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Monte Carlo simulation of strongly disordered Ising ferromagnets
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We report extensive Monte Carlo simulations of disordered Ising systems in the ferromagnetic re-

gion with concentrations of magnetic sites between p= 1.0 and 0.5. The magnetization, the suscepti-
bility, and the caloric properties have been studied in the critical region. The critical exponents P
and y as well as the universal amplitude A of the magnetization and the ratio C+ /C of the sus-

ceptibility amplitudes have been determined with high precision. In addition to the cusplike specific
heat, we have also measured the magnetization-energy correlation function I, which is a diUergent

thermal quantity. The corresponding critical exponent g, which is related to the other exponents by
g= 1 —P=(a+y }/2, has been determined. We have found that all quantities show power-law be-

havior within the temperature range of our simulation. All critical exponents change continuously
with dilution. Even in the range of weak dilution (p 0.8), the effective critical exponents are con-
centration dependent and are clearly different from their pure system values. In the strongly diluted

regime the critical exponents gradually reach new asymptotic behavior at p =0.5 —0.6 with values of
P=0.335+0.01 and y=1.49+0.02. The exponent a of the specific heat becomes —0. 17+0.04
which corresponds to a cusplike singularity. We conclude that disorder profoundly changes the
critical behavior for weakly as well as strongly disordered spin systems.

I. INTRODUCTION

Critical phenomena in disordered systems have been
studied for twenty years using various analytical and
computational methods. However, the influence of disor-
der in systems with large fluctuations is still a field of ac-
tive research. With considerable efforts the problem has
been attacked in two extreme cases, i.e., in the limit of
weak disorder' and near the percolation point " (Fig.
1). The most important conjecture concerning the criti-
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FIG. 1. Phase diagram of the site-disordered three-
dimensional Ising system. The system orders ferromagnetically
at the T, (p) line; below the percolation concentration p, =0.31
ferromagnetic order is not possible. The stars indicate the con-
centrations 0.5 p ~1.0 and respective T, (p)/T(1) values of
our simulation.

cal behavior of weakly disordered ferromagnets is the
Harris criterion, which states that the critical behavior
remains unchanged if the exponent a„of the pure system
is negative; for positive a& a new type of critical behavior
should appear. Renormalization group works on weakly
diluted systems treat disorder as a perturbation of the
pure system. They have confirmed this expectation: a
new stable fixed point with new exponents appears in the
case of Ising systems that have a positive critical ex-
ponent a&,' the new exponents should be independent of
the concentration. In the case of Heisenberg magnets
that have a negative a& the fixed point of the pure system
remains stable and the critical exponents remain un-

changed. To be precise, the Harris criterion is a conjec-
ture about the asymptotic critical behavior very near T,
of weakly disordered systems. The crossover exponent
tI}, of disorder in the Ising model is equal to the critical
exponent of the specific heat uI„which is very small

[ah =0.11 (Ref. 6}] so that the critical behavior of Ising
systems should be modified by disorder only in remote

1/t75„
temperature ranges such as

~ t~
& (1—p) ", i.e.,

~t~
& 10 for p=0.8 (t =(T —T, )/T, ). Thus, experi-

ments with real ferromagnets as well as simulations of
spin systems in the temperature range 10 &

~t~ &10
around the critical temperature T, should not detect a
change of the critical exponents by disorder. However,
there is no quantitative measure of what weakly disor-
dered actually means, i.e., in which range of dilution and
temperature the perturbative approaches' and their re-
sults are applicable.

Other works on critical behavior in disordered systems
have started from strongly disordered systems, i.e., from
the percolation threshold ' which can be viewed as a
multicritical point (Fig. 1}. The starting point of these
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works is the ramified cluster structure on which quasi-
one-dimensional correlations are assumed to determine
the critical behavior near the critical temperature T, =0.
It has been argued that this picture is simplified; the
backbone of the percolation cluster is finitely ramified but
not quasi-one-dimensional. The degree of ramification
has been shown to be essential for critical phenomena. "

The purpose of this work is twofold. Simulations in
the range of weak dilution should clarify in which con-
centration range of diluted magnets the perturbative ap-
proaches' to the problem are reliable and give results
that are in accord with experiments. Previous attempts
to study weakly diluted systems by simulations' ' have
indicated a change of the critical exponent P upon dilu-
tion. We want to extend these works, determine the oth-
er critical exponents as well, and check whether disor-
dered spin systems show scaling behavior at all. Our
second point is the investigation of the critical behavior
of strongly disordered systems. There are no quantitative
results from simulations about these systems. Particular-
ly interesting is the question whether a crossover to per-
colative behavior can be detected and whether the
effective critical exponents are temperature and/or con-
centration dependent.

II. THE METHOD

To answer these questions we have performed exten-
sive Monte Carlo simulations" of the site-diluted Ising
model in three dimensions. This model is defined by

8=—J gE,S;EiS

where S;,S =+1 are the spin variables. The summation
runs over N=L sites of the lattice. The occupation
variables are K; =1 if a magnetic ion is at site i and K; =0
if a nonmagnetic ion is at site i. The E, are identically
distributed with the concentration p. J&0 is the fer-
romagnetic nearest-neighbor coupling; the temperature
will be given below in units of J/k (k being Boltzmann's
constant). This model is the simplest physical system
where the influence of disorder on the critical behavior
can be studied. Moreover, it is the only system where a
change of the critical behavior is expected at all in the re-
gion of weak disorder. '

Simulations of disordered spin systems have been rela-
tively sparse in the past since the relaxation times in-
crease drastically with dilution so that enormous simula-
tion times are necessary to obtain data with suScient ac-
curacy to determine critical exponents. Early studies of
the site-diluted Ising model (1) have been performed in
1980 by Landau' who has simulated diluted Ising sys-
tems in the concentration range 0.2~p ~1.0. He has
studied system sizes up to 30 simulating 500—5000 MCS
(Monte Carlo steps per spin) for each data point. Due to
insufBcient accuracy Landau concluded that the data
were consistent with pure system exponents as theoreti-
cally expected. Further numerical work was not per-
formed until 1986 when Marro, Labarta, and Tejada'
simulated diluted Ising systems (p 0.8) with dimensions
30 and 40 . Chowdhury and Stauffer' extended their

the spontaneous magnetization m is given by the expecta-
tion value of the absolute value of M normalized to the
number of occupied sites pN:

m= ([M[& .
pN3

The susceptibility is defined by the fluctuation of the
spontaneous magnetization

(4)

below T, and by

NpT

above T, . ' The energy is given by

(5)

z= &a&
Np

and the specific heat is defined by the fluctuation

(6)

In Eqs. (3)—(7) the average ( ) is the time average of the
corresponding quantity over the whole Monte Carlo se-
quence after relaxation into thermodynamic equilibrium.

Previous simulations' ' have shown that the specific
heat is cusplike. Therefore it is not well suited to deter-
mine the critical exponent a. Even in the pure case it is
diScult to extract quantitative results from specific-heat

work to a system size of 90 . These studies were per-
formed in the tweak dilution regime 0.8~p ~1.0. With
an accuracy of 5000—10000 MCS per data point both
studies detected a significant concentration-dependent in-
crease of the effective critical exponent P. The critical ex-
ponent y seemed to increase too, but the data for the sus-
ceptibility were not good enough for a quantitative esti-
mate.

We have performed simulations with a system size of
60 using the standard Monte Carlo technique' with lo-
cal spin dynamics. Smaller lattices were also simulated in
order to study finite-size effects. ' ' The concentrations
range from the weak dilution regime p=1.0, p=0.9 over
p=0.8 to the strongly diluted systems with p=0.6 and
p=0.5. In order to study the configuration dependence
of the results and to obtain a reasonable approximation of
the thermodynamic limit, we simulated up to ten
different configurations for each concentration, The sys-
tems were simulated in the critical region
5X10 ~

~t~ 10 ' where t=(T T, )/T—, and T, is the
critical temperature of the diluted system. We have per-
formed simulations at about 40 temperatures above and
below T, in order to have a dense sequence of measure-
ments in the critical region.

We have measured the magnetization, the susceptibili-
ty, the energy, and the specific heat. Using the abbrevia-
tion

M= gE;S;,
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XpT
(9)

Unfortunately, as an odd power of M, I vanishes above
T, ; its time average in a Monte Carlo simulation is then
arbitrary. From the scaling behavior of the free energy

F(t, h)=b "F(b 't, b "h), (10)

1 is shown to diverge as t ~ where the exponent g is

given by

d —y, —
y&

and y, and y& are the exponents of the temperature and
the magnetic field. From (11) and the corresponding ex-
pressions for a, 13 and y, one obtains the exponent rela-
tions

(=1—P=(a+y)/2 . (12)

Since I is diverging at the critical point, it should pro-
vide a way to determine even negative exponents e if y
and g are known. Clearly, the Rushbrooke relation
a+2/3+y=2 would suffice to obtain a from measure-
ments of P and y. However, this would assume that the
system shows scaling behavior. With the two-exponent
relation (12) one may check whether scaling is valid at all
in the temperature range where measurements have been
performed. Clearly, the exponent relation (12) applies
only if corrections to scaling vanish in all the quantities
involved.

Before starting long simulation runs we have studied
the relaxational behavior at various concentrations and
temperatures. To this end we monitored the initial time
development of the magnetization and the energy. Fig-
ure 2 shows the first 30000 Monte Carlo updates of 60
lattices with concentrations p=1.0 and 0.6 at different
temperatures in the critical-temperature region. It
displays impressingly that different time scales govern the
dynamic behavior in pure and disordered spin systems.
It demonstrates clearly that only very long simulations
yield reliable results. The relaxation time into thermal
equilibrium starting from the purely magnetized state in-
creases with dilution. Systems with concentrations
p= 1.0, 0.9, and 0.8 relax within the first 5000—10000 lat-
tice updates, depending on the distance to the critical
temperature. Strongly diluted systems with p=0.6 and
0.5 necessitate even larger times to equilibrate:
30 000—100000 lattice updates.

In order to save computing time, measurements have

measurements since o; is usually very small and the singu-
lar behavior may be masked by corrections to scaling
and nonsingular terms. We therefore introduced the
magnetization-energy correlation I to obtain information
about the thermal critical behavior. I is defined by

BF
BHBt

and is measured below T, in our Monte Carlo simulation

by the fluctuation expression

been performed only every 6—64 updates of the whole lat-
tice. This avoids sampling highly correlated data. The
time distance for measurements was estimated in prelimi-
nary runs following the heuristic procedure of Friedberg
and Cameron Averages 3 are calculated taking only
every mth measured value; the statistical error AA
determined for every I first increases with m until it
reaches an approximately constant value at some m*,
which is a measure of the time distance between nearly
uncorrelated measurements. As a result of these mea-
surements, the time distance between successive measure-
ments in our long runs has been chosen between 6 and 32
lattice updates for p=0.8 —1.0 and between 16 and 64 lat-
tice updates for p=0.5 and 0.6.

The number of Monte Carlo steps per spin (MCS) for
each data point depends very much on the concentration
and on the distance t from the critical temperature. Sys-
tems with concentrations p=1.0, 0.9, and 0.8 have been
simulated with an accuracy between 50000 and 300000
MCS per data point, thus sampling about 10—20000
nearly uncorrelated measurements. This is a factor 20
more than previous studies' ' in this concentration
range. The concentrations p=0.6 and 0.5 are even more

demanding in simulation times. To obtain results of com-
parable accuracy as in the high-concentration range,
simulation times between 300000 and 1.2 million MCS
were needed for each data point.

The error of each data point was determined by subdi-
viding the whole Monte Carlo sequence into subse-
quences large enough to sensibly calculate subaverages.
The error of the average over all subsequences was then
estimated by the Gaussian error formula. Clearly, this
way of error estimation works only when a large number
of measurements are available. The errors enter the esti-
mator of our fit so that less accurate data point have less
weight in the fitting procedure. We point out that the er-
rors determined in this way are over a magnitude larger
than those determined in our analysis of correlations
above. This indicates that one should be very careful
when estimating errors of simulations; it is advisable to
use different methods and regard the maximum error to
be the true error.

The enormous simulation sequences of O(10 ) MCS
demanded by disordered systems have prohibited simula-
tions for a long time. However, the simulation times
could be reduced by hardware developments and by an
improvement of the multispin coding variant by Bhanot,
Duke, and Salvador' that allows us to perform time con-
suming simulations of discrete spin systems. Starting
from a program of Ito and Kanada for the pure Ising
system, we have further improved the simulation speed
arriving at a speed of 335 million spins per second on a
single processor of the Cray YMP. ' This is by now the
fastest program comparing speeds on the same machine.
The program simulates 64 systems with L sites and
periodic-helical boundary conditions. The program is
written in Fortran 77 and is fully vectorizable. In the simu-
lation of diluted Ising systems the speed is reduced to 235
million spins per second since the update algorithm has
to treat six nontrivial spin flip decisions compared to
three in the pure case. Despite this high simulation
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FIG. 2. Magnetization relaxation into thermodynamic equilibrium of 60 Ising systems with concentration p= 1.0 (a) and @=0.6
(b). The time is measured in MCS (Monte Carlo steps per spin). The graphs in the middle correspond approximately to the critical
temperature (T= T, ). The upper and lower graphs in each 6gure correspond to reduced temperatures (T—T, )/T, = —0.02 and 0.02,
respectively; these curves are displaced vertically by 5M=+0.3 and —0.3, respectively, in order to fit all graphs into one figure.
Comparison of the graphs shows the increased time scales in disordered spin systems.
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speed our simulation needed about 200 h on the Cray
XMP/YMP.

III. RKSUI.TS

We have tested our program by means of a simulation
of the pure two-dimensional Ising system. In order to
test not only the program but also our fitting procedure
for the determination of critical exponents, we have
chosen similar relative temperature distances
t =(T T, )—/ T, as in the diluted three-dimensional sys-
tem. The temperatures were almost equally distributed on
the log&ot scale in the critical region. They were chosen
in such a way that finite-size effects were negligible. Data
points lying incidentally in the finite-size region ((=L)
were discarded from the fitting procedure. The finite-size
region can be easily identified by a curvature in the log-
log plots (Fig. 3) towards the finite-size-dependent maxi-
ma yo(L) as theoretically expected. ' ' These finite-size
effects were systematically studied also simulating smaller
systems with L=30 and 40. In this finite-size region
(below T, ) the system frequently changes the sign of M
(1). Clearly, these data have been discarded from the
analysis. Figure 3 shows the 1og-log plots of the suscepti-
bility obtained from a simulation of a 250~ system (12000
measurements taken every 250 updates of the lattice).
The graphs show that finite-size effects are more pro-
nounced in the ordered phase T&T, than in the disor-

dered phase T & T, . This effect can be observed in three
dimensions and in disordered systems as well. Thus, one
may approach the critical point more closely from the
high-temperature phase T) T, . From our test simula-
tion of the two-dimensional Ising system we found
y=1.76+0.01 and P=0. 123+0.003 which is in good
agreement with the exact values. The critical tempera-
ture T, =2.271+0.002 of the 250 system is slightly
larger than the exact value (T, =2.269); this is a finite-size
effect of the form T, ( L ) =aL

Simulations with disordered Ising systems have been
performed at the concentrations p = 1.0, 0.9, 0.8, 0.6, and
0.5. In the critical region 5X10 & ~t &10 ' we have
chosen about 40 temperatures to have a dense sequence
of data points. Figure 4 shows typical raw data of the
susceptibility and specific heat of disordered systems with
concentrations between p=1.0 and p=0.5. Note that
strongly disordered systems show a well-defined phase
transition with a sharp singularity of the susceptibility.
On the contrary, the specific heat becomes very narrow
as the concentration decreases. The cusplike structure of
the specific heat indicates a clearly negative value of the
critical exponent a.

The main problem in the determination of the critical
exponents is undoubtedly a precise determination of the
critical temperature. Once T, is known, critical ex-
ponents can be determined in a straightforward way. We
therefore first analyze the susceptibility that is the most
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FIG. 3. log-log plot of the susceptibility of the two-dimensional Ising system. The fit of the data above and below T, leads to
T, =2.271 and y = 1.76+0.01. Note that a systematic decrease from the straight line occurs near T, . The susceptibility approaches a
size-dependent constant value y(L) at T, . This crossover to finite-size behavior is more pronounced below T, than above T, .
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sensitive quantity to the location of T, . It is reasonable
to fit the data simultaneously to the susceptibility

g =C+ t r above and y =C (
—t ) t below T, imposing

the condition y=y'. This is a minimal constraint and
has to be fulfilled if there is scaling at all. We have ana-
lyzed the data of each configuration separately in order to
check for configuration-dependent eftects. The critical
temperature of each sample can be determined with a rel-
ative accuracy of 2X10 —5X10 for all concentra-
tions. In addition to the standard thermodynamic quan-
tities we have studied the fourth and sixth cumulant of
the magnetization. These cumulants show a well-defined

jump at T„which serves as an additional check for the
correct value of T, . ' ' The critical exponents y (Table
I} determined from these fits have an error of approxi-
mately 0.01 for p ~0.8. The log-log plots (Fig. 5) of our

g, e, and I data show that the expected power-law be-
havior holds with constant exponents over the tempera-
ture interval (ti, t„) (Table I). As shown in Fig. 6 the ex-

ponent y increases with disorder even in the range of
weak dilution. The exponents nearly lie on a straight
line leading from y = 1.24+0.01 (p=1.0} over 1.30+0.01
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FIG. 6. Effective critical exponents P (dots) and y (squares)
for disordered Ising systems with different concentrations p.
Both exponents show a strong increase in the weak-disorder re-

gime and reach asymptotic values 13=0.335 and y=1.49 at

p =0.5.

(p=0.9) to 1.35+0.01 (Fig. 6). In the strongly disordered
concentration range p &0.8, the increase of y proceeds
with the same slope up to y=1.48+0.02 (p=0.6) and
reaches a plateau value y =1.49+0.02 at p=0.5, The er-
ror of y for p =0.6 and p=0.5 is about 0.01-0.03 for each
configuration. In this strongly disordered case, the
configuration-dependent variations of y are clearly larger
than the error of each configuration. For p=0.6, we find

y values between 1.45 and 1.52 and for p=0.5 the values
of y are between 1.46 and 1.53. These differences are not
surprising; even a 60 system is far away from the ther-
modynamic limit. Averaging over all configurations
leads to an approximate error of 0.01—0.02 (Table I). The
universal amplitude ratio C+/C of the pure system is
5.5+0.05. The ratio first decreases upon dilution and
reaches a minimum value of 5.1+0.1 at p=0.8. Upon
further dilution into the strongly disordered regime
C+ /C increases again and reaches 5.6+0.1 at p=0.5, a
value very near to the pure case.

The magnetization data are fitted to the power law
m = A ( t)~ with T, fixe—d from the susceptibility mea-
surements. The critical exponent P is comparatively
stable against variations of T, within reasonable bounds.
The values of P thus obtained (Table I) have an error of
about 0.01. Our pure system value is P=0.305, which is
lower than the theoretically expected value 0.32. This
systematic shift to lower values has also been observed in
previous simultions. ' ' We suspect that the periodic
boundary conditions that allow for domains extending
beyond the systems boundary are responsible for this
effect. Indeed, we have performed simulations with self-
consistent boundary conditions (same system size, same
temperatures, same random number sequence) and have
obtained the correct value P=0.32+0.01. However, self-
consistent boundary conditions have disadvantages,

which wi11 be discussed in a separate paper. The concen-
tration dependence of P is quantitatively not as remark-
able as the concentration dependence of y. However, the
increase of P is very similar to y; P also reaches a plateau
value P=0.335 at p=0.5. The universal amplitude A of
the magnetization shows a monotonical decrease from
A =1.51+0.03 (p=1) to A =1.31+0.02.

The determination of the exponent g is unfortunately
not as precise as the determination of P, since I shows
more curvature in the log, oI -log&ot plots than the magne-
tization [Fig. 5(a)]. Scaling corrections are responsible
for this curvature in the crossover region to noncritical
behavior. We point out that there are configurations that
show pronounced curvature in this temperature region;
other configurations hardly show any deviation from the
power law [Fig. 5(b)]. The accuracy of g (Table I) is be-
tween 0.01 and 0.03. We find that (=0.69+0.01 for the
pure Ising systems. In the strongly disordered regime, g
decreases to 0.675 at p=0.5. The comparison of the
values of P with those of g (Table I) shows that the scal-
ing relation (= 1 —P (12) is fulfilled within the error
bounds. Thus, the scaling relation (12) is very useful in
proving scaling behavior.

The quantitative analysis of the specific-heat data is
problematic as Fig. 4 shows. Even in the case of weak di-
lution the singularity is very weak and next-to-leading
and regular terms are important. We have therefore cal-
culated the values of a in Table I by means of the Rush-
brooke equation; a approaches a limiting value of
—0. 16+0.04. The specific-heat data at p=0.6 and 0.5
show their maximum value slightly displaced from T, .
For p=0.6 this maximum is at t = —0.015+0.005, and
for p=0.5 it is at t = —0.022+0.008. This displacement
of the specific-heat maximum has been observed in many
experiments in the past; it is not an effect of the Monte
Carlo simulation.

Summarizing, we have found that the critical behavior
of spin systems is clearly affected by disorder in all mea-
sured quantities. The most important effect of disorder
occurs in the susceptibility. The exponent y depends on
the concentration and increases from its pure system
value y =1.24+0.01 to y =1.49+0.02. The critical ex-
ponents P and g show a similar dependence and reach
P=0.335+0.01 and (=0.675+0.01 in the strong-disorder
regime. The critical exponents do not show a variation
with temperature. However, the interval is about one de-
cade on the log, ot scale. This may be too small to detect
variations in y significantly larger than the errors. Our
results are in good agreement with recent Monte Carlo
simulations of the diluted Ising model by Wang and
Chowdhury who simulated even larger systems with the
Swendsen-Wang dynamics. These authors measured the
susceptibility above T, and found y = 1.52+0.07 for
strongly diluted systems. Wang and Chowdhury origi-
nally found a temperature dependence of their results for
y. In an extensive simulation for p=0.8 this effect was
shown to be a crossover to noncritical behavior. Their
new result @=1.36 for p=0.8 is in excellent agreement
with our own value y =1.35 for this concentration.

The interpretation of Monte Carlo and other experi-
mental data concerning critical behavior is a difficult
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matter since data can be sampled only in a very limited
temperature range (tl, t„) above as well as below T,
[t =(T —T, )/T, ] t, is at most of the order 10 since
increasing simulation times and finite-size effects prevent
approaching the critical point further. The upper bound
t„ is the relative temperature above which nonuniversal
behavior becomes important. Nonuniversal behavior has
been observed as a curvature in the log-log plots for
larger distances to T, in the magnetization, susceptibility,
and the magnetization-energy correlation data (Fig. 5).

We have found that the exponents in the critical-
temperature range are concentration but not temperature
dependent. This does not mean, however, that there are
many different critical points or even a line of critical
points each describing the asymptotic behavior of a spin
system with some concentration. The exponents of dilut-
ed systems determined in the temperature range (tl, t„)
(Table I) are not asymptotic exponents but effective criti-
cal exponents. Effective exponents characterize the criti-
cal behavior in the observed temperature range. We ex-
pect that the effective exponents we have measured may
be calculated within an advanced theory that is able to
describe critical phenomena for systems with any degree
of disorder. The existing theories for systems with weak
disorder and for percolation-dominated critical behavior
should appear as limiting cases of such a theory.

Concerning the weak disorder regime we conclude that
the critical behavior is changed in all quantities when di-
lution sets in (Fig. 6). Moreover, the quantitative changes
are very pronounced and beyond any doubts. This result
contradicts the theoretical belief based on the small cross-
over exponent P„ that impure critical behavior is unob-
servable in experimental temperature ranges. However,
one cannot expect the renormalization group to give
quantitatively correct answers concerning nonuniversal
properties. Nevertheless, the strong increase of y up to
values around 1.50 is not explained by the conventional

theory of weak disorder, which predicts a change to
y=1.335. There may be at least two reasons for this
failure. The first possibility is that the conventional
theory' describes only the asymptotic properties in a
correct way —thus it would not be possible to prove its
correctness experimentally or by simulation. The second
possibility is that the theory is valid only for nearly pure
systems. We shall test the second possibility by means of
further simulations of very weakly disordered systems be-
tween p=0.9 and p=1.0.

In the strongly diluted range we find a parallel
concentration-dependent increase of P and y to plateau
values 0.335 and 1.49 at p=0.5. This is half-way to the
critical exponents y = 1.7 (dilute s-state Potts-model) and

y =1.5 (dilute n-vector models) expected at the percola-
tion threshold. A quantitatively reliable description
from the simplified approaches at p, (Refs. 7-10) cannot
be expected in the medium-concentration range around
p=0.6 where our simulations were performed. Unfor-
tunately, further simulations near the percolation concen-
tration p, =0.31 become increasingly time consuming
since one has to simulate larger and larger systems to
avoid configuration dependencies. It is therefore at
present not possible to approach the percolation concen-
tration more closely in order to further investigate the
crossover to percolation-dominated exponents. We ex-
pect that a theory which incorporates both the ueak-
and strong-disorder limit will satisfactorily explain the
findings of the present Monte Carlo study,
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