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Imperfect nesting in quasi-one-dimensional charge- and spin-density waves
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In quasi-one- and two-dimensional charge- and spin-density-wave systems, the imperfect nesting

plays the crucial role in their thermodynamics and transport properties. We study systematically
the effects of the imperfect nesting on the condensate density in both static and dynamic limit and
related transport properties in charge- and spin-density waves.

I. INTRODUCTION

Since the discovery of the Frohlich conduction in the
charge-density wave (CDW) of NbSe3, a large class of
both inorganic and organic CDW-supporting materials
were found. ' A number of low-temperature properties of
these materials are well described in terms of mean-field
theory starting from the quasi-one-dimensional Frohlich
model for the CDW (Ref. 2) and the quasi-one-
dimensional Hubbard model for the spin-density wave
(SDW). Central to these models is the notion of im-
perfect nesting, which does not exist in the one-
dimensional model. In the limit of perfect nesting (i.e., in
the limit of small imperfect nesting) the thermodynamics
of the system within mean-field theory is identical to the
one for a BCS superconductor. Then the imperfect nest-
ing depresses the CDW (SDW) transition temperature
and destroys completely the CDW (SDW), when the im-

perfect nesting becomes larger than a critical value.
Indeed Yamaji was able to describe the remarkable
phase diagram of Bechgaard salt (TMTSF)2PF6 under
pressure established by Jerome et al. by assuming that
co, the unnesting parameter, increases linearly with pres-
sure. Very similar depressions of the CDW transition
temperatures in NbSe3 under pressure have been ob-
served by Briggs et al. , which is also described in terms
of the pressure dependence of the imperfect nesting.
Further, in the presence of imperfect nesting the quasi-
particle energy gap is no longer the same as b,(T), the or-
der parameter, as first shown by Yamaji. More recently,
we have shown that a similar model for the CDW ac-
counts for the electron density of states of CDW's in

NbSe3 observed by the electron tunneling technique. '
We emphasize here that a large ratio of 6, (0)lk~ T„

where 5, (0) is the apparent energy gap at T=O K in
CDW's of NbSe3 and in SDW's of Bechgaard salts is due
to the imperfect nesting and not due to the strong
electron-phonon interaction as commonly assumed until
now, though the strong electron-phonon coupling was
originally invoked"' to interpret the anomalies in the
layered compounds.

The object of this paper is to study a variety of physical
quantities that characterize the transport properties of
the CDW and SDW in the presence of imperfect nesting.
Since the effects of imperfect nesting in a CDW is parallel

with

Eo= ,' tb cos(ap—F—)[t,sin (apF ) ]

Here we assumed that

(3)

&)tb &) t (4)

Then, for not too large co, the ground state of the
Hamiltonian is a SDW with the nesting vector
Q=(2pF, nlb, ~lc), and the quasiparticle Green's func-

tion in a SDW is given by

G '(p, to„)=ito„g—
gp3

—bp,—o3,
where

(=v ( lp ) I

—pF ) —2t„cosg —2t, cos(cp, ),
g =cocos(2$), P = bp2

and co„ is the Matsubara frequency and p,. 's are the Pauli
matrices operating on the spinor space formed by the
right-going and the left-going electrons.

The gap equation is now given by '

to those in a SDW, we consider mostly the anisotropic
Hubbard model introduced by Yamaji. The Hamiltoni-
an is given by

H=g (ep)C C +Urn &n

p, a

where

E(p ) = —2t, cos( ap, )
—2tb cos( bp & ) 2t, cos(c—p 3 )

—p (2)

and p is the chemical potential, C and C are the
electron-creation and -annihilation operators with
momentum p and spin a ( = f or l), and n~& and nq~ are
corresponding number operators. In the vicinity of the
Fermi surface, e(p) is well approximated as

e(p)= v(Ipl —pF) —2tbcos(bp2)

coco—s(2bp2 ) 2t, cos(c—p3),
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1=U7r7 g ([(co„+ill) +6 ]
' ) ln(eo/bo) = —2 g ( —I )"+'Ko(nP, eo),

n=1
(9)

X= U dx tanh —,
' Acoshx —g where now p, =(ksT, ) '. Comparing this with Eq. (8)

with c0=0, we conclude that T, is determined from

=
—,
' U ln(2E, /b, ) Eo=b(T, ), (10)

—2 g ( —I )"+'Ko(npb )Io(n13co), (7)
n=1

where U= UNo, No=(~ubc) ' is the electron density of
states at the Fermi surface per spin and ( ) means the
average over p, E, =v'2t, is the cutoff energy Io and Ko
are modified Bessel functions, and P=(ks T) is the in-
verse temperature. Equation (7) is somewhat simplified
as

ln(b, /b, )= —2 g (
—1)"+'K (nf3b )I (npe ), (8)

n=1

where 50=2E,exp[ —2(U) '] is the energy gap at T=0
K and so=0. We see immediately from Eq. (8) the order
parameter 6 at T =0 K is 6=h0 independent of c0.

Although the temperature-dependent 6 is already dis-
cussed by Yamaji, we calculate 5( T, eo) numerically,
which is shown in Fig. 1 for several so/ho. 5(T,eo) thus
obtained describes quite well the width of the NMR in
the SDW of (TMTSF)2PFs measured at several pressures
by Takahashi et al. '

The transition temperature T, is given, on the other
hand, by

where h(T) is the BCS energy gap for so=0. This irn-

plies that T, tends to zero as c0 approaches h0.

II. CONDENSATE DENSITY

As is well known, the collective transport of the CDW
and SDW is characterized by the condensate density f,
which takes two limiting values fo (dynamic) and f,
(static) as given by

f0= 1 —2 g (
—1)"+'K(nPb, )Io(nPeo)

n=1

and

K(z)= I dx e '"'""sech x .
0

(13)

For example, the phase Hamiltonian for a SDW is

given by

f, = 1 —2Pb, g (
—I )" + 'nK, (n Pb )Io( n Peo), (12)

n=1

where K1 and I0 are again modified Bessel functions
awhile

H(P)=f jdDx —,'No —enQ 'PE —
V~,„„,„(P), (14)

where

( U U2 v3 ) = (2( 1 + U)' t, a sin(apF ), v'2tsb, v'2r, c )

and the pinning potential V;„„,„(p) is given by'4

2

V,„„;„(P)=— (NOV)2TQ (b[(co„+ig) +6 ] '~ ) gcost2[Q x;+P(x;)]I
2
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and the sum is over the impurity sites I;.
Here, f is the condensate density which also describes

the electric charge and the current associated with a slow
spatiotemporal variation of P,
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with nQ ' = (abc) '. In the. adiabatic
co, uq «ho), f reduces to

fo, for co »uq,

limit, (i.e.,

(19a)

FIG. 1. The temperature-dependent order parameter 6( T, Ep)
is shown as a function of the reduced temperature T//T, p for
several values of ep's.

f = 1, for co=vq,

f, , for co«uq, .
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coupling limit though there are accumulating evidences
that in most cases the CDW is in the weak-pinning lim-
it. In the strong-pinning limit, we obtain
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FIG. 2. The dynamic condensate density fp is shown as a
function of the reduced temperature for several eo's.

where n, is the impurity concentration and A. is the
electron-phonon coupling constant. In Eq. (21), we in-
clude the effect of thermal fluctuation' (i.e., the Debye-
Waller factor).

In a CDW, ET(0) is independent of Eo within the
present model. Further, ET(T)IET(0) is rather insensi-
tive to eo except when eo is very close to b,o (i.e.,
so~0. 8bo). In particular, Er(T)/ET(0) diverges like

The fact that f takes two different limiting values is
first recognized by Rice et al. ' However, its implication
on Eqs. (17) and (18) appears to be still largely ignored
even now.

The temperature dependence of fo and f, for several
c,o's are calculated numerically and shown in Figs. 2 and
3. In the vicinity of the transition temperature T„ fo
vanishes like (T, —T)'~ while f, vanishes like (T, —T).
Further, this linear slope of f, decreases very fast as
ep/ko approaches unity.

We also note that fo describes the condensate density
of the microwave conductivity while f, describes the dc
conductivity, the elastic constant, and the static spin sus-
ceptibility.

III. THRESHOLD ELECTRIC FIELD

As the most direct application of the phase Hamiltoni-
an (14), we shall consider the threshold electric field that
depins the CDW or SDW. In the following, we shall con-
sider the CDW and SDW separately.

A. Charge-density wave

Following Fukuyama, Lee, and Rice' it is important
to distinguish the strong-coupling limit and the weak-

E (T)/E (0)=e ' 'A(1 —T/T )

ET(T)IE (0)=[E (T)/E (0)] (24)

where a=+ /3 and D is the spatial dimension of the
phase fluctuation. We have shown recently' that most of
the observed Ez(T) in CDW. 's of NbSe3, etc. , are de-
scribed by the weak-pinning model with D =2 or 3. In
particular, D =2 in NbSe3 should imply' rather large
Fukuyama-Lee-Rice coherence length L ( T);

L(T)=[au kf e '/2(tl 'n )' DVA(T)]

(25)

For example, in clean NbSe3 samples the maximal
value of L(T) can be as large as 0.1 mm. This implies

as T approaches T, . The coefficient A is evaluated nu-
merically and shown in Fig. 4. In this circumstance, To
in Eq. (22) should be most sensitive to the pressure since
To perl=u, ui/u, the anisotropic factor. On the other
hand, in the weak-pinning limit we have'

Er (0)= [(4 D)I4D—]a(Q/en)if No

X[2(t) 'n )' DVb, o/au Af ] ' ' (23)

and
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FIG. 3. The static condensate density f, is shown as a func-
tion of the reduced temperature for several eo's.
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FIG. 4. The coefficients A and B which appear in the expres-
sions of the threshold field for the CDW [Eq. (22)] and for the
SDW [after Eq. (30)] are shown as a function of ep.
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that the transverse coherence length L«(T) =(U2/U )L (T)
is of the order of 10 pm. Note that L (T) takes the max-
imum value immediately below T = T, where ET( T)
takes the minimum value. L ( T} vanishes like
(T —T, )' ' 'as Tapproaches T, .

B. Spin-density wave
and

ET (0)= [(4—D)/2D](Q/en)[ —,'D(mEO V) ]

X ( -2~
)

D/(—4 D)(——ln )2/(4 —D)

X (F )4/(4 —D)
0

Er ( T) IE (0)=[Er( T)IET(0)]

(31)

(32)

and

ET(0)=(Q/e)(n, /n)(@NO V) Fo(0, so/bo)

ET( T)IET(0)=[F (0T Eo/60)/Fo(0 so/50)]f i

(26)

(27)

where

Fo( T so/6O)

=nTb, (T) Q ([(co„+inst) +6 ( T, so)]
' )

n=0

(28)

At T =0 K, Fo is given by
4

(2n —I )!!
n=o 2 Pl

(29)

while at T=T„

Due to the weakness in the pinning potential in a SDW
in comparison with that in a CDW, the weak-pinning
limit appears to be much more appropriate here. Howev-
er, for completeness we first describe the strong-pinning
limit. In this limit the threshold field is given by

L(0)=[2a0' N /(ri 'n )' D(irN V) F ] (33)

and

In both Eqs. (27) and (32), we neglected the effect of the
thermal fluctuations since in SDW's of Bechgaard salts
like (TMTSF)2NO3, (TMTSF}zPF6, and (TMTSF)2C10~
this effect is rather small due to the small spin-density-
wave transition temperature. Making use of Eq. (32}, we
can describe quantitatively the observed temperature
dependence of the threshold field in SDW's in
(TMTSF)2PF6 with conventional silver paints, if we as-
sume that the SDW is the two-dimensional (2D) weak-
coupling limit and eo/6p —0.6. However, unfortunately
this interpretation is not unique. The threshold electric
field of SDW's in (TMTSF)zPF6 with clainped contacts
exhibits completely different temperature dependence,
which is more consistent with the pinning due to the
commensurability with N =4. If this is the case, it is nat-
ural to expect that the threshold field in the sample with
conventional contacts is influenced by commensurability
as well. Then the 3D weak-pinning model with eo/b, 0=0
may not be inconsistent after all. Clearly, more systemat-
ic study on this point is desirable.

Now, as to the Fukuyama-Lee-Rice (FLR) coherence
length in a SDW we obtain

Fo( T ep/ko) = 5 ( T so)sp tailh(
2 Eo/ks T )

2
(30) L ( T) /L (())= [Es(T)/Es(0)] (34)

We evaluate Eq. (27) numerically, as shown in Fig. 5

for a few so's. As so increases, ET(T, )IET(0)=B in-

creases from 1.33 monotonically to ao as co tends to bo.
The constant 8 is evaluated as a function of co shown in

Fig. 4. Now, in the weak-pinning limit we have'

1.4

Unlike to the case of the CDW, L (T) in a SDW de-
pends only weakly on temperature; L ( T) decreases
monotonically with increasing temperature. In the
cleanest samples, we expect L (T)-1 mm. This implies
in the cleanest samples we have only a few FLR domains
unlike in a CDW of NbSe3. Perhaps, the rather peculiar
noise spectrum observed in the non-Ohmic regime of
SDW's in (TMTSF)2C104 by Nomura et al. ' is due to
few FLR domains in the sample.

).3— IV. CONCLUDING REMARKS
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We have analyzed systematically the transport proper-
ties of the CDW and SDW related to imperfect nesting.
The model was already successful in describing the phase
diagram of SDW's in Bechgaard salts and that of CDW's
in NbSe3 under pressure. A systematic study of the con-
densate density fo and f t in SDW's and CDW's will

throw more light on effects of imperfect nesting.
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