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We study a one-dimensional quantum Ising model where the exchange couplings and the trans-
verse fields are hierarchically distributed. Exact analytical results for the critical line, energy gap,
and dispersion relation of the low-energy excitations are obtained. It is shown that only in the case
of R i =R2=R & R„where R, and R2 are the hierarchical parameters for the exchange couplings
and the transverse fields, does the system preserve the logarithmic singularity in the specific heat.
Using renormalization-group techniques and an iteration map for the transfer matrix, we have
presented the analytical results for the scaling properties for the energy spectra of the models with
R ) =R2 and R2=1. From knowledge of the scaling properties of the energy spectra, we have ex-
hibited a close relationship between the disappearance of the logarithmic singularity in the specific
heat and the anomalous scaling behavior at the lower band edges.

I. INTRODUCTION

It is known that hierarchical structures appear in
different physical contexts ranging from molecular
diffusion on complex macromolecules' to anomalous re-
laxation in spin glasses ' and computing architectures.
Recently, several authors have studied the problem of
transport' and the electronic and vibrational proper-
ties ' of hierarchical systems. In the case of diffusion,
it has been shown that a hierarchical arrangement of en-

ergy barriers can give rise to anomalous behavior. Furth-
ermore, a dynamical phase transition from ordinary to
anomalous diffusion is found as the hierarchical parame-
ter R is varied. In the electronic or vibrational problems,
the eigenspectrum is found to be a zero-measure Cantor
set and to possess eigenfunctions which are self-similar
and critical. In this paper, we investigate the quantum
Ising model (QIM) where both the exchange couplings
and the transverse fields are distributed in a hierarchical
way, as shown schematically in Fig. 1. The quantum-
mechanical phase transition of this system is supposed to
be equivalent to the critical behavior of some two-
dimensional classical layered Ising model. ' Thus we
may expect this model to be of direct importance for
magnetic superlattices constructed in hierarchical
fashion.

The paper is organized as follows. In Sec. II we
characterize and specify the model. Exact analytical re-
sults for the critical line, energy gap, and dispersion rela-
tion for the low-energy excitations are obtained for the
general case of the m-furcating hierarchical QIM with
hierarchical parameters R, and R2 for the exchange cou-
plings and the transverse fields, respectively. %e find
that the usual logarithtnic singularity (LOGS) in the

ground-state energy and the specific heat appears only in
the case of R, =R2 )R, with R, dependent on the fur-
cating number m. In this case the correlation length ex-
ponent v equals 1 and the model belongs to the Ising
universality class. In Sec. III we treat the special case
with R, =R

& following a renormalization-group (RG) ap-
proach through an exact decimation procedure. The
fixed points and the corresponding eigenvalues for the
linearized RG transformation matrix are discussed and
analytical results for the scaling properties of the energy
spectrum are presented. It is shown that at criticality
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FIG. 1. Schematic representation of the hierarchy in both
the exchange couplings and the transverse fields. The lengths of
the vertical segment represent the strengths of the exchange
couplings, and the diameters of the dots those of the transverse
fields. Note that the drawing is for R I 2 ) 1 for convenience.
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this model is equivalent to the vibrational problem with a
hierarchy of spring constants. In Sec. IV, we analyze the
problem in terms of a trace map for the transfer matrices
for two cases with R, =R

2 and R z
= 1, which allows the

discussion of the relationship between the scaling proper-
ties of the energy spectrum and LOGS in the specific
heat. Finally in Sec. V we summarize our main results.

ity and is given by (A, B—, )pro=0 and (A, +B,)iiio=0,
where A, and B, are the matrices A and B calculated at
the critical line Jo, =Jo,(R„R2). The solution to these
equations are easily obtained as follows:

II. LOGARITHMIC SINGULARITY
IN THE SPECIFIC HEAT

j —1

=( —1)J 'g, g [h(i)/J, (i)],
(2.7)

The model is given by the Hamiltonian

H = —g J(i}e;"o;"+,—g h (i}o';, (2.1)

where y, and f, are normalized constants and J,(i) is

given by (2.2) with J =Jo, . The periodic boundary con-
dition requires Q;, [h(i)/J, (i)]=1, which gives the
critical line

J R" ' =2"(21+I) (2.2)

and

where 0.; and 0', are the Pauli matrices at site i and the
exchange couplings J(i) and the transverse fields h (i) are
given by (in bifurcating hierarchical way, see Fig. 1)

J, i =2l+1

Jo =(R2/R i )—:g (2.&)

Now we turn to the calculation of the dispersion rela-
tion EEk of low-energy excitations close to the critical
point. The model with the Hamiltonian of a general bi-
linear fermionic form like (2.4) has been completely inves-

tigated by Ceccatto. ' The energy gap between the first
excited and ground-state energies is given by

1, i =2l+1
h ( )i= R (2l }=h n

= '

R n 2 n
( 2i + 1 )

(2.3) (2.9)

Here R, and R2 are hierarchical parameters chosen to be
positive for the ferromagnetic QIM and lie in the interval
[0,1] for simplicity. Note that R2=1 corresponds to the
case in the uniform transverse field and when R 2

=R
&
= 1

one recovers the periodic QIM. ' '
To solve (2.1) we proceed in the well-known Jordan-

Wigner transformation' and rewrite (2.1) as

H =c Ac+ —,'(c Bc +H. c. ), (2.4)

where c =(c„c2,. . . , c &) and the c s are anticommut-

ing fermionic operators. The matrices A and 8 are given
by

where ~=
~ Jo —Jo, ~/Jo, and the matrix H, '~ =J,(i)5;/

If the prefactor in the first term of (2.9)
2)

—= ~yoH'Po~/~yo~ ~go~%0, the disPersion relation for the
low-energy excitations is

b,Ei, =2'(r +k )' (2.10)

where k is the pseudo-wave-number. Integration of (2.10)
produces the usual LOGS in the ground-state energy and
the specific heat at criticality. The singularity may disap-
pear by the vanishing of the prefactor g. ' To evaluate g,
we have to compute

A, , = —J(j)5;)+,—2h (j)5, , J(i)5.. —

B ~=J(j)5 1+i J(i)5
(2.5}

Since we are interested in properties of the infinite sys-
tem, in this paper we work in so-called "c-cycle" prob-
lem' ' with periodic boundary condition for (2.4). In
particular, in this section the system of period pz =2 is
obtained by setting all couplings J (i) and transverse fields
h (i) in (2.2) and (2.3) with n )N —1 to be of the follow-
ing form:

~ip ~

=ip2(I+( )+D

~

2 —@2(1+g
—2)N

where g=R2/R i and

(2.11)

Representing the number j in the binary system and pay-
ing attention to (2.8) (see Appendix for details), we obtain

J(t)=JoR i

h (i}=R i =2"(21+1) with n )i' —1 . D2 =R, [1 (s2R, ) ]/(s2R—,
—1)

+ I /[(gR, ) (s2R i ) ], (2.12)
(2.6)

Thus the real hierarchical system corresponds to W~ ~.
The model displays long-range magnetic order above a
certain critical coupling Jo, . The quantum-mechanical
transition in the ground state is known to be driven by
the soft mode of the Hamiltonian (2.4), which corre-
sponds to the vanishing of the gap at the onset of critical-

with s2 = 1+( . With these results and
=2 92,P, , we have

(2.13)

Thus when /%1, we note that 2) vanishes for the real
hierarchical system corresponding to X~~, which will
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wash out LOGS in the ground-state energy and the
specific heat. On the other hand, for (=1, with

g+g '=2 and R, =R& =R, (2.13) gives

0, R2&-,';
(2R' —1)'"/R, R'& —,

' .
(2. 14)

Thus we observe a critical value for the hierarchical pa-
rameter R, =l/v'2. In the case of R &R„(2.10) and
(2.14) imply a correlation length exponent v= 1 and the
specific heat has an LOGS. The transition belongs to the
periodic Ising universality class' ' at least for the
thermal sector. In contrast, for R & R„with the vanish-

ing of g, LOGS in the specific heat disappears. ' The

transition may fall into another universality class. The
situation is quite different from the Fibonacci quasi-
periodic QIM, where the Ising-like phase transition is
preserved independent of the "dilution factor"
J&/Jz. ' For ferromagnetic quasiperiodic QIM, it is

believed that only the change of quasiperiodicity may
give rise to the disappearance of LOGS in the specific

t 21

Up to now, our discussion has been concentrated on
the bifurcating hierarchical system, i.e., the system with
regular uniformly bifurcating hierarchical arrays of ex-
change couplings and transverse fields. For a general m-

furcating hierarchical structure, the system with a
period pz=m is obtained similarly by setting all ex-
change couplings J(i) and transverse fields h(i) of the
following forms:

JoR &, i =m "(ml +q), q =1,2, . . . , m —1 with n &N;
~+i~(~-i) nJoR, +' ' ", i =m "(ml+q), q =1,2, . . . , m —1 with n &N;

Rz, i =m "(m!+q), q =1,2, . . . , m —1 with n &N;
~+isla —&i nR2+' ' ", i =m "(ml+q), q=1,2, . . . , m —1 with n &N,

and the real hierarchical system is approached with X~~.
In a similar way, one has the critical line

p1/( m —
1 )

Oc

and the prefactor

(2.15)

(2.16)

(2.17)

r)=(mg/s ) D

where

m —
1

p2n /(m —1)
m 7

n=0

D =(s g)R, [1 —(s R, ) ]/—(s R, —I)+1/[(gR, )
' "(s R, ) ] .

(2.18)

(2.19)

(2.20)

Similarly to the bifurcating hierarchical system, we note
that LOGS in the specific heat appears only in the case of
R, =R2=R &R, =1/&m. In this case, the dispersion
relation for the low-energy excitations is

(2.21)

with

R
1
=R 2

=R at criticality Jo =Jo, = 1. Note that the
problem involves a hierarchy of both the exchange cou-
plings and the transverse fields and has a self-similar
structure; one may expect the RG approach to be useful.
To do so we start from the eigenvalue equation
(3+B)(A B)q=A y. Wi—th Jo=1 and R, =R2, we

have h (i)=J (i). The eigenvalue equation reduces to

2g=2[(mR —1)/(m —1)]' /R (2.22) ,J (i —1)+qr, [J'(i —1)+J (i)]+y, +,J'(i )

being the sound velocity for the m-furcating hierarchical
QIM. So the low-energy excitations will produce a tran-
sition in the same universality class as in the periodic
case ' '

=(A'/4)q, . (3.1)

Now we choose to eliminate all y, where i =4j+2 or
i =4j+3 in terms of the remaining variables. For sites
0, 1, . . . , 4 (see Fig. 1) we have

III. SCALING PROPERTIES OF THE
ENERGY SPECTRUM —RG APPROACH

We now proceed to study the scaling properties of the
energy spectrum of the Hamiltonian (2.4) with

(e —Jo —J i )q'z =J i q 3+Joq i

(e —Jo —J i )q'3= Joq4+ J
1 q'»

with c =—A /4. Thus our equation for cp1 becomes

(3.2)
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(e —J„—Jo )&pi

=Jnl'o+ Jol'2

=J„'go+ [Jo(e—Jo —J, ) p, +JOJ ) y4]/&, (3.3)

Jo=Jo,
J' =J b, /(JOJ )

E' = [(e—Jo )b, + (2Jf +Jo —e)Jo]/( JOJ', ) .

(3.4)

Generalizing the definition of the exchange couplings in
(2.2) at criticality Jo= 1 by

1, n=0;J
K ' R " ', otherwise,

(3 5)

we obtain the two parameter-renormalization equations

where Q=(e —Jo —J, )
—J,. After recasting this equa-

tion in a form so as to make the renormalized system
resemble the original one, we have the renormalization
equations

2R +2 O&R2& '

4, 2R-, —,
' &R'&1, (3.9)

~ = [7"+(T2 —8R 6)~ ~&]/(2R 2) (3.10)

where T=2+2R +R . It can be shown' that A,",'„
should be a relevant scaling parameter for the lower band
edges and k','„ that for the upper band edges. The in-
tegrated density of states N(e) scales as

N(E)-e~ as a~0,
or as a function of energy A:

N(A)-A i as A 0,

(3.1 1)

(3.12)

with

with the corresponding eigen values of the matrix
B(K', e') /B(K, e )

K'=R 6
c,

' = [(E —1 )b, + ( I +2K —e ) ]/K,
(3.6) ln2/ln(2/R ), 0&R

P = ln2 /ink' '„.'„= .

—,
' &R'&1 .

where b, =(1+K e) —K—and other renormalized ex-
change couplings are Jo=l and J„'=K' R" '. Note
that the two-parameter map (3.6) is identical to that for
the one-dimensional (1D) vibrational problem with a
hierarchy of spring constants, ' except that in the recur-
sion relation of K (3.6) we have R instead of R in the vi-

brational problem. ' So the energy spectrum of the mod-
el at criticality is the same as the vibrational spectrum. '

The total bandwidth 8~ of the period p~ system behaves
exactly as 8&=4R . The energy spectrum of the real
hierarchical QIM forms a zero Lebesgue measure Cantor
set with the fractal dimension Do =ln2/ln(2/R ). There
are two scaling parameters that describe the energy spec-
trum. Numerical investigation' reveals that these two
scaling parameters are governed by two fixed points

So we observe a critical value of R. When R &R, =
—,',

the integrated density of states N ( A ) obeys the usual
scaling law for the periodic case when A~O. On the oth-
er hand, for R & R„we obtain an anomalous scaling ex-
ponent depending explicitly on R. We tend to believe
that it is this anomalous scaling behavior that washes out
the usual LOGS in the specific heat at the critical point.
This will be made more transparent in Sec. IV.

IV, TRACE-MAP ANALYSIS OF
THE CASES R ) =R2 AND R p ——1

R /(1 —2R ), 0 & R & —,', e f =0,
+ ao, —'&R &1, C1

—0,

K2 =R /(1 —R ), E,*=(2—R')/(1 —R ),

(3.7)

(3.g)

In Sec. III, we studied the scaling properties of the
spectrum for the QIM at criticality Jo=(=1. For Jo/1,
it is convenient to analyze the problem in terms of an
iterative map for the transfer matrix. In doing so we
cast the eigenvalue equations (A —B)y=AQ and
( A +B)/=Ay in the form

4j+1
0'j +1

—h (j)/J(j) co/J (j)
—~h (j )/[J(j )h (j +1)] [~'—J'(j)]/[J(j)h (j +1)] (4.1)

with co= A/2. Iterating (4.1) we have
1

gz; (4.3)

with

(4.2)

z= —h (i) /J (i) ~/[ J (i )h (i) ]
—coh (i)/J(i) [co J(i)]/[J(i)h—(i)] (4.4)
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where we have made use of h (1)=h (2 + 1)=1. Taking
into account the fact that the two subchains of length 2
composing the chain of length 2 +' are equal except for
the last exchange coupling and transverse field, after
some algebra we get

involving x alone:

xiv+, =2(1+R )x~+(2/R )x~

—(4/R )x~x~ i
—1, (4.11)

2
M&+ i

= ~xM~

where

(4.5)

0 0
'~= 01

0 0
1 0 (4.7)

1 —1/co

co 1

The above recursion relation for the transfer matrix is

very complicated. In order to shed some light on the re-
lationship between the scaling properties of the energy
spectrum and LOGS in the specific heat, we choose two
special cases where R

&

=R
z and R z

=1 for discussion.
For R, =R

&
=R, with g= 1, V~ reduces to

V~ =IO+ Q~I3, (4.8)

and the initial conditions become

and

o=Z

Qo=[co (1—R )]/[J R ] .

Equation (4.5) can be rewritten in the following form:

M~ + i
= (Io+ QN I3 )Miv (M~ +Miv

'
)
—(Io + Q~I3 ) .

(4.9)

By exploiting the knowledge of the equality

M~+(Miv) '=tr(Miv)IO and defining xiv= ,'tr(MJv) and-
yiv=xivQNtr(I3M~), we obtain the autonomous two-

dimensional (2D) map

Viv =BIO+[( I g)l—g]Ii —[(1 g)c—o/g]Iz+QJvI3
(4.6)

Qiv+ i =Qiv/R'

with Jo being the 2 X 2 unit matrix and

ln2/ln(2/R ), 0 & R

—'&R &1 .
(4.12)

Note the exponent )»)z characterizes the scaling behavior
both at and away from the critical point, while P in (3.13)
governs the scaling behavior at criticality. They are nat-
urally the same. From (4.12) we obtain again an anoma-
lous exponent dependent on the hierarchical parameter R
when R &R, =1/v'2, which leads to the vanishing of
LOGS in the specific heat. When R & R, the lower band
edges obey the usual scaling laws for the periodic case,
the JIM has an LOGS in the specific heat.

In order to get a better understanding of the relation-
ship between the scaling properties at the lower band
edge and LOGS in the specific heat, in the following we
study the second special case where R, = r W 1 and
R

&
= 1. With g = 1/r, it is possible to derive

[Io/r +(» r )(Il coI2 )]Mlv (4.1 3)

Defining a~+, = tr(M~ ) and b~ = —tr[(I, —
aiIz )M~],

we can write the following recursion relations:

aN+2 —[ax+i —(r 1)aiv+, biv
—(r +1)]lr—

with the initial conditions xo = (co —Jo —1)/(2JD ),
yo=JDQoxo, and x, =2xo —1+yo. The energy spectrum
of the period-p& system can be determined by the condi-
tion ~xiv~ &1. For the real hierarchical system, we need
to investigate the behavior of this iteration as X~~.
We do so by examining the fixed points on the 2D map
(4.10), which are easily identified and listed in Table I to-
gether with the corresponding eigenvalue of the matrix
B(x',y')/B(x, y). The fixed point no. 1 is unphysical be-
cause it gives rise to an imaginary (MN )». The other two
fixed points are relevant to the problem. Numerical in-
vestigation reveals that eigenvalues near the lower band
edges of the spectrum are attracted towards fixed point
no. 2 (cf. Refs. 12 and 13). Thus the relevant scaling
value governing the lower band edges should be

x~+ )
—2x~ 1+y~2

y~+ i
= (2/R )x~+ iy~

2
(4.10) 6~+ )

—ra~+ )b~+ r
(4.14)

or by eliminating yz we have a single two-step relation with the initial conditions a, = [co —(Jo+ 1)]/

TABLE I. Fixed points and the corresponding eigenvalues of trace map (4.10). Tl =R /2+ 1+8
Fixed

point no.

2

1

R /2

0
0

R /2+1 —R /2

—2, —R

4,2/E.
Tl+(Tl —2R }'-
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TABLE II. Fixed points and the corresponding eigenvalues of trace map (4.14). T2 3 ~+r '+r.

Fixed
point no.

1

—1

r+r

r I( &
—r)

r/(1+ r)
T2+( T2 —2)'

+( T2 2)1/2

2, ( + ')

+(2 —av)a&+i (r+r —') . (4.15)

The problem is equivalent to the quantum Schrodinger
problem where the hierarchy is in the transition matrix
elements and the site energies are taken as a constant. '

The energy spectrum has been found to be a self-similar
zero-measure Cantor set with the fractal dimension
Do=ln2/ln(2/r). The total bandwidth for the period

pz =2 system scales with N like B~—p~ with
5= —lnr/ln2. The fixed points of the recursion relations
(4.14) can be evaluated and listed together with the corre-
sponding eigenvalues in Table II. Fixed point no. 3 is
clearly irrelevant owing to the fact ~a3 ~

)2. Only the
first two fixed points are relevant to the scaling properties
of the spectrum with both of the two scaling values
ln2/In~A, ",'„'~ dependent on r (see from Table II) and in-

dependent of energy. Thus the anomalous scaling behav-
ior is obtained for any value of r&1, which corresponds
to the disappearance of LOGS in the specific heat. We
conjecture that it is a general phenomenon that the
anomalous scaling behavior at the lower band edges will
wash out LOGS in the specific heat of aperiodic QIM.
The current conjecture gets its further evidence from the
case of the Fibonacci quasiperiodic QIM. In that model
the scaling properties of the lower band edges are
governed by the exponent e,„,= lno. & /lnE2, where
o G =( 1+&5)/2 and Kz is given in Refs. 18 and 22. The
"dilution factor" r =J, /J2 dependence of a,d, appears
in Ki through the constant of motion' I=ai (r r') . —
At the onset of criticality, with the vanishing of the ener-

gy gap 2', the system is expected to scale as in the
periodic case with the scaling value independent of r,
which interprets the fact that the quasiperiodic QIM has
the usual LOGS in the specific heat.

V. SUMMARY

In this paper, we have considered a quantum Ising
chain with both the exchange couplings and the trans-
verse fields arranged in a hierarchical way. Exact analyti-
cal results for the critical line and the dispersion relation
for the low-energy excitations are obtained. It is shown
that only in the case where R, =R2 =R & R„ the system
preserves an LOGS in the specific heat. In this case, the
model belongs to the Ising universality class. Employing
renormalization-group analyses, we have studied the scal-
ing properties of the spectrum at the onset of the critical-
ity in the case of R, =R2=R. The scaling exponent

Jo, ho= JO. Note that (4.14) can be equivalently cast in

terms of a single two-step relation

ax+2=(r+" )ax+i
—

1 2

governing the lower band edges is found to undergo a
phase transition as the hierarchical parameter R is
varied. For R )R„ the usual scaling law for the periodic
case is obtained, while for R (R, one has the anomalous
scaling exponent explicitly dependent on the parameter
R. The critical value of R, is believed to be relevant to
the existence of LOGS in the specific heat. To clarify the
close relationship furthermore, we have reanalyzed the
scaling properties of the energy spectrum in two cases
where R, =R

2 and R 2
= 1 in terms of an interative trace

map for the transfer matrix. Analyses on both cases, to-
gether with the brief discussion on the Fibonacci quasi-
periodic QIM, also show the close relationship between
the absence of the usual LOGS in the specific heat and
the anomalous scaling behavior at the lower band edges.
We conjecture that it is a general phenomenon that the
ferromagnetic aperiodic QIM has the usual LOGS in the
specific heat only when the lower band edges obey the
usual scaling law for the periodic case.

APPENDIX

In this appendix we present the detailed derivation of
(2.11). Defining

1, i =21+1;
g(i ) =R, (i ) /R, (i)=

i =2" 21+1 (Al)

and paying attention to (2.8), we have

j =-0

where Q =[I/Rz(j+ I)] Q~, g /g (i)
By representing the number j in the binary system

XgXQ ] ) ~ ~ ~ y X2X]

where X,- may be either 1 or 0, we obtain

(A2)

(A3)

(A4)

with m being the number of 1's in the set
IX, ~i =1,2, . . . , NI. When j takes the form (A3) with

X, =X2= =X„,= 1, X„=oand X, (i &n) being ei-
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ther 0 or 1, with the use of Rz(j+ l)=R z
', we have

g g2myR 2(n —() —
g

~n yR 2(n —()
J 2 1

where j„=m —n + 1 is the number of 1's in the subset

fX;(i =n +l, n +2, . . . , NI.
Thus

where C~=p!/[q!(p —q)!] and the last term in the right
hand side is Q,&, . After some algebra, one has the first

equation of (2.11) from (A5). In a similar and simpler
way, we have

2 —
1

N N —n

~2 2 y g g(v —
ng j'yR n — + 1y(R R I(()

n =1 j'=0

(A5)

j=0 I =0

q2 y CNg 2m —q2(1+g
—2)N (A6)
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