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It is known that if the ground state of the spin- —, antiferromagnetic Heisenberg model is not Neel

ordered, the two-point function must satisfy an upper bound. In this paper, the spin-spin correla-
tion function for the ground state is computed on a 32X 32 square lattice using a projection Monte
Carlo method. The correlation function at short distance (about four lattice spacing) violates this
bound, which implies that the ground state must have long-ranged Neel order. I have also estimat-
ed the staggered magnetization to be m+ =0.304+0.004 in the thermodynamic limit.

I. INTRODUCTION

The most distinct feature of the high-T, superconduc-
tors is their nearly decoupled copper-oxygen planes.
Neutron-scattering experiments show' that in undoped
compounds the coupling between electrons in the planes
are described by a spin- —, antiferromagnetic Heisenberg
model. At low temperatures, weak interplane coupling
allows ordering, and long-ranged Neel order has been ob-
served. The temperature dependence of the correlation
function as well as the dynamical correlations measured
in the neutron-scattering experiments is well accounted
for by a nonlinear 0. model with quantum fluctuations in
the parameter regime having a Neel-ordered ground
state. ' From the spin-wave theory, however, we expect
to have large corrections from quantum fluctuations at
low dimensions and for small spins. ' For the spin- —,

' case
in two dimensions, the problem at hand, it is natural to
suspect that Neel order may be destroyed by either
strong quantum fluctuations or by topological defects.
It has been found that the topological term does not exist
in the continuum limit and both numerical calcula-
tions ' and series expansion' suggest a Neel-ordered
ground state. On the other hand, variational calculations
show that there is a disordered state with energy very
close to an ordered one' and a rigorous statement about
the long-ranged order should be useful.

A rigorous proof of the existence of Neel order for the
Heisenberg model has recently been extended to lower
spins. ' ' We now know that Neel order exists in three
dimensions for all spins, and in two dimensions for spins
greater than or equal to one. Furthermore, a bound on
the two-point correlation function has been established'
which if violated would imply a Neel order in the ground
state. The correlation function obtained in the Monte
Carlo simulation by Gross et al. ' violates the bound
starting at r=5 but that calculation is not done at zero
temperature and the finite-size effects are not known.

In this paper, I report calculations of the two-point
correlation function in the ground state using a new
Monte Carlo method that preserves the SU(2) symmetry

for lattices with up to 32 X 32 spins. Finite-size effects are
carefully analyzed. Comparing the data on L XL lattices
with L=16 and 32, I find that correlation functions for
ir~ (L /4 do not depend strongly on the lattice size L and
are good approximations to the infinite-sized system with
accuracy of half of a percent. I have also obtained off
axes two-point functions. This allows me to construct a
slightly better bound. Data for 32 X 32 lattice violate this
bound starting at ir~ =&17. This implies that the ground
state is Neel ordered. I have also estimated the ground-
state energy per site eo = —0.6696+0.0008 and the stag-
gered magnetization moment m+ =0.304+0.004 (in this
unit m+=0.5 for the Neel state) in excellent agreement
with the spin-wave theory and the recent series expansion
result. ' Our two-point function is about 10% below the
result of Ref. 10 for a distance that is not too short.

Our method starts from a good trial wave function
having an energy within 0.2% of the ground state. Then
a projector [similar to exp( PH) where H—is the Hamil-
tonian] is applied to the trial state to extrapolate to the
ground state. I use a discrete projector so my method is
exact in the sense that there is no number that has to be
set small. A similar approach has been applied to
quantum-spin chains. ' In the next section, I introduce
the trial wave function. Sec. III describes the projection
method and Sec. IV presents the results of the calcula-
tion. The violation of the infrared bound is discussed in
Sec. V.

II. TRIAL WAVE FUNCTION

A L XL square lattice with L even can be equally di-
vided into 2 and B sublattices. Let (ij)=1,1,—1, 1i
denote a singlet bond between i and j. Connecting every
site on the 3 and B sublattices with bonds defines a sin-
glet state for X=L-' spins,

lc)= g (t.,j.)

iaE A

jaEB

Because of the identity (m, n)(k, l)+(m, k)(l, n)
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+(m, l)(n, k)=0, bonds that connect points on the same
sublattice can always be expanded as bonds between
different sublattices. Thus the valence bond basis (1) is
complete. In fact, it is overcomplete because there are
(X/2)! way to pair sites in A and B but the total number
of singlets is only C~ /(X/2+ 1).

Since the ground state of Heisenberg Hamiltonian
H= Jg!„}S, S,is a singlet, we write a trial wave func-
tion in the valence bond basis as'

lqr„) = g h(i& —
g&i. . .h(i„—j„)(&„g&).. (i„.,j„). (2)

ia6 A

ja&B

Here I have factorized the weight for a singlet state into a
product of weights for its individual bonds. Because of
this, (2) is an approximation to the ground state. The
weight function h (i —j) is positive because of the
Marshall sign rule' which essentially says that the
ground-state wave function is nodeless in the hard-core
boson representation. ' "'.

The wave function (2) includes state of different
types. ' When h (i —j) is a constant, independent of the
distance, (2) is long-range ordered. In fact it is the Neel
state projected into the singlet subspace. On the other
extreme, when h (i —j) is short ranged

h (x y) =5 i5y o+5x,o5, &

[here we have redefined h (x,y) =h (i —j) with
x =li„—j„l andy= li~ —j l], (2) is the disordered dimer
state. The best weight h (x,y) for the Heisenberg Hamil-
tonian is between these two limits.

To simplify the parametrization, notice that the sym-
metries of the square lattice allow us to restrict to the re-
gion where x ~y. Also under the periodic boundary con-
dition, h (L —x,y) =h (x,y) for 0 & x (L /2, and similarly
for y. Notice further that h (x,y) =0 when x +y is even
because no bond connects sites in the same sublattice.
Since energy is more sensitive to h (x,y) at short dis-
tances, we therefore choose h(1,0)=1 (this sets the nor-
malization), and let h (3,0),h (2, 1) be free variational pa-
rameters. At larger distances the weight is controlled by
h (x,y) =aexp[ —P(x +y)] with a, P being variational pa-
rameters.

A Monte Carlo algorithm' is readily constructed to
compute the multidimensional sum in

&c, lS, S, lc, &x
&

l )
y (3)

ing obtained by putting bonds from lc, ) and lcz ) on the
same lattice. (ii} & c, l S; S lc2 ) =0 when i and j belong to
two different loops and

&c, ls, s, lc, &=+-,'&c|lc~&

& n (x,y)H ) —
& n (x,y) ) & H ),

where & ) is the average over the Monte Carlo time and
n (x,y) is the number of bonds that span distance x, y in
the two directions.

The best variational parameters for L = 8, 16,32 are list-
ed in Table I. The energies of the best trial states is al-
most indistinguishable from the energies of the ground
states within statistical error of +0.0008 J. These trial
states all have long-ranged Neel order. But in compar-
ison with the ground state, they underestimate the stag-
gered moment by a few percent. This is due to the trun-
cation made for the weight at large distance.

TABLE I. The best variational parameters for the state
defined in Eq. (2) on L XL lattices. The parametrization is dis-
cussed in the text. Also listed are the variational energies and
the ground-state energies computed by our projection method.
The numbers in brackets are the estimated errors. Thus
0.6730(4) means —0.6730+0.0004. Energies are per site in the
unit of J.

16 32

when i and j belong to the same loop. %'e have the plus
sign when i and j are on the same sublattice, and minus
sign otherwise.

The Monte Carlo process samples the pair of state
(c„cz)according to the probability distribution P(c„cz).
The elementary step in generating a new pair (c', , c2) [or
(c„c2)]is to change two bonds in c, (or cz) as follows:
select at random two sites on the same sublattice across a
diagonal of a plaquette; exchange bonds connected with
the sites, then go to the new state c

&
according to proba-

bility P (c i, cz }/P (c i, c2).
Using this method we can compute the energy for a

given weight h(x, y}. The search for the best weight is
made easier by the fact that the derivatives of the energy
with respect to h (x,y) can all be obtained directly from
the Monte Carlo time series. BE/Blnh(x, y) is propor-
tional to

where the combination in the large parentheses is defined
as P(c, , c2)—the probability for having the pair of
(c, , c2) states. This is possible because h (x,y) is always
positive and because the following formulas convert corn-
puting of the matrix elements for two valence bond states

N{CI,C&)
lc, ), lc2) to counting loops. ' (i) &c, lcz & =2
where N(c„cz) is the number of loops in the bond cover-

h(3,0)
h(2, 1)
a

~ ~

Variational
Energy
Ground-state
Energy

0.0885
0.131
0.150

—0.245

—0.6730(4)

—0.6738(4)

0.0874
0.125
0.138

—0.326

—0.6694(4)

—0.6704(6)

0.0860
0.121
0.136

—0.351

—0.6690(4)

—0.6696(8)
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III. PROJECTION METHOD

Although the energy of our variational wave function
can be made very close to the ground-state value, the
two-point function at a large distance is not necessarily
so. To obtain the true ground state, we use a projection
method.

The trial wave function can always be expanded in
terms of eigenstates of the Hamiltonian

ig, „&=a, iE, &+a, iE, &+. . . ,

where iEo & is the ground state and iE, & is the first sin-

glet excited state having the same symmetry as the
trial wave function. We define a projected state in & us-

ing projector

C„(r)=( —1)'+~C(r)+5(r)exp( bn—), (6)

where r =(x,y) and b, is determined by

exp( —b, )= (E, —W)/(Eo —W)i,

and E] is the first excitation energy.

IV. RESULTS

though the statistical error does.
The expectation value of

C„(r)=(niSo S„in &/(nin &

for the projected state defined in Eq. (4) approaches the
ground-state value C(r) exponentially fast,

In &=(&—W)"Iq„& .

It is easy to see that

in &=(E,—W)"a, IiE, &

(4)

Q,, (i, i)(k,j)= (i,j )(k, i)/2 . —

So that the projection of a valence bond state ic & is a
sum over valence bond states

y Q, "ic&= y gQ, , ic& (5)
I Q,.J I a

each term in the sum on the right-hand side of Eq. (5) is a
valence bond state. In the Monte Carlo evaluation of ma-
trix eletnents (niS,. S, in & for the projected state in Eq.
(4), one needs to sum over products of operators like the
ones in Eq. (5). Because Q," preserves the valence bond
structure, the summation can be done simultaneously
with the sampling over the trial state. The multiplica-
tions in Eq. (4) are done directly. They are the most time
consuming part of the calculation. For example, for a
32X32 lattice, n has to be as large as 6000. Therefore
sampling over the operator products is performed less
frequently. In the actual calculation, relative ratio of
is used. The final answer does not depend on this ratio al-

+ (a ) /ao )[(E(
—W)/(Eo —W) ]"

XiE, &+. . . ) .

Thus, in & approaches the ground state for large n if
i(E —W)/Eo —W)i (1 for all the energy E of the singlet
states in the energy spectrum. This latter condition is
satisfied for the Heisenberg model since the energy spec-
trum is bounded from both above and below:
EF )E & Eo, where —EF = —JN/2 is the ground-state
energy of the ferromagnetic Heisenberg model (with J
changed to —J in the Hamiltonian).

The reason for choosing

J g Q,, =J g (S; S, ——,')
&~j ) &ij )

as projector in Eq. (3) is because Q, preserves the valence
bond structure: Q; (i,j ) = —(i,j);
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FIG. 1. A test of the algorithm on a 4X4 lattice. Plotted are
the energy per site e (n) (shown as squares) of states

i
n ) defined

in Eq. (3) vs n The ener. gies is subtracted by the known
ground-state energy Eo = —0.701 78. All the energies are in the
unit of J. The solid line is a fit to the exponential form
E {n ) =Eo+a exp{ —2hn), 6=0.21.

As a test for the algorithm we have computed energy
on a 4X4 lattice for several in &. The variational param-
eter h (x,y) is deliberately set away from the optimal one,
and the exponential decay is evident (see Fig. 1).

We next measure the two-point function on larger lat-
tices. To do this we first compute the two-point function
on the projected state in & for several different values of n

for a given lattice size. Then we extrapolate according to
Eq. (6) to the ground-state value C(r). We have data for
L XL lattices with L=8,16,22,32. For each fixed L and
n, we made 16 independent runs from which the average
and the statistical uncertainties of the two-point function
were obtained.

To determine the ground-state two-point function C(r)
as well as 5(r) and 6 in Eq. (5), we need to know C„(r) for
at least three different values of n. The standard g fitting
is then applied using the statistical errors measured from
16 sets of data. Notice that if b, is fixed, getting C(r) and
5(r) from C„(r) for any iri) 1 requires a linear least-
squares fitting [C ( r =0) is 0.75, a constant; C ( i

r i

= 1) fol-
lows different extrapolation with a 2h gap]. The best b, is
obtained then by minimizing the sum over all r of devia-
tion squares weighted by statistical error.

Uncertainty in 6 is large for the large lattices because
of the statistical fluctuation. But since the energy-gap
scales as (E, Eo)/J = A /L—, we can determine the con-
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M = g e(x)S(x)
1

L
(7)

where e(x) is + 1 on the A sublattice and —1 on the 8
sublattice. There is a large finite-size correction to this
moment. In Fig. 4 we plot the extrapolation of these
three quantities to the thermodynamic limit. From this
we estimate

stant 3 from data on a small system. This is done on a
8 X 8 lattice. To get 6 we use C„(r) at six different values
of n (at nb, =1.4, 1.9, 2.8, 3.7, 5.6, 7.4). From this we
obtain 5=0.029. This translates to a gap (E, E—o)/J
=17.1/L which is substantially larger than the gap to
the lowest triplet excitation.

For other lattice sizes, the gap parameter 6 used in the
fitting is computed from b, =0.029(8/L) (6 goes as 1/L'
because Eo is proportional to L ). Figure 2 compares the
gaps b computed from this formula with ones that best fit
the data. The difference is always less than 50%. Shift-
ing b, by 50% changes C(r) by 0.3% at the largest dis-
tance and by about 0.1/o at the distance a quarter of the
system size.

For lattices with L=16, 22, and 32, the ground-state
correlations C(r) are extrapolated from three values of n

with nA ranging from 0.9 to 2.8. The correlation func-
tion is shown in Fig. 3. To a good approximation, the
two-point function depends only on ~r~. At a large dis-
tance, C(r) goes to a constant indicating a long-range-
ordered ground state. The approach to the constant can
be fitted to both exponential form and power-law form.
The statistical error coming from the Monte Carlo simu-
lation is +0.0004. The estimated error of the fitting pro-
cedure [taken to be 5% of 5(r) in Eq. (5)j is largest at the
longest distance and is also about +0.0004.

There are several ways to measure the staggered mag-
netization. One way is to look at the correlation function
at largest distance C(L/2, L/2) or C(L/2, 0) as a func-
tion of system size L and extrapolate as a function of
1/L. ' ' The other is to compute the total amount
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FIG. 3. The spin-spin correlation function in the ground
state as a function of Euclidean distance at short (a) and long (b)
distances. The largest error is estimated at 0.5% which is about
the size of the dots in (b) and a fraction of a dot in (a). The
correlation function falls on a common curve. The deviations at
~r~ =L /2 are dual to finite-size effects.

m + =0.304+0.004.

Three quantities give three different extrapolated values
of m . This is the major source of error (see the caption
for Fig. 4).
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FIG. 2. The parameter 6 in Eq. (6) that best fits the data
(shown as circles) compared with the one used in the actual
fitting {solid line).

FIG. 4. The staggered magnetization is extrapolated to the
thermodynamic limit from the data on finite-sized lattices. The
moment defined by Eq. (7) is extrapolated as a linear function of
1/L to get m =0.0904 using data for L=8, 16, 22, and 32.
But m+ changes to 0.0922 if only the data for L=16, 22, and
32 is used. From the correlation function for the largest dis-
tance on axes, C(L/2, 0), we get m+ =0.0938. Finally from
C(L/2, L/2), m+ =0.0912 is obtained. For the two latter fits,
values for m + are independent of whether the L= 8 point is in-
cluded or not in the fits.
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V. THE INFRARED BOUND I I 1 I
(

I I I I
)

I l I I
)

I I I I
]

I I I I
)

I I I I

There is a connection between the existence of long-
ranged Neel order in the ground state and the values of
the correlation function at finite distances. ' ' Bounds
can be established for the two-point function. In the fol-
lowing, we construct a slightly better bound following
Kennedy et al. ' before comparing them with our data.

For a finite square lattice with periodic boundary con-
ditions, let us define

g, =-,' y e-'"(S, S„),

0.25

(?.2

(I] ii ~ il
1

Bounds

Data

I I I I I I I I I I I I I I I I I I I I

where ( ) denotes the normalized ground-state expecta-
tion value and g is real and positive. Then we have fol-

lowing infrared bound, '

FIG. 5. This graph compares the left- (data) and right-hand
(bounds) sides of Eq. (8). The infrared bound is violated starting
at lrl =4. This implies the ground state is Neel ordered. The
data is taken from L =32 lattice. The total error is 0.4% which
is invisible in this graph.

gq
& fq, qA(rr, ~),

where

fq =( leo lEq/12Eq+q)'~',

Eq=2 —cos(q„)—cos(q ) .

q=(q, q~) and eo is the ground-state energy per site.
A nonzero Neel moment corresponds to a 5 function in

gq at q=(m. , m) for the infinite volume limit. Following

Kennedy et al. ' we define

g(r) = y (
—1) +"(S,S„),

M) ((

where M=+~„„l is the total number of terms in the
sum, and the sum is over all sites x = ( m, n ) having
(m +n )'~ & r. We have added all the terms with lxl & r
because from Fig. 3 we know that the two-point function
depend only on lx and because this gives us a slightly
better upper bounds.

If the Neel moment is zero, we must have

g(r) & 3f" " f '" ' '
y. (

—1) +"cos(mq„+nq ) f~,
~ 2- ~ 2- M II

(8)

where [w]+ is equal to w if w ~0 and is zero otherwise.
The integral is evaluated numerically. The integrable
singularity at (m, rr) must be .treated with care.

Figure 5 shows that both sides of Eq. (8) as a function
of r using data for L=32 lattice. The ground-state ener-

gy per site is taken to be eo= —0.6696. Since the finite-

size correction to the energy per bond is proportional to
I /L, we expect the finite-size correction for the correla-
tion function at short distances to follow the same form.
Judging from the two-point function at short distances
plotted in Fig. 3(a), we conclude that the finite-size
correction for rl &4.5 is about 0.2%. The estimated er-
ror in this region is also 0.2%.

Neel ordered ground state with the staggered magnetiza-
tion in the infinite volume limit m + =0.304+004 (in this
unit m =0.5 for the Neel state).

After analyzing the finite-size corrections and statisti-
cal errors, I have shown that the two-point function on
32X32 lattice at distance less than 8 approximates the
infinite large lattice very well with error of less than a
percent. The two-point function at short distance (start-
ing at &17) exceeds the upper bound constructed follow-
ing Kennedy et al. ' This means that the ground state is
Neel ordered.
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