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Effective spin Hamiltonian for the Cuo planes in La2Cu04 anti metamagnetism
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We show that the effective spin Hamiltonian used previously to describe the CuO planes of
La2Cu04 does not lead to a net ferromagnetic moment for CuO planes and hence does not describe

the metamagnetic behavior seen experimentally. %'e construct for the first time a Hamiltonian from

the symmetries of the crystal structure which does lead to metamagnetism. The linear spin-wave

spectrum is also calculated. This work points to the necessity of constructing effective spin Hamil-

tonians for metamagnetic systems which have the same symmetries as the system they are to de-

scribe.

We construct for the first time an effective spin Hamil-
tonian for the CuO planes of undoped La2Cu04 whose
classical ground state has a small ferromagnetic moment
and calculate the corresponding linear spin-wave spec-
trum. The CuO planes are known to have a small fer-
romagnetic moment from the metamagnetic behavior
seen in measurements of the static magnetic susceptibili-
ty, ' although the interactions are predominantly antifer-
romagnetic. This weak ferromagnetism (WF) is present
in other materials and Dzyaloshinskii proposed that this
could be accounted for by the presence of an extra term
in the Hamiltonian beyond the isotropic antiferromagnet-
ic (AF) Heisenberg term of the form D S, XSJ, where S;
and S are spins at the sites i and j. He pointed out that
this contribution is not forbidden by symmetry in an ex-
pansion of the free energy if the symmetry of the system
is sufficiently low. Moriya then showed that this extra
term arises from the effect of the spin-orbit interaction on
the superexchange characterized by the Heisenberg J.
He showed that ~D~ —(b,g/g)J, where g is the value of
the free-electron gyromagnetic ratio and bg was the shift
in that value due to the spin-orbit interaction. He also
gave rules for determining the direction of D from the
symmetries of the spin system.

This extra term, the Dzyaloshinskii-Moriya (DM)
term, has been applied by a number of authors' ' to the
description of WF and has more recently been used to de-
scribe the metamagnetism' or spin-Aop transition, the
magnetoresistance, and the conductivity of undoped
La2Cu04. In the present work we show that the in-

clusion of the original DM term, where 0 is taken to be a
constant, in an effective spin Hamiltonian does not lead
to a description of WF but that a generalization of the
DM term, which is determined by the symmetry proper-
ties of the crystal structure, does lead to a net ferromag-
netic moment in the ground state. We consider as an ex-
plicit example the CuO planes of La2Cu04 and show that
the important symmetry of the crystal structure which
leads to the CuO planes having a net ferromagnetic mo-
ment is that each Cu site should be a center of inversion.
We note in passing that an alternative model for WF was
introduced by Borovik-Romanov and Orlova" and is dis-

cussed in detail in Ref. 4. In this model WF arises be-
cause there are different g tensors for different sublattices.
The WF is only manifest in applied fields and since there
is evidence for WF in the absence of applied magnetic
fields in the systems being considered here we shall not
discuss this model further.

Since the discovery of high-temperature superconduc-
tivity in a number of different families of compounds, all
of which have in common CuO planes, there has been a
great deal of work done to characterize and understand
the properties of the CuO planes in these compounds.
The simplest of these compounds are derived from
La2Cu04 by doping either with strontium' or with bari-
um' or excess oxygen. ' The unit cells of these La2Cu04
compounds contain a single Cu0 plane and the essential
physical properties which lead to high-temperature su-

perconductivity should be found in this system. An im-

portant part of the investigation of these compounds is
the study of undoped La2CuO&. Undoped La2Cu04 un-

dergoes a structural phase transition from tetragonal to
orthorhombic symmetry at a temperature around 500 K.
At the transition temperature the CuO octahedra tilt by
about 0.027 rad so that the CuO planes are buckled. ' '
This is shown in Fig. 1, which is taken from Endoh
et al. ' This system and the closely related compound,
K2NiF4, have been studied by x-ray diffraction and neu-

tron scattering and recently reviews of theoretical and ex-
perimental work on this system by Chakravarty' and
Birgeneau and Shirane' have appeared.

In order to find a spin Hamiltonian to describe the
CuO planes of LazCu04 one has to determine the sym-

metries of the crystal structure. In particular, one can ar-
range the tilted CuO octahedra, shown in Fig. 1, in two
different periodic arrays as shown in Fig. 2. We will con-
sider the arrangement of Fig. 2(a) here although there is
some evidence of a low-temperature tetragonal phase
which may be represented by the arrangement of Fig.
2(b). The arrangement in Fig. 2(a) can be arrived at by
projecting the CuO octahedra, as shown in Fig. 2 of
Grande et al. ,

' onto the CuO planes and all our analysis
is based on this arrangement of Cu and 0 atoms. We will
describe this system by a spin Hamiltonian which is made

42 6509 1990 The American Physical Society



6510 DERMOT COFFEY, K. S. BEDELL, AND S. A. TRUGMAN 42

()
()

~ Cu+

02-

ihL '+

up of an isotropic AF Heisenberg term together with a
term of the Dzyaloshinskii-Moriya (DM) type which is
shown in Eq. (1).

H= g IJS, .S +D; S;XSJI,
&1'j &
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FIG. 1. Crystal structure of undoped LazCu04 [taken from
Endoh et aI. (Ref. 14)] where the arrows indicate the tilting of
the CuO octahedra.

where i and j are nearest-neighbor sites.
This is a more general form of DM term than has been

used by previous authors ' in that 0;- varies from
bond to bond, and we will show below that this form is
essential in order to describe either La2Cu04 or weak fer-
romagnetism in general. The effective spin Hamiltonian
must have the same symmetries as the system and in par-
ticular the DM term must be invariant under transforma-
tions which leave the crystal structure unchanged. Con-
sidering Fig. 2(a) we find the following symmetry opera-
tions. (i) Twofold axis of rotation normal to the plane
through a point C midway between each two Cu spins,
(ii) a center of inversion at each Cu spin, i.e., the point B,
(iii) reflection in a diagonal through the plane containing
AD and the normal to the CuO plane, (iv) twofold rota-
tional axis through BF, and (v) a center of inversion
through the center of each plaquette O. The symmetry (i)

implies, following the rules originally found by Moriya,
that the DM vector 0; lies in the CuO plane. This may
be seen by considering the contribution to the Hamiltoni-
an from the interaction of the spins at A and F and
remembering that under the symmetry (i) the two com-

ponents of 8 in the plane change sign whereas the com-

J L L L J L
I r

J Lsr
$3 0 (j::3) 0 (II)'

(III| - "53 0 (II3':: ~)

CZ) 0 G)':; III) 0 (IIIt'

0 o 0 0 o

0 Ci)
0 0 L L

O
J L
e r

J L

J Lsr
C3 (Di

o Q
0 gi,

0 ~ 0
-g) 0(It)::0 X~I9 0 Q~:: qadi

(a)

FIG. 2. (a) The "orthorhombic" arrangement of the CuO octahedra. Here a schematic drawing of a CuO plane in the orthorhorn-
bic arrangement is shown which may be found by considering Fig. 2 of Grande et al. {Ref. 14) and projecting the tilted octahedra on
to the CuO plane. The dashed line connects the face centered 0 atoms associated with the octahedron shown in Fig. 1. The shaded
circles are 0 atoms which are tilted down out of the plane, while the open circles are 0 atoms tilted up out of the plane. The hatched
circles are the sites of the Cu atoms and of the spins. They are also the sites of the 0 atoms in the CuO plane above that under con-
sideration, and the arrows indicate the direction of motion for the 0 atoms associated with the tilt of the octahedra. In this arrange-
ment diagonal lines of octahedra tilt in the same direction. (b) The "tetragonal" arrangement of the octahedra. The symbols are the
same as in (a). In this arrangement the lattice may be broken into sets of four octahedra which successively tilt towards their com-
mon axis (the line through the point 0) or away from it.
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ponent parallel to the axis of rotation remains un-

changed. The syinmetry (ii) implies that the DM vector
alternates in sign on successive bonds. This may be seen

by considering the contribution to the Hamiltonian from

the DM interaction between the spins at A, 8, and E,

Q/2

Q/2

Pp(2 PP/2

iz~
/2

D„~.S„XS~+D~E.S~ XS~ . (2) Q/2

Under inversion A and E are swapped and 8 does not
change. S~, Sz, and SE also remain unchanged under in-

version so that Eq. (2) becomes

FIG. 3. The classical ground state for the Hamiltonian where

the DM vector alternates in sign on neighboring bonds. All

spins lie in the DM plane.

D~~ S~ XS~+DqE S~ XS„. (3)

In order for Eqs. (2) and (3) to be identical, as required by
the inversion symmetry of the crystal structure
D„z= —D~z. Applying (iii) one finds that if
D„a=(d„d2,0), then D„F=(—dz, —d„O),and apply-
ing (iv) one finds that D„s= —DFn and D„F= —Dsn.
Not all of the above symmetries are independent. For in-

stance (iii) after (v} is the same as (iv) and there are other
symmetries such as mapping rows onto one another
which are made up of (i) to (v). The constraints that sym-
metries of the kind (ii)—(v) place on D," have not previ-

ously been discussed in the literature to our knowledge.
Once D; is fixed on a single bond, these symmetries
determine D; on the entire lattice.

d
&

and d2 remain to be determined from a microscopic
calculation; however, two cases may be identified, (1}
sgn(di)Asgn(d2) and (2) sgn(d, )=sgn(di). The ground
state for case (1) has a net ferromagnetic moment,
whereas that for case (2) does not. If J in Eq. (1) is set to
zero, case (1) has a ground-state spin configuration with
two sublattices, and case (2) has four sublattices. The
ground-state spin configuration does not change as d, /d2
is varied, except that there is a first-order (discontinuous)
transition when the case switches between (1) and (2) (ei-
ther d, or dz is equal to zero). There is always a Gold-
stone mode associated with a global rotation of the spin
configuration about a particular axis. That axis is

(1,—1,0) for case (1) and (1,1,0) for case (2). The ground
state is in general frustrated, in that it is impossible to
construct a state for the extended system with the energy
per bond as low as —ID; I. The only exceptions are
when d i

= —d2 and d i =d2, which are unfrustrated.
Since case (2) does not describe systems with a nonzero
ferromagnetic moment, we consider hereafter only case
(1). We consider the representative example dt = —d2,
leaving a more detailed investigation of case (1) to be re-
ported elsewhere. '

Aside from the global rotational invariance about the
DM vector, (1,—1,0), the (unfrustrated) ground state is
uniquely determined, and is shown in Fig. 3. The spins
lie in the plane perpendicular to the DM vector which we
henceforth refer to as the DM plane. There is a net fer-
romagnetic moment due to the DM vector. The ex-
istence of the net moment relies on the fact that the DM
vector alternates in sign from one bond to the next. This
property of the DM vector is missing in the work of pre-
vious authors' ' where D was taken to be a constant.
The classical ground state for that case is shown in Fig. 4
and one sees that the direction of the spin spirals so that

and

JoM =&J'+ ID~) I'

f (q)= —,'[cos(q„a)+cos(q a)] .

FIG. 4. The classical ground state for the Hamiltonian where
the DM vector is constant for each bond. All spins lie in the
DM plane.

there is no net moment. Previous authors concluded that
there was a net moment by assuming that there were only
two sublattices and then analyzing the free energy of the
system in terms of the magnetizations of these sublat-

tices. Clearly there are more than two sublattices, and, in

fact, unless

/=tan '(ID
1 I /J) =sr/n,

where n is an integer, there are an infinite number of sub-
lattices. So taking D; to be a constant does not lead to a
ferromagnetic moment and such a Hamiltonian cannot
describe %F or metamagnetic systems. This point was
hinted at by Ke6'er in a review of spin waves some time
ago, however the implications for descriptions of WF
have been ignored up to now so that recently, experimen-
tal results ' have been analyzed keeping D; constant.

Given the classical ground state it is straightforward to
calculate the spin-wave spectrum in the mean-field ap-
proximation. The ground state may be described in
terms of two sublattices, A and 8, and the directions of
the sublattice magnetizations specify directions of spin,
S~ and Sz. Deviations of S„andSz from these direc-
tions correspond to excitations of the system. The equa-
tions of motion for S~ and S~ are linearized with respect
to these deviations and one finds for the spin-wave spec-
trum

~(q) =4~&(JoM+ Jf (q)) I JoM(1 —f (q) ) I

where
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In Fig. 5 the spectrum is plotted for different values of
the ratio ~D; ~/J and one sees that the eff'ect of the DM
term is to open a gap at q=(~/a, m. /a) because it now
costs energy for the spins to have a component out of the
DM plane. One finds that in the long-wavelength limit
co(q) =

~q~ Vz with a renormalized spin-wave velocity V, .
The spin-wave spectrum for the case of constant D can
be calculated despite the fact that there may be an infinite
number of sublattices. An orthonormal triad of vectors
(S, , S,', S, ) are defined at each site j, with S, in the direc-
tion of the spin in the classical ground state, S,' in the
direction of D;, and S =S.XS'. In this basis, the equa-
tions of motion at each site are identical. One could also
have derived co(q) for the alternating D;/ case, Eq. (4), us-

ing this procedure. One finds that co(q) is given by Eq. (4)
in the constant D case also. The spin-wave spectra are
the same for both constant and for alternating D;j be-
cause the DM vector enters quadratically in the calcula-
tion.

In the above analysis it was found that the ferromag-
netic moment of the CuO planes could point in any direc-
tion within the DM plane which is the origin of the Gold-
stone mode leading to co(q) vanishing in the long-
wavelength limit. However, it is known from neutron-
scattering experiments that the spins have a definite
direction. This may be incorporated into the spin Hamil-
tonian by making the Heisenberg part of the Hamiltonian

anisotropic in the DM plane thus breaking the rotational
symmetry about the DM vector of the ground-state spin
configuration. There is a weak effective antiferromagnet-
ic coupling between the CuO planes, Jz, which leads to
the ferromagnetic moments of adjacent CuO planes being
antiferromagnetically aligned. (The interplanar coupling
J is added phenomenologically for a cubic lattice. The
real situation is more complicated, since the Cu sites in
adjacent planes are not directly above one another. )

These extra terms modify the Hamiltonian for the system
so that it becomes

I= g t J)[s;"S"+Sfs]+J2S,'S'
(i,j )

+d„[(s,"+s~)s;—s;(s,"+s~)]I

+ g J/, Sk Sk ,
&kk&

'
where D;, =d;, (1, —1,0), i and j are nearest-neighbor
sites in the same CuO plane and k and k' are nearest-
neighbor sites in adjacent CuO planes. The metamagnet-
ic behavior then follows when a sufficiently strong mag-
netic field is applied that the planar moments all align
rather than alternate. This metamagnetism depends on
D; changing sign on alternating bonds, which gives the
ferromagnetic moment to begin with, and on the anisot-
ropy of the Heisenberg term in the DM plane, which
picks out a preferred direction for the moments.

Following the same procedure as for the two-
dimensional case we calculate the spin-wave spectrum
and find

2.0

co(Q)= I[Q, (q)+Q„(q,)][Qz (q)+Q2, (q, )]I'/2

where

J]+J2
Q) (q)=4S JDM+ f(q)

(6a)

1.5

(J, —J2) (J, +J2)+, [1+f(q) l2 2JDM

Q„(q,)=2SJ [1+g(q, )],

(6b)

(6c)

1.0

Ji-J2
Q2p(q) =4S [1+f(q)]+JDM [1—f (q)]

2

Q2, (q, ) =2SJ~ [1—g (q, )],
g (q, ) =cos(q, b),

(6e)

(6

0.5 and the effective coupling constant in the DM plane now
becomes

JDM = (J, +J~) + D,"
4

1/2

(6g)

0.0
0.0 0.2 0.4 0.6

q/z = q(1,1)
0.8 1.0

FIG. 5. Spin-wave spectrum along the {1,1) direction, Eq. {4).

Equations (6) are written for the extended zone but one
may easily recover the corresponding expressions for the
reduced zone in which there are two branches of the
spin-wave spectrum by folding back the spectrum into
the reduced zone. Mermin and Wagner showed that if
there was a continuous symmetry in the ground state of a
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co(0,0, 0)=4S (Ji
—Jz )

J, +J2 (J, —J2)1+
JDM

' 1/2

+JDM+ Jp (7a)

co(tr, n, 0)=4SI JDM[2JDM —(J)+J2)+J ]I
'~ (7b)

which agrees with the results of previous authors, ' '

once J is set to zero, ~D; ~
is taken to be negligible com-

pared to J, or J2 and J, =J2. Consequently, the effects
of fluctuations, both quantum and thermal, are reduced
even in the absence of coupling between planes and, in
particular, there is long-range order for sufficiently low

two-dimensional system, thermal fluctuations destroy the
long-range order. In the case of the Hamiltonian in Eq.
(1) describing uncoupled planes there is a Goldstone
mode in the DM plane so that there is no long-range or-
der at finite temperatures. However, if a magnetic field is
applied which has a component in the DM plane a direc-
tion is picked out for the ferromagnetic moment and the
continuous symmetry no longer exists. As a result a gap
opens up at q=O in the spin-wave spectrum and there is
long-range order up to a finite temperature. A similar sit-
uation arises for the J,AJ2 in Eq. (5) even if J =0 and
there is no applied magnetic field. Examining Eqs. (6)
one sees that the anisotropy in the DM plane leads to a
gap in the spectrum at q=O whether or not the planes
are coupled. In particular, the expressions for the two
gaps which appear in the reduced zone are found by
evaluating the co(Q) at (0,0,0) and (tr, tr, 0). One finds

temperatures even for the purely two-dimensional case.
We are presently carrying out estimates of the effects of
fluctuations and the results will be reported elsewhere.

In summary, we have shown that one has to generalize
the term originally introduced by Dzyaloshinskii and
Moriya in order to describe WF in predominantly antifer-
romagnetic systems. This WF is a prerequisite, together
with an anisotropy of the Heisenberg term in the DM
plane, for the metamagnetic behavior seen in La2Cu04.
In particular, we have shown that when one considers the
symmetries of the crystal structure of La2Cu04 the DM
vector alternates in sign from one bond to the next and it
is this property which leads to weak ferromagnetism in
the system but which is missing from all previous Hamil-
tonians used to describe WF. In general, in order to de-
scribe the metamagnetic behavior, which is seen in
heavy-fermion and other systems, it is necessary to
determine the DM vector from the crystal symmetries.

Note added in proof. We are grateful to P. Kumar for
bringing to our attention the work of Q. Xia and P. S.
Riseborough, J. Appl. Phys. 67, 5478 (1990), on the spin-
wave excitation spectrum of a one-dimensional
Dzyaloshinski-Moriya antiferromagnet in which the DM
alternated in sign from bond to bond.
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