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Phase Hamiltonian and depinning electric field in the charge-density wave
and the spin-density wave
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Making use of the phase Hamiltonian derived from microscopic models, we study theoretically
the threshold electric field when the charge-density wave (CD%) or the spin-density wave starts
sliding. Unlike earlier phenomenological models, we can describe the temperature dependence of
the threshold field. Most of experimental results on the threshold field in quasi-one-dimensional
CDW's are interpreted in terms of the three-dimensional CDW. Curious exceptions are the CDW's
in NbSe3, which appear to be described better by the two-dimensional CDW.

I. INTRODUCTION

The threshold electric fields associated with depinning
of charge-density waves (CDW's) have been studied ex-
tensively both theoretically and experimentally. ' In par-
ticular, Fukuyama, Lee, and Rice ' provide an extremely
useful theoretical framework to analyze the threshold
electric field ET. They correctly identify the two limiting
cases, the strong-pinning limit and the weak-pinning lim-
it. Furthermore, they pointed out that the n; dependence
of ET gives the key signature to discriminate the strong-
pinning limit from the weak-pinning limit where n; is
the impurity concentration. This prediction is used suc-
cessfully to test the validity of the theory. In spite of
this remarkable success, Lee and Rice were unable to
predict the temperature dependence of ET, partly due to
their confusion on the temperature dependence of the
condensate density f and partly due to the fact that the
importance of the thermal fluctuation in the phase P of
the order parameter is unknown. Further, their analysis
of the weak-pinning limit was done only for the three-
dimensional (3D) CDW, which appears to be somewhat
too restrictive.

More recently, the nonohmic conductivities in spin-
density waves (SDW's) in Bechgaard salts like
tetramethyl tetraselenfulvalinium nitrate (TMTSF)2N03,
(TMTSF)2PF6 and quenched (TMTSF)2C104 have been
reported. ' Therefore, it is necessary to extend the ear-
ly analysis to SDW's and to field-induced spin-density
waves (FISDW's) as well.

The object of this paper is to reexamine the threshold
electric field within the phase Hamiltonian derived from
the microscopic models. " Within the present phase
Hamiltonian, we can predict the temperature dependence
of ET in both in CDW's and SDW's. ' In particular, in a
CDW Er diverges at T = T, like ET ~ (T, —T) where
a= —,

' in the strong-pinning limit while a=2(4 —D) ' in

the weak-pinning limit and D is the spatial dimension of
the CDW. The observed ET of the first CDW in NbSe3

II. PHASE HAMILTONIAN

As a microscopic model for the CDW, we take the
Frohlich Hamiltonian as considered by Lee, Rice, and
Anderson' with one exception. We consider the quasi-
one-dimensional electron band with the quasiparticle en-
ergy given by

s(p ) = —2t, cosap, 2t cosbp 2
—2t, coscp—3 —p

with say

t:Ebt, = 10:1:0.03 (2)

and p is the chemical potential. The present model gives
the anisotropic Fermi velocity

VF —(v, v2, U3)

with

v =2t, a sinap~, v2=&2tbb, v3=&2t, c .

(3)

For the SDW, we take the anisotropic Hubbard model
as introduced by Yamaji' in order to describe the phase
diagram of Bechgaard salts. Again, the quasiparticle
spectrum in Yamaji's model is given by Eq. (1). Due to
the quasi-one-dimensionality the perfect nesting with the
nesting vector Q=(2pF, nlb, n Ic) is weakly .broken. The
degree of imperfect nesting is given by'

by Fleming' is described well in terms of the two-
dimensional (2D) weak-pinning limit, while the later re-
sult on Er by Richard et al. '4 is described
by the strong-pinning limit theory. In a SDW, ET
is almost constant for T ~

—,
' T, . Then ET increases mono-

tonically up to T=T„ though there is no divergence
at T =T, . The temperature dependence of ET ob-
served in (TMTSF)2N03, (TMTSF)2PF6 and quenched
(TMTSF)2C10& are qualitatively consistent with the
present theory.
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eo = —
—,
'

ti, cos(t2p~ )( t, sin ap~ )

In the following, we limit ourselves to the case
~ eo~ /b o && I for clarity, where b,o is the CDW (or the
SDW) order parameter at T=0 K. The effect of eo/ho
on the threshold field will be described elsewhere. '

From the analysis of the phason propagator" the phase
Hamiltonian of a CDW (or a SDW) is given by

'2

H = Jd x 'N f —(m*lm) +v
ar ax

2, , aO, , aO

ay
"'

az

'2

enfQ —'PE .+ Vz,„(P}, (7)

where No=(nvbc) ' is the density of states at the Fermi
surface per spin, Q =2pz and the electron density
n =Q/trbc and f is the condensate density. Further,
slow spatio-temporal distortion of the phase P generates
the electric charge and current given by

n, =enfQ
Bx

j,= enfQ—, ay

which satisfy the charge conservation

Bn, c}j,
a

+ a'='
The electric charge carried by the condensate is strictly

conserved at all temperatures in the absence of topologi-
cal defects like phase vortices. Only these topological de-
fects can convert the electric charge carried by the con-
densate to the one carried by the quasiparticle and vice
versa.

The phason mass m * is given by

m*lm = 1+[26,(T)/cog] (Af)

for a CD& while m /m =1 in a SDW. " Here k is the
dimensionless electron-phonon coupling constant. Equa-
tion (11) generalized the result in Ref. 15 for all tempera-
tures.

Finally, the pinning potential V„;„(P) for CDW's and
SDW's, respectively, is given by

—,'[e(p)+s(Q+p)]

= tbcosapz[a (p &

—pz ) ] —5p =cocos(2bp2 ) (5)

with

(14)

where tl=vzv3/v (or vz/v) for 3D (or 2D) systems.
Note that Vz,„(P) is not affected by this scale transform,
although n, has to be replaced by g n;.

Finally, the thermal fluctuation of P modifies the tem-
perature dependence of V,„((t) significantly. This is in-

corporated into the Hamiltonian (7) or (14) by multiply-
ing

exp( —
—,
' ((() ) ) =exp( —TITo)

on V,„(P}for a CDW, while exp( —2(P )) for a SDW.
From the analysis of the short-range fluctuation we ob-
tain

To —2mrb t~ leap,
' (15)

1.0

0.5—

Before going to analyze the threshold electric field, it is
very important to define the temperature dependence of
f. In general, f is a complicate function of tv and q where
co and q are the frequency and the wave vector associated
with P. In the adiabatic limit (i.e., co, g=vq «b, o} f
takes the simple forms"

f, for co/g«1

fo for g/a~&&1 . 13

The temperature dependences of fo and f, are given in

Fig. l. In particular, the temperature dependence of f,
is the same as the superfluid density p, ( T) Ip in a BCS su-

perconductor. In the analysis of the threshold field, we
have to take f =f, , since in the vicinity of E =Er the
phase (() is dominated by the spatial distortion. Only
when E &&Ez and the narrow band noise frequency ~,
becomes larger than vL ' where L is the Fukuyama-
Lee-Rice coherence length, f =fo will become more ap-
propriate. Further, for the present analysis we do not
need the term (a//at ) in Eq. (7). Then it is more con-
venient to rewrite Eq. (7) in an isotropic form with the
help of the scale transformation.

H&=qf~ Jd x( ,'Nov ~—VP~ enQ —'PE)+ V,„(P),

—2No VX '5( T) g cos[Qx;+ P(x, ) ] (12a)

V;„(P)= —[(n./2)No V] h(T) tanh[b, (T)/2T]
X gcos[2[Qx, +P(x, )]),

where the sum over i is on the impurity site.

(12b)

0.0
O.O 0.5 &.0

FIG. 1. The dynamic and the static condensate density f„
and f~ are shown as functions of the reduced temperature
T/T, .
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where we cut off the momentum at q, =ho/u the inverse
of the BCS coherence length. As we have shown, ' the
observed threshold electric field' ' ' in the second CDW
of NbSe3 gives TO=14.6—15.2 K. On the other hand, a
simple estimate of Eq. (15) appears to give To at least by
an order of magnitude larger than the one observed ex-
perimentally. The most likely source of this discrepancy
is the cutoff momentum. Therefore, in the following, we
assume that

TO=Ctbt, lb,o= ,'Cpu —/beb,o (16)

III. THRESHOLD ELECTRIC FIELD IN CDW

First, we shall consider the threshold electric field in a
CDW. Following Fukuyama, Lee, and Rice ' we consid-
er the strong-pinning and the weak-pinning limit sepa-
rately.

A. Strong-pinning limit

In the strong-pinning limit, individual impurities pin
the local phase P(x;) at the impurity site. The potential is
then given by the volume average of the local pinning po-
tential, resulting in the threshold electric field'

instead of Eq. (15) where C is the numerical constant of
the order of 1 —10 '. This means we need a higher cutoff
momentum.

As far as the organic conductors are concerned, the
effect of the thermal fluctuations is most likely negligible,
since most of the SDW transition temperatures lie around
10 K. In contrast, most of the CDW transition tempera-
tures are around 100-300 K.

where a=a l3 and L(T) is the temperature-dependent
Fukuyama-Lee-Rice length

L(T}=[au Af&e "/2(r) 'n, )' DVb(T)] (21)

and D is the spatial dimension of the CDW. Especially at
T=0 K, we have

E w(0 ) ~ (
—I )2/4 —Dg4/4 D—

(22)

Further, as T approaches T„ET(T) diverges like
(T, —T) . Therefore, we have a variety of indices
to discriminate between the strong-pinning limit and the
weak-pinning limit. Further, in the latter case we can
infer the dimensionality of the CDW. For example, in a
recent paper Petravic et al. analyzed the pressure
dependence of variety of parameters referring to CDW's
of (NbSe4)~o/31, (TaSe4)zl and TaS3. We find that the ob-
served Er scales with To like ET ~ ( To) or (To)

Indeed, only ET(0) and To depend strongly on pressure
in the above CDW's. Noting the fact that To~rt [see Eq.
(16)], their results can be described in terms of the weak-
pinning theory with D =3 where we have ET(0) ~rt
[Eq. (22)], since the anisotropic parameter g is most sensi-
tive to the pressure. More recently, Mihaly and
Canfield observed the pressure dependence of Er(0)
and Ao in blue bronze Ko 3Mo03. Their result is
ET(0) ~ 6p which is again consistent with the 3D weak-
pinning limit.

More generally, the present theory describes most of
data on the temperature dependence of ET( T) compiled
in Ref. 1 with exception of CDW's in OTaS3 and
Ko 3Mo03. In these two systems, it is possible that the
commensuration potential given by

ET(0)=2Q(ek, ) '(n; /n)(NO V)bo (17)
V, (P)= —C, [b(T)] W cos[4$(x)] (23)

and

ET( T)/ET(0) =e '[&( T) /&o]f )
', (18)

where Q =2pF, A. is the electron-phonon coupling con-
stant, n; is the impurity density and n is the electron den-
sity. Here superscript s means the strong-pinning limit.
Equation (18) diverges as T approaches T, like
(T, —T) ' . The square-root divergence of ET(T) in
CDW's of NbSe3 has been observed in a number of exper-
iments. ' ' This implies that the pinning in these sys-
tems is described by the strong-pinning theory. Also, it is
noteworthy that ET is independent of g except through
To in the strong-pinning limit.

B. Weak-pinning limit

ET (T)/ET (0)=[Er(T)/Er(0)] (20)

In this limit, the single impurity cannot pin the phase.
Following the procedure introduced by Fukuyama, Lee,
and Rice, we obtain

ET (0)=(4 D /4D)a(Q /en)u N—oL (0)

and

V, (P) = —C, e '[b ( T) ] 8' cos[4$(x)] . (24)

For example, when the pinning is dominated by the com-
mensurability potential, the threshold electric field is
given by

ET(T)=C,Q(ef, ) 'e '[b(T)] W (25)

The threshold field due to the commensurability poten-
tial decreases monotonically with increasing temperature
and vanishes linearly like (T, —T) at the transition tem-
perature. We note that Eq. (25) is also consistent with
the relation between Er(0) and b,o established by Mihaly
and Canfield. 23

should be added to the Hamiltonian (7). Here C, is a
constant of the order of unity and 8' is the band width.
The commensuration potential of order N =4 gives rise
to the pinning energy, which is roughly one order of mag-
nitude smaller than the one due to impurities. When the
scale transformation is introduced, V, (P}has to be multi-
plied by g as the kinetic energy. Further, the thermal—16T// Tofiuctuation reduces Eq. (23) by a factor e . There-
fore, the commensurability potential in Eq. (14) is given
by
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Er (T)/Er (0)=[Er(T)/Er(0)]

where the Fukuyama-Lee-Rice length is given

L(T)=[av Nof/ —,'(7) 'n, )'~ D(nN'oV)2

X 5( T) tanh( 6/2T) ] ~ (30)

The temperature dependences of Er(T)/Ez(0) in the
weak-pinning limit with D =3 and 2 are also calculated
numerically and shown in Fig. 2.

C. Commensurability potential

O.O 0.5

For completeness, we consider the effect of the com-
mensurability potential in a SDW. For the commensura-
bility N =4, the potential is again given by Eq. (23). The
corresponding threshold field is given by

T/ TG

FIG. 2. The temperature dependence of the threshold elec-
tric field E&(T) of a SDW is shown in the strong-pinning limit

(s), the weak-pinning limit with D =3 and 2(8'3, 8'2) and when

the pinning is due to the commensuration potential (c).

and

Er(0) =4C) Qe 'b, oI/V

Er(T)/Er(0)=[6(T)/bo] f, ' .

(31)

(32)

Here we neglect again the effect of the thermal fluctua-
tion. We show Eq. (32) again in Fig. 2.

A. Strong-pinning limit

Making use of the pinning potential for a SDW [Eq.
(12b)j, we obtain'

and

Er (0)= (Q/e)(n; /n )(nNO V) ho (26)

Er ( T)/Ez (0)= [b ( T)/5(0) ]tanh[h( T)/2T]f, ' (27)

The temperature dependence of Er(T)/Ez(0) is calcu-
lated numerically and shown in Fig. 2. Unlike Ez in a
CDW, E~ is almost constant for T &

—,'T, and then in-

creases with the temperature monotonically and reaches

Er ( T, )/Er(0) = l. 33

at the transition temperature. Further, since Eq. (26) is
proportional to (No V) and since bo in a SDW is smaller
than the one in a CDW by an order of magnitude, Er(0)
in a SDW is smaller by a factor of 10 to the one corre-
sponding to a CDW. As already mentioned, we neglect
the effect of the thermal Iluctuation in Eq. (27), which ap-
pears to be quite small.

B. %'eak-pinning limit

The threshold field in the weak-pinning limit is given
by

Er (T)=(4 D/2D)a(Q/en)v N—oL (0)

and

IV. THRESHOLD ELECTRIC FIELD IN SDW

Again, we shall consider the strong-pinning and the
weak-pinning limit separately, though, we believe, the
weak-pinning limit should apply for a SDW.

V. CONCLUDING REMARKS

Making use of the phase Harniltonian derived from mi-
croscopic models, we have analyzed the threshold electric
field in CDW's and SDW's. The present theory describes
quantitatively the observed threshold electric field in a
variety of quasi-one-dimensional CDW systems. In par-
ticular, both from the temperature and the impurity con-
centration dependence of the threshold electric field we
conclude that most of the CDW's are three dimensional
and in the weak-pinning limit. The only curious excep-
tions are CDW's in NbSe3, where the 2D weak-pinning
prediction appears to be more appropriate. This is most
likely due to the size effect. One of the transverse dimen-
sions of the sample is less than the corresponding
Fukuyama-Lee-Rice length L ( T). This assignment of the
CDW' is consistent with a recent theory " of the
fluctuation-induced resistivity in CDW where the resis-
tance diverges like p Gc (T —T, )

' with a= —,'(4 —D) and

D is the spatial dimension of the CDW.
The observed pressure dependence ' of E& in

CDW's gives further support to the present theory. In
the case of SDW's, the observed temperature dependence
of E&'s in (TMTSF)zNO3, (TMTSF)zPF6 and quenched
(TMTSF)zC10 appears to agree in general with the
present theory. However, the higher-temperature value
(i.e., T ) —,

' T, ) of Er in (TMTSF)2NO3 is not available.
Furthermore, E~(T, )/E~(0) in (TMTSF)2PF6 appears to
lie between the 3D weak pinning and the 2D weak pin-
ning theory predicts. Moreover, Ez for clumped sam-

ples of (TMFSF)2PF6 behaves quite differently from the
other samples. Indeed the observed Er( T) for the
clumped sample is consistent with pinning solely due to
the commensurability. Clearly, more work in this direc-
tion is desirable.

We add that the present phase Hamiltonian gives sim-
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pie relation between the pinning frequency co, the dielec-
tric constant e in the limit co tends to zero and the thresh-
old electric field ET

frequency co in a SDW is of the same order of magnitude
as in a CDW due to the absence of the phason mass re-
normalization in a SDW.

and

co =4eu ( m /m *)ET (33)
ACKNOWLEDGMENTS

e(co~0) =2ef, (bcET) (34)

which generalizes the standard relation for a CDW to a
SDW as well, though in the SDW m'/rn =1 has to be
taken.

For example, from Eq. (33) we see that though Er in a
SDW in the cleanest sample is by order of magnitude
smaller than that in a CDW, the corresponding pinning
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