat-
tice is fixed once it is fixed in the other sublattice and that
it ranges from —(X/2)S to (X/2)S. However, when
translated by one lattice spacing, the two sublattices ex-
change with each other so we only need to do half the
work. As we can see from Table III, for our example, the
relation between the translationally invariant basis and its
position in the storage table specified by J, +J& is a
unique one.

Another consideration is that one has to record 8', the
weight of the translationally invariant basis. Interesting
enough for a spin- —,

' system with total magnetization zero
and size 2P, where P is an prize integer, the weight of all
translational basis state is the same ( 8'=2P), except for
the two Neel states (&=2). This property reduces the
amount of computation somewhat. For more general
cases, we usually do not have such nice properties and we
need to store the weight of the translationally invariant
basis. We may have to do a little more computations but
we do not need more memory space. We can simply put
8'into the same word in which we put I, since for most
computers each word is of 32 or 64 bits long.

In addition to periodic boundary conditions, there are
other symmetries that we can use to reduce further the
size of matrices to be diagonalized. Use of these sym-
metries may complicate actual programming, but we still
have a one-to-one correspondence between the represen-
tatives of symmetrized basis and their positions in the
storage table and have used very little central processing
unit (CPU) time and memory space in searching. The
way of dividing the lattice depends on the structure of the

TABLE III. Spin configurations, their representations I, and Ib, their base vectors J,(I, ) and posi-
tion vectors Jb(Ib) and their positions in the storage table J(I) by using the "sublattice coding" method
for symmetrized basis (see the text) for a spin-2 system of size six.

Configuration A

111
000
011
100
101
010
110
001
011
001
101
100
110
010
011
010
101
001
110
100

Configuration B

000
111
001
011
100
101
010
110
010
011
001
101
100
110
100
011
010
101
001
110

rb Jb(Ib) J=J.+Jb
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TABLE IV. Dimension of the Hilbert space, the ground-state energy, the first-excited-state energy,
and spin-spin correlations of the one-dimensional antiferromagnetic Heisenberg model for spin S =1,
N = 16 and 18; spin S =

—,', N = 14; spin S =2, N = 12.

M
E() /N
El /N

(gaga )
(gaga )
(gaga )
(s;s; )
(gaga )
(gaga )
(gaga )
(gaga )
(s;s;&

N =18

1 228 686
—1.402 351
—1.378 338
—0.467 459
0.253 017

—0. 197 618
0. 147 493

—0. 122 197
0. 101 611

—0.090 514
0.083 041

—0.081 420

S=1
N =16

168 181
—1.402 925
—1.375 251
—0.467 642
0.254 293

—0.200 288
0. 151 699

—0. 128 493
0. 110 173

—0. 102 287
0.098 424

S=—'
2

N =14

904 274
—2.839 815
—2.813 935
—0.946 605
0.634030

—0.556 226
0.483 503

—0.455 502
0.430433

—0.429 266

S=2
N =12

818 836
—4.784 014
—4.751 456
—1.594 671
1.178 345

—1.075 912
0.980 035

—0.952 506
0.929 418

lattice. One needs some practice to discover the way that
can most efficiently utilize all the syrnrnetries of the sys-
tem and extra work may be needed in some cases.

We have performed exact diagonalizations of the XXZ
model on various lattices by using the standard Lanczos
method and the coding technique we have just de-
scribed. The largest lattice sizes we have been able to
study are 32 sites (square lattice) and 30 sites (ring) for
S =

—,', 18 sites for S =1, 14 sites for S =
—,', and 12 sites

for S =2. The accuracy in our calculations is within
10 ' for the eigenvalues and 10 for the eigenvectors
and expectation values, such as spin-spin correlation
functions. As a check, the normalization of the wave
function at the final iteration step is 1 to within 10 ' and
the total spin S, a conserved quantity when the Hamil-
tonian is rotational invariant in spin space, is accurate to
10 ' . (For the case of spin- —,

' and spin 1 the accuracies
are better than those cited). Different symmetries are
used such as total momentum in the initial states to ob-
tain the ground state and the excited states. The reason
we did not do calculations on still larger lattices is not
CPU time but the lack of memory space. For example,
the size of the H matrix for a 6 X 6 spin- —,

' system after use

of all symmetries is about 32 million, and we usually need
at least two vectors of this size in order to calculate the
ground-state energy. We do not at present have an avail-
able computer with this large memory space.

III. NUMERICAL RESULTS

In this section we present some of our results of finite
lattice studies. In one dimension the spin- —, LXZ model
can be solved analytically by the Bethe Ansatz, and in
two dimensions we have previously done extensively ex-
act diagonalization studies, so we will not present the
numerical results in detail in this paper. We have also
studied the spin-1 XXZ model in two dimensions. " We
list the ground-state energy, the first-excited-state energy,
and spin-spin correlation functions for the one dimen-
sional antiferromagnetic Heisenberg model for systems of

S =1, N =16 and 18; S =—'„N=14; and S =2, N =12 in

Table IV. In Table V we list similar results for spin- —,
'

system in 1D for N =28 and 30, and in Table VI for a 2D
32 sites square lattice. We also list the size of the H ma-
trix there for reference. Periodic boundary conditions
and reflection symmetry were used in these calculations.
To the best of our knowledge, results on systems of this
size have not previously appeared in the literature.

Although we cannot obtain results for an infinite lat-
tice directly, we can estimate them by extrapolation from
results on various finite lattices. Usually the ground-state
energy is the easiest quantity to estimate. Fortunately,
we can obtain an upper and a lower bound for the

M
Eo/N
Ei /N
(s;s;)
(gaga )
&s;s;)
&s;s;)
(sGs5 )
(s;s;)
&s;s;&
&sGs;&
&s;s;&
&s;s;„&
(gaga )
&s;s;, )
(gaga )
&s;s;, )
(sGs„)

N =30

2 587018
—0.888 131
—0.878 321
—0. 148 022
0.060 973

—0.050 988
0.035 450

—0.032 177
0.025 821

—0.024 409
0.021 000
0.020400
0.018 322

—0.018 189
0.016 844

—0.017 053
0.016 179

—0.016 701

N =28

718 146
—0.888 403
—0.877 164
—0. 148 067
0.061 018

—0.051 100
0.035 571

—0.032 377
0.026 037

—0.024 716
0.021 331

—0.020 842
0.018 798
—0.018 809
0.017 514
—0.017 916
0.017 119

TABLE V. Dimension of Hilbert space, the ground-state en-

ergy, the first-excited-state energy, and spin-spin correlations of
the one-dimensional spin- —, antiferromagnetic Heisenberg mod-

el for N=28 and 30.
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TABLE VI. Dimension of the Hilbert space, the ground-
state energy, the first-excited-state energy, and spin-spin correla-
tions of the two-dimensional spin- —,

' antiferromagnetic Heisen-

berg model on a 32-site lattice.

M
Eo /N
E, /N
r/a
0
1

&2
2

2&2
3

&10

2 357 871
—1.360 358
—1.340 671
(s;s„)

0.250000
—0. 113363
0.069 670
0.062 469

—0.060 989
0.057 801

—0.056 794
0.055 484
0.053 884

ground-state energy at fixed N. It is easy to show that for
chains with open boundary conditions the energy per site
E(N)/N gives an upper bound and the energy per bond
E(N)I(N —1) gives a lower bound for the infinite chain.
We prove this result by using a variational approach. To
simplify the proof we restrict ourselves to the isotropic
case, i.e., J„=J=J,—:J. Generalization to the XXZ
model is straightforward. Consider an open chain of size
2N, and set J =1,

2N N 2N

H=QS, S, +, —gS, S, +, + g S; S, +, +SN SN+,
i =N+1

I I I I

I
I I I I

I

I I I I

I

I I

o—
S = 1

o 0
oa

~o&

o

—16—
I ) I I I I I I I I I I 1 I I ) I—

0. 1

1/N
0.2 0.3

FIG. 1. Spin S=1 antiferromagnetic Heisenberg model.
Plot of the ground-state energy per site E&/NJ for chains of
odd N (diamonds), chains of even N (octagons), and rings
(bursts); and the ground state per bond E&/(N —1)J for chains
of odd N (squares), and chains of even N (crosses).

E(S=1)= —1.4051 —0.0002, E(S =3/2)= —2.0987
+0.0005, and E (S =2)= —4. 8965+0.0002. As a
check, we have used the same procedure for the case of
spin- —,

' chains and obtained E (S =
—,
'

) = —0.4434+0.0003,
compared with the exact value 0.4431. We believe that
our estimated values are within 0.1% accuracy of the ex-
act values.

+H, +Hz+SN SN+ (6) IV. DISCUSSION

0'.,.=0'(S1 SN )'P(SN+1 S2N )

Then by the variational principle we have,

(7)

Let the variational wave function be a direct prod-
uct of eigenfunctions of systems [S„S2,. . . , SNI and

[SN+1,SN+2). . . , S2N})

In preceding sections we have described explicitly the
new coding technique we used in the exact diagonaliza-
tion of quantum-spin models on finite lattices. Using
what we call sublattice coding" method, we were able to
carry out exact diagonalizations for lattices up to 32 sites
for spin- —,

' system, 18 sites for spin-1 system, 14 sites for

2N ~ var~ 1 2 N N+1~ var~

EN+EN+ ( + ~SN SN+1l~...~ =2EN (8) I 1 1 1

I

I 1 I 1

I
I I I I

I

I Io—
and this leads to E2N/2N &EN/N, hence limN „EN/
N &ENIN. Similarly we can use the eigenfunctions of
system [S„S2,. . . , S2N } as the variational wave function
to show that

lim [EN/(N —1)][EN/(N —1)] .
N —+ oo

—25—
R

o (-)

s = a/z

0

These upper and lower bounds help us to determine the
ground state energy more accurately. In Figs. 1 —3 we
plot the ground-state energy per site and per bond as
functions of 1/N for various finite-size chains with open
boundary conditions for spin S =1, —'„and 2. We also
show the ground-state energy per bond for chains with
periodic boundary conditions (rings) there. Using least-
squares approximation, our estimates of the ground-state
energy for the infinite system are the following:

'U

XUx & "'
X p

01 0.2 0.3

FIG. 2. Same as Fig. 1 for spin S =
—,'.

X

I ( I 1 I I I I I ) 1 I I I 1
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—35-—

I I I

i

I I I I

)

I I

a

--4 5—

0
X

01
1/N

0.2 03

FIG. 3. Same as Fig. 1 for spin S =2.

spin- —,
' system, and 12 sites for spin-2 system. As we

pointed out at the end of Sec. II B, our method is not lim-
ited by the CPU time but by the computer memory. One
may hope that many configurations give such small con-
tributions to the wave function that one may throw them
away and store only important configurations. " If this is
the case, then one may perform numerical calculations on
much bigger lattices and the "sublattice coding" method
is still useful.

We can apply the idea of "sublattice coding" method
in finite lattice studies of other model Hamiltonians. For
example, for a many-body model Hamiltonian with fer-
mions, such as Hubbard model, we can either treat fer-
mions as a spin- —, object on each site or use a binary num-

ber representing the spin up electrons configuration as
the base vector and that for spin down electrons as the
position vector. By doing so we again have a one-to-one
correspondence between the representatives of basis and

its position in the storage table, and the computer cost of
searching is again very little. However, we would like to
point out that when dealing with fermions one should be
careful about the sign because of the Pauli principle, and
the way of dividing the lattice depends on the problem
one is trying to solve.

We can certainly use our method to study more general
quantum-spin models, such as those containing the terms
Dg;(S;) or A.g(;i)(S; S ) in Eq. (I). The parameter
spaces of such model Hamiltonians are obviously very
large, but they contain much more interesting physics.
Finite lattice exact diagonalization is a very useful tool to
explore these interesting physics models. One may argue
that there is always a limit for numerical calculations on
finite lattices and that wrong answers may be deduced if
the lattice is not big enough. However, this only tells us
that one must be very careful in interpreting numerical
results. Recently there has been a claim that one can deal
with logarithmic corrections on chains of moderate
length, ' say a 20-site spin- —,

' chain. With the help of a
correct finite-size scaling scheme, we should be able to
obtain the correct physics from finite lattice studies.
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