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Doped antiferromagnets in the weak-hopping limit
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We study the phase diagram of the two-dimensional t-J-V model of holes in a two-dimensional
antiferromagnet in the J))t limit. Here t is the hole hopping parameter, J is the exchange coupling
between nearest-neighbor spins, and V is the nearest-neighbor electron-electron repulsion. We also
include the possibility of Heisenberg-Ising anisotropy, J,WJ, . We obtain a complete description for
J, &&J, and approximate results for J,=J, . There is no region of the zero-temperature phase dia-

gram that supports a dilute gas of holes in an antiferromagnet. Rather, the system always phase
separates into hole-rich and no-hole phases, a result we believe to be more general than the model
we have considered. We find various hole-crystal phases and, at high hole density, we find a
"Fermi-liquid" phase and at least two superfluid phases, one with a charge 2e and one with a charge
4e order parameter.

I. INTRODUCTION

The discovery of the intimate proximity of supercon-
ductivity and quantum antiferromagnetism in the phase
diagram of the cuprate perovskites has led to an intense
effort to understand the effects of dilute holes in a spin- —,

'

Heisenberg antiferromagnet. The strategy adopted in
many of these studies is to study the apparently simpler
problem of a gas of holes of vanishing density in a back-
ground that is therefore at least locally antiferromagnetic
far from any of the holes. One question that has not been
addressed suSciently carefully in these studies is whether
holes can, in fact, dissolve in an antiferromagnet. In oth-
er words, does there exist a zero-temperature phase that
can be described as a hole gas in an antiferromagnet? In
nature, there are many examples of systems that form
self-bound solid or liquid phases at low temperatures, but
very few that remain gases. A notable exception to this
general rule is found in He- He mixtures, where the
"gas" phase consists of up to 6% He in He. (We return
to this example below. ) We recently have shown' that in
the t-J model, the holes in an antiferromagnet are always
self-bound. In other words, if the average hole concen-
tration is held fixed and suSciently small, then in thermal
equilibrium the system will phase separate into a "hole-
rich" region with finite hole concentration (determined
by the short-ranged interactions between the holes) and a
pure antiferromagnetic region. We also conjectured' that
self-binding is a more general feature of holes in an anti-
ferromagnet in the absence of long-ranged Coulomb in-
teractions. The intuitive reasons for this conjecture are
summarized below. In the present paper, we explore the
phase diagram of a simple, short-range model of holes in
an antiferromagnet, the t-(J J,t)-V model, in the limit
T «J, where we can obtain asymptotically exact results:

Q Q
SR = —. g ctt, so s, s'cia', s' ~

$, 5

nR = ~ cR,.cR,.

(2a)

(2b)

and the Hamiltonian is supplemented by the constraint
that there be no doubly occupied sites, nR =0 or 1 for all
R. The creation operators cR, obey the usual fermion
anticommutation relations. We will talk about empty
sites with nR =0 as being occupied by holes. The concen-
tration of holes x, is given by

1x=1——

where N is the number of sites. We will explicitly consid-
er the case of a two-dimensional square lattice, although
many of our results are trivially generalizable to three di-
mensions. We have chosen to define our Hamiltonian so
that J, and J~ positive corresponds to an antiferromag-
netic exchange interaction; at the end of the paper we
will briefly consider the ferromagnetic" case which is
obtained by taking J~ negative. For J,=J~ =J and
V= —J/4, this model is commonly referred to as the t-J
model. In the limit t &&J, the t-J model is a piece of the
low-energy effective theory of the large-U Hubbard mod-

H= g [J,SaStt +J~(SaSR +SaS$ )]
(R,R )

t (ca,ca, +H. c. )

(R,R')

+ y Vnana + ypnR
(R,R') R

where p is the chemical potential, cR, creates an electron
of spin s on site R,
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el; the omitted pieces are the pair-hopping terms which

may have important effects. Independent of its micro-
scopic origins, the r-( J,J~)-V model is a simple model of
holes in an antiferromagnet, and we learn much that is
generic about the model by studying it in the more
theoretically tractable small-t limit.

Our most important finding is that there is no region of
the zero-temperature phase diagram in which a dilute gas
of holes dissolved in an antiferromagnetic is stable. At
low-hole concentration the system always phase separates
into a hole-rich and an undoped phase. Depending on
the relative magnitudes of V and J, the hole-rich phase is
either an all-hole phase, with one hole per site, or a finite
density hole crystal. While phase separation is most like-
ly in the small-t limit, we have found' that it occurs even
for large t /J.

The results of our calculations are given in tables, and
are best summarized in the phase diagrams shown later in
the figures. At zero temperature and small V we find
complete phase separation; the hole-rich phase has hole
density x =1, one hole per site. For larger V, the lowest
hole-density phase is a crystal with x =

—,
' and a &5 X &5

structure. At hole density x =
—,
' there are at least three

crystalline phases that are stable for different ranges of V.
Finally, for 0&x & —,', and moderate V there are at least
two superfluid phases, one with a charge 2e and the other
with a charge 4e order parameter. The charge 2e phase is
describable in terms of a hard-core quantum dimer mod-
el. For large V and x & —,', we find a Fermi-liquid phase.
We also study the finite temperature phase diagram and
make some inferences concerning how the phase diagram
changes as a function of T and t.

II. THE t =O, Ji =0 MODEL: (V & 4 J,)
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FIG. 1. Schematic phase diagram for the t = V =J,=0 mod-

el. x is the hole concentration per site and T& is the Neel tem-

perature at zero doping (see Sec. II). As discussed in Sec. III,
we expect this phase diagram to be little different if J,AO so
long as

~ J, ~
&&J, . The actual phase diagram reproduced here

was computed in mean-field theory as described in Ref. 4. Since
the undoped system is simply the two-dimensional Ising model,
we know that an exact solution would yield T& =0.57J,

separation in the T~O limit and the phase boundary for
low T goes like

x, —
—,
'

exp [(4 V —J, ) /2ks T) .

Near the x =0 axis there is a Neel ordered phase which
ends in a tricritical point on the coexistence curve.

To warm up, we consider the Ising limit J~=O, with
static holes, t =0. Because t =0, the statistics of the elec-
trons are irrelevant; the model is classical and we can
rewrite it as an effective spin-1 Ising model

JZI= g Sl'tSI't +V g (SaSs ) +pg(sa)
IR, R') (R,R') R

(4)

where SR is a spin-1 operator. We associate SR =+1
with the states in which site R is occupied by a spin-up or
spin-down electron respectively, and SR =0 with the state
in which site R is occupied by a hole. This is a familiar
model which has been widely studied in the context of
He -He mixtures. We restrict our attention to the re-
gion of the phase diagram where the model is well
behaved, V &J, /4. (For V & J, /4 the model has finite
zero-temperature entropy. ) The phase diagram as a func-
tion of x and temperature T computed in mean-field
theory in Ref. 4 is shown in Fig. 1 for V=O. Similar
phase diagrams result for nonzero V &J, j4. The T=0
result can be verified by noting that the ground state flips
from (SR ) =0 to (S~ ) = I as p decreases past

p, =J, /2 —2V. In this regime, the phase diagram does
not depend qualitatively on V; there is complete phase

III. THE r 4 J «J, MODEL (V & —'J, )

We now consider the effect of small admixtures of
quantum processes (nonzero Jt and t) on the phase dia-

gram of the model. For temperatures T greater than
both t and Jt, or for V & —,'J, (where there is a unique

ground state and a gap in the excitation spectrum), these
couplings have little effect. Thus, the phase diagram for
V & —,

' J, is changed little by the addition of nonzero Jz
and t.

We therefore focus our attention on low temperatures
and V & J, /4 where the degeneracy of the classical
ground state is lifted by quantum fluctuations. We keep
terms computed in straightforward degenerate perturba-
tion theory. The results of this calculation are summa-
rized in Table I for dilute holes, x «1, and in Table II
for dilute electrons, 1 —x «1. As mentioned above, for
1)x )0 and V )J, /4 there is a large zeroth order de-
generacy of the ground state. Any configuration of holes
in the otherwise perfectly Neel ordered background such
that there are no present nearest-neighbor pairs of holes
is degenerate with any other. We use degenerate pertur-
bation theory to construct an effective Hamiltonian
which connects the zeroth order degenerate states. For
low hole concentrations, x «1, it suffices to keep one-
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TABLE I. Dilute holes to order Ji/J„t /J„J,t'/J, [See Eq. (5)]. All other one- and two-body in-

teractions are 0 to this order. e„ande~ are the basic lattice vectors.

N(e )

C(e, +e~ =24(2e„)

4{2e„+e~) =34(3e„)

=J,—4V

1 J,+V
4

2+
15 J,

+
30 J,

40 J,

8 't2

3 J,
8

3

8+
3

8V —J,
4V —5J,

4V —J,
5J, +4V

'6e„+ey ) =62e~ )

4J,+
4V —5J,

8 Jj+
15 J,

t2

H' = gen„+ g 4(R R')n—„n„
R IR, R')

r(R —R')(chic~ +H. c. )

I IR],R2, R[,R2

r2(R, —R'„R2—R2, R, —R2)

XCg C&t Cg C&t ++ +
1 Ri 2 R2

and two-hole terms in the effective Hamiltonian. The re-
sult is

where cz is a spinless fermion creation operator that
creates a vacancy on site R and nz =cz cz is the vacancy
number operator. The first term is the hole self-energy.
The second term is a hole potential energy. The third
term is a hole hopping and the fourth term is a hole pair
hopping. The. . . signifies three and more hole interac-
tions which can be ignored for x « I and V) J, /4. To
avoid double counting, we define

4(0)= r(0) = r2(R, O, O) =0,
where the last equality holds for any R. All of the

TABLE II. Small clusters of electrons. Here ~=t'/( —'J, —V), and the terms labeled c, are the delo-

calization energy as a function of wave number to this order. (See especially Sec. IV.)

eo(k)=2r[cos(k„)+cos(k~)], e, (k)=4r[cos(k„)+cos(k~)]+2rand 2r[cos(k„)+cos(k~)]—2r for the

two different bands.

Picture Perturbative Energy
per electron

Heisenberg Energy
per electron
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Z
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3
8
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V —0.5756J
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FIG. 2. Hole crystal structures referred to in the text: (a) is
the &5X&5 hole crystal, (b) is the &2X &2 structure, (c) is the
2 X2 dimer crystal, and (d) is the 2 X 2 square crystal structure.

effective interactions must respect the point-group sym-
metries of the lattice. The values of all the effective in-
teractions (up to symmetry transformations) are listed in
Table I. These expressions are valid for arbitrary values
of V/J, not too close to V=+( —,')J, . However, we are
most interested in the results for V )J, /4. Here, the po-
tential energy terms strongly dominate the hopping
terms; t is higher order in perturbation theory than the
potential terms and the pair-hopping term, ~&, only
operates on nearest-neighbor pairs which are suppressed
in zeroth order by the large nearest-neighbor repulsion
between holes. It is easy to see that at T =0 in this limit,
the holes self-bind to form the &5 X &5 crystal structure
shown in Fig. 2. We expect that the crystal will melt at a
temperature T-Eb =(J~) /30J„ the binding energy of
the crystal.

Even though the effective Hamiltonian has rather unin-
teresting consequences in thermal equilibrium due to the
fact that the holes self-bind into a crystal, it may be in-
teresting to use it to study the properties of nonequilibri-
um holes injected into an antiferromagnet, or to extrapo-
late to parameter regions in which well-controlled pertur-
bative results cannot be obtained. With this in mind we
note that to all orders in perturbation theory in J~ and t,
r(R —R') is nonzero only if R and R ' are on the same
sublattice; there are two distinct types of holes which do
not mix. (This follows from the fact that we are doing
degenerate perturbation theory, so only effective interac-
tions which connect states in the zeroth-order degenerate
manifold are produced. ) Moreover, it is clear from Table
I that the potential interactions produced by spin Auctua-

tions are attractive between holes on opposite sublattices
and repulsive between holes on the same sublattice. The
same sort of oscillatory interactions are produced by the
exchange of spin waves in the Heisenberg limit, since the
spin waves carry wave vector Q =(m, vr.) Thus, some of
the properties of H' may be more general features of
holes in an antiferromagnet.

For hole densities x ) —,', the zeroth-order ground state
is degenerate but of wholly different character; all states
in which no two nearest-neighbor sites are occupied by
electrons are degenerate. For nonzero t, we recognize this
phase as a liquid of Fermions with short-range repul-
sions, i.e. , a normal Fermi liquid. (We ignore the possi-
bility of some more exotic phase transition in the Fermi
liquid at extremely low temperature. )

Density x =
—,
' is special even for V) J, /4. Here, in

zeroth order, the ground state is the &2 X &2 hole crystal
shown in Fig. 2. This state has a macroscopic spin de-
generacy but only a twofold translational degeneracy due
to the ordering of the holes. For nonzero t, the spin de-
generacy for x =

—,
' is lifted by terms of order t . Note,

this is not superexchange, which in any case would be of
order t . The effect occurs due to the Ising interactions
between nearest-neighbor spins in the intermediate states.
The spins are governed by an effective Hamiltonian with
Ising symmetry of the form

H' = g ( Jo+ J",XR + J~XR ),
R

where g' runs over the empty sites R (sites occupied by
holes) in the &2X &2 crystal structure, Xz is the total z
component of the spin of the electrons on the four
nearest-neighbor sites of the hole at R, and the values of
2, are listed in Table III. Whereas this Hamiltonian is
formally site diagonal, XR from neighboring hole sites are
not independent; they have spins in common. The
ground state is still highly degenerate; any state in which
X„=Ofor all R is a ground state. The perfectly antifer-
romagnetically (Neel) ordered state on the electron lattice
is such a state, but so is any state related to the antiferro-
magnetic state by reversing the direction of all the spins
in any row or rows. This results in a ground-state entro-
py that is not extensive, but which grows like the square
root of the size of the system. Presumably, this remain-
ing ground-state degeneracy is lifted by terms of order t;
we have not completed the analysis of these terms but it
seems clear that they will stabilize the Neel state. Thus,
the magnetic order should vanish at a "Neel" tempera-
ture of order t„while the crystalline lattice wi11 melt at
much higher temperature of order (V —J, /4).

TABLE III. Effective interactions in Eq. (6).

t 2

&o= —16
12V —J,
16t'J, (12V+ 7J, )

aJ l 3{12 V —J, )(12V+J, )(4V+J, )

St'J, (12V —5J, )

3t 12V —J, )(12V+J, )(4V+J, )
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IV. THE J, =Ji =J&)t MODEL

The results in this section are summarized in the zero-
temperature phase diagram shown in Fig. 3. The results
for x —,

' are exact; the results for x (—,
' are approximate.

For x & —,', the system can best be thought of as consist-

ing of a dilute collection of electrons. For t =0 and large
to moderate V, these electrons do not tend to form large
clusters, but they do form little "molecules" consisting of
one, two, four, or more electrons. The optimal size and
shape of the molecule is a function of V/J. We have cal-
culated the energies of various small clusters and the
infinite lattice as summarized in the third column of
Table II. [The second column lists perturbative results
for the same energies to second order in J~/J, and
t/(4V —Jz).] The results on clusters of size four or less
are all analytic. The results on larger finite size clusters
were obtained by exact numerical diagonalization. We
did not obtain numerical results for molecules larger than
16 sites. The energy per electron of an infinite Heisen-
berg model has been calculated accurately from series ex-
pansion and Green's function Monte Carlo calculations.
By directly comparing the exact energies it is easy to see
that the optimal molecule is a monomer for V/J ) —,', a
dirner for —,

' & V/J ) —,', and a four-electron square for
—,
' & V/J &0.168. We find that the energy is minimized

by the infinite cluster (i.e., complete phase separation)
when V/J (0.168. We believe that these represent all
the stable molecular phases of the model although we
have not ruled out the possibility that there are interven-

ing phases where molecules of size larger than 16 and less
than infinity are optimal. One should also note that there
is nothing fundamental about this particular hierarchy of
phases; by turning on longer-range potential interactions
we can surely stabilize phases within which arbitrary size
molecules are optimal.

To zeroth order in t, the ground state for x & —,
' and

V/J )0. 168 is highly degenerate; all configurations such
that no two molecules come within one lattice constant of
each other have the same energy. This degeneracy is lift-
ed by a small but finite t.

For V/J )—„',the molecules are simply electrons with

strong short-range repulsions between them. Thus, for
finite t, the system is a Fermi liquid (again, ignoring the
possibility of a further, ultra-low-temperature phase tran-
sition into a more exotic phase).

For 4
& V/J & —,

' and x & —,', the system is a liquid of di-

mers. Each dimer consists of a pair of singlet paired elec-
trons and hence behaves as a hard-core boson. If we sim-

ply do degenerate perturbation theory, the hard-core in-
cludes the nearest-neighbor sites of the dimer.
[Equivalently, we could organize the perturbation theory
such that the repulsion between two dimers which have
exactly one pair of nearest-neighbor sites is
V —(2&3—3)J/4, while the repulsion between two di-
mers on the same plaquette is 2( V —J/2). It makes little
difference if we treat these repulsions relative to the di-
mer hopping r, defined below. ] Thus, the low-energy
physics in this region of parameter space is described by
the quantum-hard-core dimer gas with second quantized
Hamiltonian given pictorially by

V/J

C::

IVIONOMER

LIQUID

3/4

=r g ( I
~ —)(—~I+H. c. ) (7)

D
DIMER

LIQUID

TWO-PHASE

B"

A

SQUARE

LIQUID

1/2

0.168

where a bar represents a singlet pair of electrons and a
dot represents an empty site (i.e., occupied by a hole), the
sum over 3 runs over all triples of nearest-neighbor sites
that form a right triangle, the sum over 3' runs over all
triples of collinear nearest-neighbor sites, and the sum
over 4 runs over all quadruples of sites around a pla-
quette. The effective dimer hopping matrix is easily seen
to be second order in t,

)

3/5

1

1 /2

FIG. 3. Zero-temperature phase diagram for the t-J-V mod-

el (J, =J~) for t ((J. On the line A-B is the square crystal
shown in Fig. 2(d); on BC is the dimer crystal shown in Fig. 2(c),
on the line going up from point C is the monomer crystal shown

in Fig. 2(b), and on the line going up from D is the hole crystal
shown in Fig. 2(a). As discussed in the Appendix, the numerical
value of y, which marks the endpoint of the hole crystal phase,
has only been very crudely estimated.

r=8t'/(3J —4V) . (8)

In additional to the terms in Eq. (7), there are corrections
to the dimer self-energy, and somewhat longer-range
dimer-dimer repulsions of order ~ induced to this order of
perturbation theory. Without going into details we note
that since Eq. (7) describes a liquid of bosons with short-
range repulsions, it should condense into a superfluid
phase with charge 2e quasi-long-range order below a
Kosterlitz-Thouless transition temperature TKz =f (x)r,
where f (x)—(1 —x) as x ~ l.

In similar fashion, for x & —,
' and —,

' & V/J &0.168, the
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low-energy effective theory is a theory of hard-core bo-
sonic molecules with charge 4e. The effective hopping-
matrix elements for these molecules is of order t, so the
superAuid transition temperature is very low. Nonethe-
less, we feel that the existence of a superAuid phase with a
charge 4e order parameter is quite interesting.

For x & —,
' we cannot obtain a formally well-controlled

systematic solution to the model. However, we believe
that the results are qualitatively the same as in the
J~ &&J, limit where there is an attractive interaction of
order J between static holes on opposite sublattices.
Since, by assumption, J&)t, this immediately implies
phase separation into a hole crystal phase. This feature
certainly persists in the Heisenberg limit. Moreover,
since the hole crystal is always fairly dense (see phase dia-
gram in Fig. 3), the presence or absence of long-range
magnetic order at zero temperature has almost no effect
on this result; it is the attractive interactions between
holes no more than a few lattice sites apart which drives
the phase separation. One can estimate the magnitude of
the interactions for the t-J-V model by simply taking the
perturbative results in Table II and evaluating them for
J~=J,=J. The results are shown in Table IV. Alterna-
tively, one can attempt to extract results from exact nu-
merical diagonalization of finite size systems with static
holes. We have done this for 4X4 systems with periodic
boundary conditions and have analyzed the results as de-
scribed in the Appendix. As is clear from the table, there
is good agreement between the two methods with regard
to the sign of the interactions, at least at short distances.
The numerical results consistently yield larger magni-
tudes for the attractive part of the interactions. On the
basis of these approximate results we infer that the doped
Heisenberg antiferromagnetic forms an x =

—,
' hole crystal

for V & yJ where from perturbation theory we estimate
y= —,',-'=0.2, and from the numerics we estimate @=1.
For V & 0. 168 J we find complete phase separation into a
perfect antiferromagnet and an x = 1 all hole region.

TABLE IV. Interactions between static holes in the Heisen-
berg model. The 4 notation is the same as in Table I. The
second column is the obtained by substituting J, =J,=J in the
expressions from Table I. The estimates in the third column
were obtained from numerical solution of the model on a 4X4
lattice with periodic boundary conditions as described in the
Appendix.

V. THE FERROMAGNETIC MODEL,
—J, ) —J, ))t (ANALOGY WITH He MIXTURES)

So long as the ground state is completely ferxomagneti-
cally aligned, we can compute the low-energy properties
of the system exactly; there are no perturbative correc-
tions in J, /J, . The ferromagnetic state will be the
ground state if

~ J, ~
& (

—J ) and t && (
—J, )

—
~ J~ . Thus,

the low-energy hole motion is described by the effective
Hamiltonian

& =e & utt tttt = t X «tt &tt +H c )
R R, R'i

+ y U~R aR ~R R'' (9)
(z,z )

where a is the hole creation operator, e= —(4V+J, ),
and U =( V+J, /4}. Note that the hole bandwidth is en-

tirely unrenormalized. For V ) —J, /4, the hole-hole in-

teractions are purely repulsive. Thus, we expect the hole
gas to be stable at all concentrations. In addition to the
excitations of the hole gas, the system possesses spin exci-
tations above a gap energy that vanishes as J,~J~, the
massive Inagnon. The ferromagnetic order persists up to
a finite temperature which is roughly of order J„al-
though it depends on the hole concentration and vanishes
as x ~1 or as Jj ~J, . For V & —J, /4, the interactions
are attractive and the system may phase separate.

Note that the results we have obtained apply equally
we11 to the case in which J~ is positive. In this case the
magnetic ground state is still ferromagnetically ordered
and so the hole kinetic energy is unfrustrated. From the
point of view of magnetism this is curious since for J, & 0
and J~ & 0, the magnetic part of the Hamiltonian can be
transformed into a purely antiferrornagnetic Ising-
Heisenberg model by a canonical transformation. If we
are dealing with magnetism alone it is conventional to
call this model "antiferromagnetic" even though the ac-
tual spin order is ferromagnetic since all its thermo-
dynamic functions are exactly equal to those of the pure
antiferromagnetic model. However, in the presence of
mobile holes, the canonical transformation cannot be per-
formed without at the same time transforming the hole
hopping term. Thus, the holes distinguish between a true
antiferromagnet, where the hole kinetic energy is frus-
trated, and a model with a ferromagnetic order which is
formally related to the true antiferromagnet but in which
the hole kinetic energy is unfrustrated.

Picture

N{e )

4(e +e~)
e(~. )

'
4(2e +e~)
4(3e, )

+AF

Extrapolated P.T.

V —0.25J
0.033J
0.017J

—0.025J
—0.008J

—4 V+ 1.133J

2 V —0.667J

Numerics

V —0.52J
0.028J
0.028J

—0.024J

—4 V+ 1.283J

2 V —0.668J

VI. He- He MIXTURES (0&J„&J~ )

The ferromagnetic t-( „JJ)- mVodel in the XY limit
incorporates many of the important features of He- He
mixtures. Here we imagine a lattice-gas model of the He
liquid and we incorporate the hard cores by imposing the
constraint that no two He atoms can occupy the same
lattice site. We also ignore the nuclear spin of the He
atom. (Since, in any case, two He atoms cannot occupy
the same site due to the hard core, the existence of two
types of He atoms, spin up and spin down, which would
in principle allow double occupancy of a site, should not
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have a very important effect on the physics at low He
densities. ) Thus, we are left with a lattice-gas model of
hard-core bosons and spinless ferrnions. Such a model is
exactly of the same form as Eq. (1), where a spin-up site
corresponds to a site which is occupied by a He atom, a
site occupied by a hole corresponds to a site occupied by
a He atom, and a spin-down site corresponds to an emp-
ty site. Thus —J~ is the He hopping matrix element, t is
the He hopping matrix, J, is the nearest-neighbor He-
He repulsion, V is the He- He repulsion, p is the He

chemical potential. The He chemical potential has been
set equal to zero. Another value of the He chemical po-
tential would correspond to an external magnetic field in
the z direction in the spin language. He superfluid order
corresponds to the XY order in the spin language, which
is why the analogy holds only in this limit. (Ising order
in the spin model would correspond to crystalline order
in the He. ) From the experimental fact that He is im-
miscible in He beyond 6'%//concentration, we infer that,
at least in three dimensions, the holes in a ferromagnetic
XY-Heisenberg model will phase separate for concentra-
tions larger than some small, but nonzero hole concentra-
tion.

For 0 & J, & J~ we cannot obtain similarly exact results
as in the Ising limit. However, the only differences we ex-
pect in the qualitative behavior in this region of parame-
ter space are the following: (1) The ferromagnetic order
parameter will lie in the XY plane rather than along the z
axis. (2) There will be a massless spin-wave mode due to
Goldstone's theorem, as opposed to the massive magnon
we observe in the Ising limit. (3} The ferromagnetic
long-range order will be destroyed by thermal fluctua-
tions at any finite temperature. Instead, we expect quasi-
long-range ferromagnetic order below a Kosterlitz-
Thouless temperature, which is roughly of order J~ but
which vanishes as J,~J~ or as x~1. (4) There are
long-range effective interactions induced between the
holes by the exchange of ferromagnetic spin waves. It is
not completely clear what the effect these interactions
have; as suggested below they could lead to phase separa-
tion beyond a critical hole density.

VII. CONCLUSIONS AND SUMMARY

We have studied the t-(J„J~)-Vmodel in the small-t
limit. In this limit we find that wherever the ground state
is antiferromagnetically ordered (whether the purely
magnetic part of the Hamiltonian is related by a unitary
transformation to an antiferrornagnet or to a ferrornag-
net}, there is no stable zero-temperature phase with van-
ishing hole density; holes introduced into a pure antifer-
romagnet are always self-bound and so there is a
minimum stable hole concentration necessary for a
homogeneous phase. In addition to various hole crystal
phases, we also found that at relatively high hole concen-
trations there exist charge 2e and charge 4e superfluid
phases.

Based on the intuition we have developed in this study,
we have made several speculations concerning the behav-
ior of more realistic models of doped antiferromagnets.
(1) We believe that some of the features of the phase dia-

gram we have derived in the small-t limit survive even
when t is larger than J. In particular, we feel that the
self-binding of holes at low temperature and low-hole
concentration is a general feature of holes in an antifer-
rornagnet. Of course long-range Coulomb interactions
must drastically change this behavior. Consider the be-
havior of the system at fixed low concentration of holes
(in the forbidden reigon of the phase diagram) and imag-
ine adding to the model a long-range Coulomb interac-
tion of the form V(R) =e /sR. For s large enough, the
long-range Coulomb interactions will only affect the na-
ture of the ground state over very long distances. Thus,
the holes will form droplets of the preferred hole density
and those droplets will in turn form a crystal of some
sort. In three dimensions some sort of staging in which
hole-rich and undoped layers alternate in a commensu-
rate pattern should occur. On the other hand, as we
reduce c., we expect that the Coulomb interactions will
destroy even the short-ranged hole order. Finally, for
small enough c., the holes will form a %igner crystal in
the antiferromagnetic background. (2) We expect that at
sufficiently high dopant concentration, there exists a
charge 2e s-wave superconducting state of electrons.
(Note it is possible that at dilute hole concentrations and
large r /J, a superconducting state, if it exists, may be d
wave. ) It is interesting to ask whether the charge 4e su-

perconducting state survives to large t.
Finally, we note the present results reinforce the idea

that data on the lightly doped perovskite superconduc-
tors should be examined to determine whether, in fact,
they are intrinsically inhomogeneous. It is possible that,
even if phase separation of the holes occurs, it does so for
purely extraneous reasons, such as preferred packing
structures of the oxygens. However, we would also like
to suggest that in lightly doped antiferromagnetic materi-
als there is an intrinsic tendency to form an inhomogene-
ous state. In fact, there is strong evidence that phase
separation occurs in oxygen doped LazCu04. Moreover,
in Sr doped La2Cu04, muon-spin-relaxation experiments
have revealed the existence of a low-temperature transi-
tion to a state with frozen moments, even in supercon-
ducting samples, with a transition temperature that ex-
trapolates to zero at 15% at. Sr concentration. A natural
interpretation of this is that the critical hole concentra-
tion in these materials is x =0.15, and that all samples
with lower concentration of holes are intrinsically inho-
mogeneous. This would further imply that the supercon-
ducting transition as a function of x at x =0.05, is a per-
colative transition.
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APPENDIX; ESTIMATING THE HOLE-HOLE
INTERACTIONS FROM THE NUMERICS

We have estimated the interactions between static
holes from the results on the 4X4 system in various
ways, all of which produce roughly equivalent results.
The method we finally used was as follows. (I) The ener-

gy per bond of the 4X4 lattice with no holes is —0.702J.
The best estimate of the same energy for the infinite sys-
tem is —0.669J. Since at a crude level, the energy to add
a hole to an antiferromagnet is simply the energy to
break a certain number of bonds, we have rescaled all en-
ergies computed for the 4X4 system by an overall multi-
plicative factor of 0.669/0. 702=0.953. (2) The energy to
add one static hole to an antiferromagnet, c., was comput-
ed by taking the difference of the ground-state energy of
fifteen spins and one vacancy and the 16 spin ground-
state energy, and rescaling the energy as above. (3) To es-

timate the two-hole energy we computed the ground-state

energy for two vacancies in the 4X4 system. We chose
to estimate the energy of two noninteracting holes not by
doubling the result in (2), but rather by taking the energy
for two vacancies as far apart as possible (in this case,
that means at a distance of 2&2 lattice constants apart)
to be the energy of two independent holes. The difference
between this energy and the ground-state energy of two
vacancies at smaller separation, rescaled as above, was

then taken to be the interaction energy between the two
holes.

One further aspect of the calculation should be noted.
For the 16 spin system with no holes, the ground state
has spin 0. For the 15 spin system with one hole, the
ground state has spin —,'. For 14 spins and two holes, one

on the red sublattice and one on the black sublattice, the
ground state has spin zero, while for both holes on the
same sublattice it has spin 1. This is in keeping with the
extrapolated results of perturbation theory in J~/J„in

which the z component of the spin in the ground state has
the same dependence on hole number and location.
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