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Initial- versus final-state effects in the narrow-band spectra of heavy-fermion systems
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The f-electron spectral density of heavy-fermion systems, as observed by x-ray photoelectron
spectroscopy (XPS) and bremsstrahlung isochromat spectroscopy (BIS), is discussed in terms of
initial- and final-state effects. The properties of the initial state, described by the periodic Anderson
model, are obtained from the adiabatic perturbation theory, with the on-site correlation U, taken
as the expansion parameter. In the final state the transient effects following the sudden ionization of
the system in XPS or BIS are discussed by using the time-dependent perturbation expansion. The
overall spectral shapes, as would be observed experimentally, turn out to be given as a convolution
of the adiabatic spectral function, which reflects the many-body interactions in the initial state, and
the shape function, which accounts for the nonadiabatic effects following the destruction of the
charge neutrality in XPS and BIS. Our treatment allows us to explain the position and the shape of
the f-derived peaks in the XPS spectra of actinide intermetallics and to remove the conceptual
difficulty in understanding the data acquired independently from thermodynamic (low-energy) and
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spectroscopic (high-energy) measurements of heavy fermions within a unified framework.

I. INTRODUCTION

Many of the unusual properties of heavy-fermion in-
termetallic compounds can be understood' by assuming
that the correlated 4f states of rare earth or 5f states of
actinides overlap a broad conduction band of s,p,d sym-
metry. The hybridization between the atomiclike f states
and the neighboring ligand states leads to the formation
of the f bands. However, the strong on-site Coulomb in-
teraction between the f electrons of the opposite spin
gives rise to many-body effects that make the system
behave very differently from what could be expected on
the basis of the band-structure calculations in which the
local correlations are neglected.

To study these effects we consider a simple model in
which the atomiclike f states are represented by orbitally
nondegenerate levels located at energy €, the conduction
electrons are described by a band of width W and of a
constant density of states, the hybridization is taken to be
due to the off-site hopping, Vi, and the strictly local
Coulomb repulsion of the strength U is assumed between
f electrons of the opposite spin. In such a model, the in-
terplay between the hybridization and correlation, i.e.,
the competing tendencies for the f-electron itineracy and
localization, leads to the most characteristic feature? of
heavy fermion systems: the appearance of two totally
different energy scales in the experiments that probe
different parts of the electronic spectrum.

At high energies, the occupied f-electron states below
the Fermi level €, resemble the usual single-particle
bands of the width 2D, centered around Er, i.e., at the po-
sition of the singly occupied atomic f states. A similar
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structure appears also above g, in the unoccupied part
of the spectral density, around € r + U, which corresponds
to the doubly occupied atomic level. The relevant ener-
gies are defined here on the scale of 1 eV and the ob-
served spectral density has a large weight which accounts
for most of the f-derived charge.

At low energies, that is, in the vicinity of €, the elec-
tronic structure® can be discussed in terms of a narrow
“heavy particle band” of the width Tx. The energy
spread of such effective “heavy fermion” states is only
few meV and their spectral weight is negligibly small.
Nonetheless, the presence of this “Kondo peak” in the
spectral density gives rise to a large low-temperature
mass enhancement and the anomalies in transport and
thermodynamic properties of heavy-fermion systems.

Thus, despite the large renormalization of the single-
particle spectrum due to the correlations, the electronic
properties of heavy fermions in the limit of low (e=~g)
and high energies (e ~¢, or e~¢,+ U) can be described
by effective f bands, the characteristic energies of which
differ by many orders of magnitude (T <<D).

The low- and high-energy parts of the f-derived
single-particle spectral density are studied most directly
by the x-ray photoelectron spectroscopy (XPS) and
bremsstrahlung isochromat spectroscopy (BIS) experi-
ments and, in some systems, the two scales discussed
above have been observed.* However, the electron remo-
val states and the electron addition states, as measured by
XPS and BIS, respectively, are influenced not only by the
Coulomb correlation and hybridization, which determine
the spectral density of the system unperturbed by the
XPS and BIS probes, but also the nonadiabatic final-state
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effects that take place whenever the charge neutrality in a
nearly localized system is suddenly destroyed by the spec-
troscopic probe. In both cases the charge equilibrium is
destroyed very fast, i.e., in a nonadiabatic fashion, as the
electron emission by absorption of a photon in XPS, or
the electron injection into an empty state through emis-
sion of a photon in BIS, proceeds in a time interval that is
much shorter than all other relaxation processes typical
of the electron systems considered. In this respect, the
electron removal or addition processes may be considered
as “sudden” on the time scale characterizing other transi-
tions in the system (which are of the other of W~!, D1,
and Tx! for the spd bands, f bands, and the “heavy”
bands, respectively.

A sudden removal or addition of an electron in a near-
ly localized f-derived state can be visualized as a creation
of an uncompensated charge that will give rise to strong
transient localized perturbation acting on the mobile elec-
tronic charge in the system, i.e., on the electrons in the
conduction band. On the time scale W ~! these electrons
will respond to such transient perturbation so as to screen
out the excess localized charge created in the course of
XPS or BIS measurements. The dynamical screening
process triggered in this may strongly affect both the po-
sition and the shape of the measured f-derived density of
states, through the final-state relaxation shift and the line
shape change, respectively.

In other words, the measured f spectra comprise both
the initial- (band structure, etc.) and the final-state effects
(relaxation shift, peculiar line shape), which are convolut-
ed in a nontrivial manner. Therefore, a comparison be-
tween the theory, which accounts solely for the initial
band structure, and the experiments, which yield the
spectra comprising the initial- as well the final-state
effects, become possible only after a careful examination
and disentangling of these two groups of features, provid-
ed the complexity of the problem allows this at all.

Here, we discuss only the nonadiabatic effects in the
XPS and BIS spectra associated with the high-energy f
states where most of the f-electron spectral weight is lo-
cated. The nonadiabatic effects associated with the
“heavy fermion” band, which overlaps € and accommo-
dates a negligible fraction of the f-electron charge, are
here neglected. We should remark also that the heavy
fermions in thermal equilibrium exhibit negligibly small
f-charge fluctuations and their adiabatic properties are
well described by the periodic Anderson model, in which
the Coulomb coupling between the f electrons and the
conduction band is neglected. It is only after the sudden
creation of the f hole by an x-ray that the f charge cou-
ples to the electron-hole excitations in the conduction
band. Since the width of the effective f band is much less
than the width of the conduction band, i.e., D << W, the
adiabatic calculations for the initial f-electron spectral
density and the treatment of nonadiabatic corrections,
which give rise to the final-state effects, will be performed
independently.

The paper is organized as follows. In Sec. IT we discuss
the electronic structure of heavy fermions described by
the periodic Anderson model and show that the adiabatic
calculations give the spectral density which has most of
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its weight around energies that correspond to the singly
and doubly occupied f levels, far away from €. The
imaginary part of the f-electron self-energy is here very
small and the electronic spectrum can be well described
by an effective f band of width 2D centered around ¢, or
e, +U. Taking into account the electron dispersion in
this band and the recoil of the XPS created hole, we cal-
culate, in Sec. III, the apparent modifications of the f
states due to the nonadiabatic effects introduced by sud-
denly created uncompensated charge. The discussion of
our results and the comparison with the experimental
data is given in Sec. IV.

II. ADIABATIC CALCULATIONS OF THE SINGLE-
PARTICLE SPECTRAL DENSITY

We calculate first, in the adiabatic approximation, the
single-particle spectral density for the model Hamiltonian

_ t t
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where all the symbols have their usual meaning as defined
in the Introduction. It has been shown>® that the quali-
tative solution to the Hamiltonian (1) can be obtained by
the perturbation theory that starts from the normal me-
tallic state and treats U as an expansion parameter. The
heavy-fermion features thus obtained are not simply the
consequence of the largeness of the Coulomb correlation,
but rather the result of an interplay between the correla-
tion and the hybridization effects. Note that already the
low-order expansion in powers of U allows, in this ap-
proach, an accurate description of the heavy-fermion
state.>®

The f-electron spectral density is related to the single-
particle Green’s function which, in turn, is obtained from
the f-electron self-energy. To generate the self-energy
expansion we rewrite the Hamiltonian (1) by adding and
subtracting the Hartree-Fock term, which gives

H,=H,+H', 2)
where
H':Uz(n/,-T—(nf”))(nﬁl—<nﬁ;>), (3)

and where ( ), is the grand-ensemble average with
respect to the Hartree-Fock Hamiltonian H,. We are ex-
panding above the nonmagnetic ground state, so that in
the absence of the magnetic field all the quantities we cal-
culate are spin degenerate. The standard S-matrix expan-
sion generates the usual diagrams and the expressions
thus obtained assume exactly the same form as in the case
of the single-impurity Anderson model,” the only
difference being that now the momentum conservation
supplements the energy conservation at each interaction
vertex.

In particular, the reducible f-electron self-energy can
be written, after Fourier transforming, as®
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Here, <("ia» denotes the renormalized f-electron

charge, D"? denotes the nth-order determinantal expres-
sions constructed from the Hartree-Fock Green’s func-
tions,

D" (1,...,n)=det[(1=5,; )G,?j(r,-—rj)] ,
and D79 is the (n —1)-order determinant obtained from
D"’ by removing its first row and first column. All the
other symbols in Eq. (4) have their usual meaning. The
only difference between expression (4) and the corre-
sponding expression for the single-impurity problem’ is
that in addition to the imaginary time integrations, the
summation over all the lattice points appears as well.

The unperturbed Green’s function and its Fourier
transform are defined as

GLio (1= —AT Lfio(Df ], (0],
and
GO (iQ,,) ZIdTGk‘, Jexp[ —ik+(R, —R,)+iQ,,7]
ij
(5)
where 3, denotes the sum over the lattice sites and

R,-,Rj are the lattice vectors. From Eqgs. (1), (2), and (5),
we obtain the unrenormalized quantities:
+ —_
a a
m )= - ko — _+_ - ko — (6)
lQm_Eka lQm_EkU

G, (iQ

where the coefficients ;. and the Hartree-Fock excita-
tion energies E ;fa are given by the expressions

E.—¢
+ Stk
aka 1 _ 2 2 1,2 (7)
and
Ey, =HE;+e,x[(E;—£)+4Vi]" ) +p . (8)

Here, g, V\,E I and p are the unperturbed energies of
the conduction band, the Fourier transform of the hy-
bridization matrix element, the Hartree-Fock position of
the f level, and the chemical potential, respectively.
Note, that in Egs. (7) and (8 we should take
E;=e;+U{n;,)=0 and pu=0, when discussing the
model with the electron-hole symmetry, i.e., e,=—U/2
and (n;)=(n.)=1.
The renormalized f-electron Green’s function can now
be written as
o+
Grolif)=—— KOy Fke ()
i, —E¢, iQ,—E
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{exp[ik-(R;

XDi5(1,...,n

where the renormalized coefficients @, and the renor-
malized excitation energies E i, are obtained from the
Hartree-Fock expressions (7) and (8) by replacing the
Hartree-Fock level E, by the irreducible self-energy
3,,(z). The latter is related to the reducible one, 2 (z),
as

5 2)=Z (143, (2)Gy (2)] 7). (10)

The usefulness of the perturbative approach stems from
the fact that the physically relevant results are obtained
already with the second-order approximation to Eq. (4),
which reads

Solz)= (z +ie,)G

q+po(zﬂm+i£n)

Q €

m=n

XG oo (i) . (11

The frequency summations in Eq. (11) are easily per-
formed® but the momentum integrations have to be per-
formed numerically even for the one-dimensional lattices.

However, if we restrict our considerations to the ener-
gies around €, or £;+ U only, which are relevant for the
XPS and BIS experiments, respectively, 2, ;(z) can be ob-
tained analytically. In the symmetric model and for
U>>|V2|'* we have [—e,,e,+U]>>|VE|'2 so that
the self-energy expression (11) becomes

U*? - - 1

Zka(s+i8)=F§q" apaa:+kg(af+qa+ak+qa)—_€+i8 ,
(12)
whlch using the properties of the coefficients a,, and
apa, simplifies to’
. U?/4
Zka(s‘*'ls):m . (13)

Thus, at high energies the self-energy can be very well ap-
proximated by a local k-independent quantitity so that
Gy, acquires simple poles around e, and e+ U. This
further implies the occurrence of two prominent f-
derived peaks or bands in the density of f states.

To obtain detailed features of the f-electron spectral
density we have to use the full self-energy, Eq. (11), and
evaluate the expression

o2 .
Nf(a)——;glmGka(e+15), (14)

where G, (e+1i8) is the analytic continuation of G, (z)
onto the real axis, the summation over k runs over the
first Brillouin zone, and the factor of 2 is the result of the



42 INITIAL- VERSUS FINAL-STATE EFFECTS IN THE. . .

spin degeneracy. The numerical analysis shows>®® that
in the Kondo limit and at T=0 K the f-electron spectral
density displays two energy scales: (i) the Kondo peak of
small spectral weight appears at €, the characteristic en-
ergy being set by the Kondo temperature T ; (ii) most of
the spectral weight is associated with two broad peaks
centered at €, and €,+ U, and the characteristic energy
scale is defined by D ~(V?)/W. Here, we take the pa-
rameters such that —e,=U/2~3-5 eV and thereby ob-
tain D~1-2 eV. As regards the finite-temperature
effects, the many-body peak at € is strongly temperature
dependent and disappears above the Kondo temperature,
while the peaks at £, and €, + U do not change much as
the temperature varies between the room temperature
and T=0 K. Furthermore, it turns out that the high-
energy structure of the adiabatic spectral density is very
well described by the local approximation, which gives
the density of states shown in Fig. 1.

The high-energy part of the excitation spectrum, deter-
mined from the transcendental equation [e—E (€)]=0,
can be approximated by an effective f band of width 2D
and dispersion €. In particular, the analysis of the one-
dimensional periodic Anderson mode] with linear disper-
sion,

ep=ept ([2W/(m/d) Ik —W} ,

in the unperturbed conduction band and with the hybrid-
ization taken as Vi =V?[1—(g, /W)*], shows’ that in a
narrow energy range around &, the renormalized f states
will assume dispersion

A quasiparticle band of similar structure appears around
€,+ U as well. This further implies that within an energy
interval ~D around the energies ¢, and £,+ U, the wave
vector k remains a good quantum number even for the
description of the strongly renormalized f states. This
feature of the present model will be largely exploited in
the discussion of the nonadiabatic or transient effects that

N‘fl(e)
NF€F)

FIG. 1. Sketch of the high-energy part of the f-derived den-
sity of states, Nf(e)/Nf(eg) evaluated in the local approxima-
tion and plotted as a function of energy (ex=0) for U/W=1,
W /D =10, and ¢,= — U /2 (solid line). Unperturbed spd band
is shown for comparison (dashed line).
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occur in the high-energy parts of the electronic density of
states as probed by the XPS and BIS measurements.

III. NONADIABATIC EFFECTS
IN THE XPS AND BIS SPECTRA

A. Formulation of the problem of nonadiabaticity

In the XPS or BIS of localized or nearly localized elec-
tronic states one suddenly destroys the local charge equi-
librium by emission or addition of one electron in an f
state, which leads to the appearance of the final-state
effects in the measured spectra. In one of the previous
works!! we have studied the role of the nonadiabaticity in
heavy-fermion systems by assuming incoherent f states.
Here, we extend our studies of these effects also to the
systems in which the f states are broadened into narrow
bands lying well below or above the Fermi level which it-
self is located in the s,p,d continuum (see Fig. 1).

A convenient approach to treat the initial- and final-
state effects in the spectral density of f-derived states of
heavy-fermion systems is to extend the Hamiltonian (1),
which describes the initial-state effects only, by a term
that would account for the coupling of the uncompensat-
ed final-state f charge (a hole in the occupied f-derived
band around &, in XPS or an electron in the empty band
around e, + U in BIS), with the conduction electrons near
the Fermi level, viz., with the charge-density fluctuations
within the occupied s, p,d band.

In a Fermion system the charge-density fluctuations or
electron-hole excitations near the Fermi level can be
modeled, to a good approximation in most cases of prac-
tical interest, by the bosonized electron-hole pairs that
are characterized by their excitation energy v and wave
vector q. With this in mind, we shall reduce the problem
of the interaction of the XPS- or BIS-induced excess
charge in the f-derived bands with the electrons in the
conduction band of the system to a problem of the in-
teraction of the excess charge with the bosonized excita-
tions of the conduction band.

To this end, we introduce the bosonic creation and an-
nihilation operators ag, and ag,, respectively, through
the following commutation rules: '

[aqua;,v,]:w ,
Sq(v)

(15)

where S, (v) is the density of electron-hole excitations per
unit energy interval or the dynamic form factor pertinent
to the conduction electrons [e.g., Lindhard function if the
response of the conduction-band electrons is treated
within the random-phase approximation [(RPA)].
Remembering that k remains a good quantum number
for f electrons in the interval around e, and e, + U, we
may write for the nonadiabatic or transient part of the to-
tal Hamiltonian:

HE’SISZ 2 ka-qfl—-q.fk(aqv‘i-a'r—qv) ’ (16)
k,qv

in the case of the interaction of a BIS-promoted f-
electron with the conduction band, and
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H3§§§S=kz Vi-qfi-oftlag,taly,), (17)
,qVv

in the case of the interaction of an XPS-created hole in
the f band with the conduction electrons. In both ex-
pressions (16) and (17) the matrix element of the Coulomb
interaction U, between the f charge and the conduction
electrons is given by

UfC=<k_q|V(r)|k)=Vk_qk N (18)

where V(r)=—e?/r (not to be confused with the f-s,p,d
hybridization potential), and the summation over v must
be carried out in accordance with (15) as

S—J dvsm. (19)

Also, in order to preserve the formal consistency of our
approach, the total Hamiltonian has to be extended by
the ‘“‘adiabatic” free-boson term

Hpn=3 valag, , (20)
qv

although the latter should not be taken into account in
the calculations of the initial-state, adiabatic properties of
the system. Hence, the full Hamiltonian that describes
the dynamics of the heavy-fermion system, including the
nonadiabatic effects, now reads

H =Hﬂ +H8050n +Htrans ’ (21)

where H, is given by Eq. (1). Here, and in what follows,
the spin index is omitted, while the quantities corre-
sponding to the adiabatic part of the problem are labeled
accordingly.

In the following discussion we shall consider only the
dynamic relaxation processes consecutive to the XPS
creation of a hole in the occupied part of the f-derived
band around e,. The treatment of the processes follow-
ing the sudden promotion of a BIS electron into the f-
derived empty band around &, + U, can be obtained sim-
ply by time reversal.!?

An important property of the interaction (17) is that it
becomes effective only if there exists a photocreated hole
in the otherwise occupied f-derived band. Namely, due
to the large separation of the center of this band from the
Fermi level (i.e., U >>D), we may altogether neglect the
virtual excitations of the f hole created by x-ray absorp-
tion. This allows us to reduce the problem to the one in
which there is only a single hole present in the f band at
any instant, which in the language of propagators, means
that the hole propagates in one time direction only.

The density of states of the occupied f band N (w),
which now comprises both the initial- and final-state
effects, as measured by XPS, is obtained at T =0 from
the standard expression

[ %}

T

SIS

ImTrG(w—i8) , (22)
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in which the trace has to be taken only over the k states
within the f band. The diagonal elements G, (w), which
appear in the expression, are obtained from the Fourier
transform of the diagonal f-state Green’s function calcu-

lated in the presence of HXES  viz.,

Gk(a))=f_: dt expliot)G, (1), (23)
with G (¢) now defined as

G (1)=—i{0|T[f (1)f(0)]]0) . (24)

Here, |0) denotes the ground state of the heavy-fermion
system before the hole has been created in x-ray photo-
emission, i.e., before H,, . has become effective. Hence,
|0) is an eigenstate of the adiabatic part H, of the total
Hamiltonian H given by (21), which incorporates all the
initial-state effects brought about by the f-spd hybridiza-
tion ¥, and the Anderson correlation U. Since we are al-
lowing for the presence of only one f hole at any instant
in the system, Eq. (24) can be brought to the form

G (=i0(—n){0|f1(0)f,(1)]0)

=i0(—1)(0|f e f e ~H!0)
—iH,t

=i0(—1){0|fleH'f, e 10)
=i0(—te 0 ]e™0,) 25)

where |0/, ) denotes the eigenstate of H, with one hole
present in the k state of the f band. In deriving the last
line of Eq. (25), we have made use of the fact that

H|0)=H,|0)=E{|0) , (26)

since on the time scale set by H,.,, (r~W~!) the
ground-state fluctuations of the f hole can be neglected.
The expression (25) enables us to represent the diagonal
single-hole propagator by the expectation value of the
evolution operator exp(iHt) in an excited state IOfk) of
the heavy-fermion system. Here we recall that the diago-
nal matrix elements of the evolution operator can be most
conveniently obtained by employing the cumulant expan-
sion or by writing

<Ofk‘eth10fk>

=(0p efa'r exp

Lt
zfo drH (1)

‘ofk)

:eiEjk(Ofk |Texp

ifo’drH{,ans(T)] {o,k), 27

where H!, (7) is written in the interaction representa-
tion, defined here as
—tH,T H 7

H{an(T)=e “ Hipe * (28)
and

H, |0, )=E}10,)=(E§—%7)[04) , (29)
where

EszE(a)_'E;k (30)
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is the energy of an electron in state |k ).
Now, combining (25) and (29), we finally obtain

Gk(t):ie( _t)e—itfktecfkm
=Ga(ne ", (31)

where Gy (?) is the renormalized zero-temperature f-hole
Green’s function pertinent to the adiabatic Hamiltonian
(1) and Cp,(t) stands for the expectation value of the 7-
ordered exponential, which has a power expansion in
powers of the coupling constant (i.e., V,_g), starting
from the second order.'*!7 In the following we shall re-
strict ourselves to the second-order term in the expansion
for Cy(2), which amounts to describing the phase shift
pertinent to the scattering potential ¥, _, in the Born
approximation. In this case we obtain'> !

1—e'®'+ip't

Cp=—[" dopple’) o)

) (32)

where!’

pfk(w')=§|Vk;qk!2fo dvS (8o’ —v+E_q—Ep)

(33)

is the weighted density of excitations characteristic of the
composite system (single f-hole+electron-hole pair in
the conduction band). An important feature of expres-
sion (33) is that it encompasses the recoil of the f hole
upon exciting a conduction electron-hole pair of wave
vector q and energy v. These recoil effects enter p (")
through the interaction matrix element V,_ g, and the
recoil energy of the f hole

Aqugfk—q_sz . (34)

In the case of an infinitely heavy hole one has A,,=0 and
this may enable the factorization of the q and v integra-
tions in (33), provided the same property also holds for
S4(v). The expression (32) can be also represented by
and derived from the Feynman diagrams in the (k,?)
space (cf. Ref. 15). However, the Vg vertices in these
diagrams are restricted to the time interval (0,¢) during
which H,, .. in (27) is effective (cf. Refs. 16, 19, and 21).
This is in contrast to the ordinary diagrams appearing in
the treatment of the adiabatic properties of the system
described by H,, the vertices of the latter being effective
within the entire time interval (— o0, o0 ).

The expressions (23)-(32) enable us now to write the
f-band density of states (22) in a compact form:

Nf(a))=22 f_wocj_;er(m—sz>z+cﬂm
k
=3 [7 do'Nj (@ NES(0—0), (35
k —
where

is the effective density of f states in the absence of H
On the other hand, the shape function

trans*

< dt iw't+Cpy(n)
— 27T

N ()= [ (36)
describes the final-state relaxation processes brought
about by the sudden switching on of H,, in XPS mea-
surements, and as such introduces the final-state effects
into the total measured spectral density N (w) of Eq.
(35). The remainder of this section will be devoted to
model calculations of Nj{™ (w).

B. Model calculations of the shape function

The calculation of the shape function N{ii™(w) as
given by (36) reduces to the calculation of the exponent
Cs (1) defined by Eq. (32). The evaluation of the latter
quantity requires the knowledge of the matrix element
Vi—qk (19), the dynamical form factor S, (v), and the f-
hole energy A,q (34). However, the present knowledge of
the static electronic structure of the heavy-fermion sys-
tems does not enable us to go beyond the relatively sim-
ple models in describing the dynamical properties of
these systems. On the other hand, it turns out that some
dynamical properties of Fermi liquids in general, and the
heavy-fermion systems in particular, depend to a large
extent only on quite general parameters and structure of
fermionic systems. Hence, in our discussion and the eval-
uation of the shape function, we shall employ relatively
simple-model expressions for the quantities V) g, S4(v),
and Akq. Thus, for the matrix element of the f-hole
conduction-electron Coulomb attraction, we take the ex-
pression for the bare interaction,

2

Vi =T (37)
q

since the screening of this interaction will enter through
the self-consistent S (v). The screening properties of the
conduction electrons will be described through an RPA
expression for S, (v), corresponding to an electron gas of
a given density. Such dynamic form factor comprises
electron-hole pairs in the low-energy part of the spectrum
v<qug (where v is the Fermi velocity), and the plasmon
of frequency w,, in the high-energy part of the spectrum.
While the former type of excitations are always the well-
defined constituents of the excitation spectra of normal
Fermi liquids, the latter are usually blurred and damped
by other electronic transitions appearing in real systems,
such as interband transitions, etc. (cf. Fig. 2 of Ref. 18).
Hence, in the following we shall take into account only
the incoherent electron-hole component of the spectrum
S4(v) modeled by the Lindhard function, as it is precisely
this part of the spectrum that will most affect the shape
function (see below). Thus, we take'’

a,v (—v/v )
Sv)=—"—e
q

O(v)B(2gr—q) , (38)
where we have introduced an exponential cutoff v.=W
instead of a sharp one for later mathematical conveni-
ence, and
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2
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I

a

. , (39)

where f3, is given by

qT1F _ qaTF
le(g,0—0)|  1+gip/q% "’

qu

with g1p being the Thomas-Fermi wave vector.

The main effect of the recoil energy A, is to change
the volume of the phase space in which the energy con-
servation is satisfied during the excitation of a
conduction-band electron-hole pair through the Coulomb
interaction with the photocreated f hole. The very ap-
pearance of the recoil in the argument of the 6 function
on the right-hand side (RHS) of (33) is significant insofar
as Akq#O, as this gives rise to the nonzero values of
pslw’) in a certain interval below «'=0 [otherwise
Pl <0)=0 for A, =0]. Because of this, we shall em-
ploy the functional form of A, emerging from the
periodic Anderson model described in Sec. II, and treated
in the local approximation, which yields

Aquéfk—q—‘észbq:— (40)

where D was defined in Sec. I. The qualitative predic-
tions for the spectral shapes based on such recoil model
are the same as for the recoil of free particles (cf. Sec. IV
of Ref. 15). A similar model has also been employed in
other studies of the interaction of fermions with bosons
(cf. Ref. 20, p. 305). Taking this form of the recoil and
fixing the parameters appearing in Vy g, Sq(v), and A,
we find that in the present model p s () is k independent
and exhibits the behavior sketched in Fig. 2 for various
values of the dimensionless parameter a=2d /bqrg
=7/dqtr and y =W /D =5. Here, small values of grg
(i.e., large a) signify the limit of the f-hole interaction
with dense electron gas in the conduction band (large
screening effects), and vice versa. The main feature to be
observed in Fig. 2 is a power-law dependence of p (")
on o' near its band bottom, where the latter is obtained

St 55 ev)

FIG. 2. Density of excitations of the composite system (f-
hole +electron-hole pair in the conduction band), p (@), plot-
ted as a function of ' for y =W /D=5 and various values of
the parameters a =(7/d)/qrg: (i) a =0.5, (ii) a =1, (iii) a =2.
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by putting the hole at the lower edge of the filled f band,
ie., for (Ayg)max=2D. Then, psle’) rises up linearly
with «’, crosses the o' =0 axis, and eventually saturates
and falls off because of the presence of the cutoff in S (v).
In the case of an infinitely heavy hole
(M;— 0 =A,—0), pple’) starts linearly from zero
without exhibiting the power-law behavior, because the
latter is exclusively a consequence of the nonvanishing
recoil of the f hole (cf. Refs. 15 and 16). The linear low-
energy behavior of ps(w') is also obtained in a special
case if the hole is created at the upper band edge of a
filled f band.

The knowledge of p (") enables us to deduce the gen-
eral behavior of C, (1) and thereby of N™(w) as well.
Thus, according to (32) we may write

Cat)=CH()+CE™ (1), (41)

in which the ““adiabatic’” part linear in ¢ reads
Ch(n)=—i fdw’M t=—iv1 (42)

fk o L

where v, describes the screening energy or the relaxation
shift of the f hole created in a state |k) and interacting
with the conduction-band electrons. The term
exp[ Cfy (£)] can now be associated with the unperturbed
hole propagator Gi in Eq. (30) to yield the relaxed (or
shifted) energy of the f hole

§k=§Ik+Uf . (43)

The magnitude of v, depends to some extent on the mag-
nitude of the maximum of p ;(®’), but more important is
the position of the maximum with respect to the point
®'=0 and the extension of the integral in (42) on both
sides from this point. Hence, for relatively broad f bands
(i.e., D~W) and p s (@') centered around »’=0, the con-
tribution to the integral in (42) will be negligibly small.
This indicates the absence of any appreciable relaxation
due to screening in the case of light or mobile holes. On
the other hand, in the case of an infinite f-hole mass
(D =0), we have A, =0 and hence the lower integration
boundary in (42) is zero, giving the maximum value of the
relaxation shift for a localized hole.

The time dependence of the remainder on the RHS of
41), viz.,

cins ()=~ [ do'pple’) , (44)

(w)?
determines the shape function (36) and can be inferred by
studying the long- and the intermediate-time dependence
of the integral in (44), giving, respectively, the properties
of the elastic line at w =%, and the inelastic wing of the
Sf-hole spectrum N (w) [Eq. (22)], or equivalently, of
N™ (o) [Eq. (36)].

1. Long-time behavior of G (t)

To determine the long-time behavior of C{™(¢), and
thereby of G, (¢), we shall write the integral in (44) in the
form
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. (1—e'@) 1—cosw’t |, .sinw't
lim | do'pple')————= hm do'pnlo’)
mﬁwf pfk ( 1)2 f pfk ((0,)2 (wl)Z
Pale o) sinw’t
= | do ’-—————— +i lim | do'palo’) , (45)
= dor e i [ et

where we have also made use of the equxvalence of the two distributions in the long-time limit:

(1—cosw't) . 1

— lim ——— .
=  (')? Il > (') +1 2

Since the large ¢ limit in (45) implies that the dominant contribution to the integral comes from the interval around
o' =0, we shall expand p (") into powers series and retain only the zeroth and first-order term in ’. This yields

), do

where p(0)=0p s (w)/dw, and E, and E; stand for the upper and lower integration boundary determined by the
upper and lower band edges of p s (w"), respectively. Thus, the expression (46) depends crucially on the width 2W of the
conduction band, as this is the maximum energy of an e-h pair excited within this band, giving E, =2W, and the max-

sinw t

(w')?

lim C"ans( )=—1Tpfk O)t pfk pfk(o)f do'

|t’—>oc

+p/(0) f do 'S“;“” . @6

imum recoil energy of the f-hole 2D, giving E, =

—2D. Hence, the functional behavior of (46) will be governed by the

ratio D /W. Quite generally, in discussing the spectral properties of G, (¢) we may distinguish two cases.

(i) f band is infinitely narrow (infinite f-hole mass). In this case D =0 and consequently E,

and p, (0)70 which yields

lim C™Y(1)=p(0)n(1—iE,1),

'li—»oo

=0, Aq=0, and p £ (0)=0

(47)

and leads to a power-law divergence of N (w) at the threshold at =%, [cf. Eq. (13) of Ref. 11]. In addition, the relax-
ation shift v, given by (42) reaches a maximum value. The physical implication of the infinite f-hole mass on the spec-

tral shape of the hole was discussed in Ref. 11.

(ii) f band has finite width (mobile hole). 1n this case D0, AkqsﬁO, E =

—2D <0, and

21122
lim CE™i(t)= lim |—7p.(0)t —p(0)ln 1HE D7 —imp’y(0)
|t — S [t]— o 4 4 1+(E[t)2 !
- ' D
[

Using (48) the shape of the elastic line in the f-hole spec-
trum is obtained from (23) and reads

lim NelasliC(w)= SR S (49)
oot 1K M (0—5 ) +T3
where

is the total probability per unit time that the hole in the
process of recoil will excite an electron-hole pair in the
conduction band. The term

Prl0)

D ) (50a)

Z,= W

gives the weight of the elastic line in the spectrum and
has the appearance of an electronically induced Debye-
Waller factor. With the recoil given by (40), i.e., evalu-
ated in the local approximation, both I'; and Z are k in-
dependent.

Note that in the case of infinite hole mass (Z, =0 since

D =0) the no loss line has zero weight and the entire
spectral weight is accumulated in the inelastic part of the
spectrum, i.e., in a totally asymmetric infrared threshold
divergence extending below the threshold at &, [cf. Ref.
11, Eq. (13)].

2. Intermediate-time behavior of G (t)

The intermediate-time behavior of G (¢) determines
the line shape of N (w) away form the elastic line, i.e.,
outside the region |0—%&|<T s of the main peak. This
time dependence is governed by the oscillatory factor in
the integral of (44), viz., by the term

do'pple’)— , (51)
f wpfkw (w:)z

as all other terms contribute either to the shift v, of the
elastic line or to its weight Z, (cf. above). Since in the
present limit we are interest only in the interval of the
spectral density Ny (o) for which [0—%/|2T,, the
spurious divergence 1/(®’)? in the integrand of (51) can
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be healed either by using the Ansatz
1 1
(@) (o')+T7

, for o' <T, (52)

or by cutting off the ’ integration below |o'|=T,. Both
procedures lead to essentially the same result and for the
sake of mathematical simplicity we choose the former
one. Such a renormalization of the denominator in the
integrand of (51) would also be obtained by taking into
account that the initial-hole state decays through recoil
since D0 (except when the hole is created at the upper
edge of the filled f band), a feature that would also ap-
pear in higher-order cumulants in the expansion of the
evolution operator (27).

To obtain the dominant spectral characteristics of
Ny(@) we may assume the weak-coupling limit [small
effective |Vq12, cf. Ref. 21(b)] and make use of (52) to car-
ry out the expansion

exp[C/E™(1)]=1+CR™(1)+0(|V,|Y) , (53)
which yields, for |0 —%, [>T,

H © ((0') Ho—8&, +o')
N}rﬂelastw(w)zsz ﬂ do' Prx By t

— o 217 (') +T7%
+0(|Vgl")
(By—w)
=z, P2 Lov, 4. (54)

! (Ek_w)2+ F%

Thus, the same functional form of ka(w) is obtained
both from the long-time and the intermediate-time calcu-
lations. By combining Egs. (49) and (54) and recalling
that 'y =mp ;(0), we finally obtain the weak-coupling re-
sult:

pfk(gk-—w)

— 4
Npylw)=Z, )2+r2+0(|Vq| )| (55)

(Ek—w

for the entire w interval. However, note that Z, appear-
ing in (55) and defined by (50a) is not restricted to the
weak-coupling approximation employed in (53) -and,
hence, represents the correct Debye-Waller factor for the
entire spectrum. The form of the first term in the large
bracket on the RHS of (55) is also known from the studies
of decaying states in the radiation theory (cf. Ref. 22, p.
994).

The expression (55) for the f-hole spectral density em-
bodies both the elastic and inelastic components of the
spectrum. With the adiabatic part of the problem solved
in the local approximation, N () turns out k indepen-
dent, and its behavior is shown in Fig. 3 for the same set
of parameters as used in Fig. 2. The shapes of the spectra
depend crucially on the magnitude of the parameter
a =(mw/d)/q1g, viz., on the effective strength of the in-
teraction of the f hole with the charge-density fluctua-
tions (electron-hole pairs) in the conduction band. In the
case of a small a (weak dynamical screening) the spec-
trum is dominated by an asymmetric no loss (elastic) line
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FIG. 3. The f-hole spectral density (with final-state effects in-
cluded), Ny (w)/Z,, plotted as a function of energy for the same
values of @ =(m/d)/q1r and y as in Fig. 2. Inset: behavior of
Z; as a function of a for y=5and W =5¢eV.

centered at =%, (zero in Fig. 3). As a increases the
probability of inelastic excitation of the conduction-band
electron-hole pairs of higher energy also increases. This
shifts the weight of the spectrum from the no loss line to-
wards an inelastic side wing whose maximum now lies
outside the range 2D of the maximum f-hole recoil ener-
gy. The same qualitative behavior of N (w) is also ob-
tained for other values of ¥ which are of the same order
of magnitude (e.g., y=10). In all cases, however, the
main spectral feature is a pronounced asymmetry to-
wards the higher-binding-energy side, which is a conse-
quence of a rather singular coupling of the heavy f hole
to the conduction-band e-h pairs near the Fermi level.
This becomes particularly important in the limit of
infinitely heavy hole [case (i) discussed above with D =0],
in which case the f spectrum would acquire a singular
shape with zero weight of the elastic line (Z,=0), and an
integrable infrared divergence for the inelastic side band
extending below g, (cf. Ref. 11).

The inset in Fig. (3) shows the dependence of the
Debye-Waller factor Z, given by Eq. (50a) as a function
of the effective strength of the interaction a, for D =1 eV
and W =5 eV (i.e,, y=5). The behavior of Z; demon-
strates clearly that in the limit a >1, which implies
efficient screening or strong coupling of the f hole to the
conduction-band charge-density fluctuations, the weight
of the elastic line is strongly reduced, whence the majori-
ty of the spectral weight appears in the inelastic side band
of the spectrum N/ (w) [see curve (iii) in Fig. 3].

The shape function NfE™(w) [Eq. (36)] is obtained
from (55) by setting €, =0, i.e.,

ka(a))zN}rl?ns(w—.ék) . (56)

Using this, we find that the overall effect of such a shape
function on the measured (integrated) spectra may readily
be deduced from Eq. (35). Employing the results of Sec.
II we may assume a simple density of states within the f
band, viz.,

Nilo)=a 8o’ —%F) fore;,—D =% <e,+D, (57)
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wherefrom we obtain:

Nf(w)‘_:% d.:N};(a"s(a)—Ek—vf)

= [ de N{(e)NF*™(w—e—v,) . (58)

Here, Nf(e) is the “adiabatic” or the initial density of
states in the f band as obtained from the diagonalization
of H, of Eqg. (1) and shown in Fig. 1, and N/*™(0—¢
—v,) is the k-independent shape function obtained from
(56), which now includes the relaxation shift v ,asa typi-
cal final-state feature.

Equation (58) gives a nice example of how the mea-
sured XPS spectrum of an occupied f band of a heavy-
fermion system appears as a convolution of the adiabatic
or initial-state band structure, expressed here through
N§, and the nonadiabatic, final-state effects embodied in
the shape function N ",

In the limit of weak screening (small a), the width 2D
of the occupied f band will be much larger than the
width 2T, of Nj™™(w) [cf. curve () in Fig. 3]. In this
case Nf*™(w) (which is normalized to unity) may be ap-
proximated by 8(w—e—v/), yielding for small a:

Nylw)=Niw—v,) . (59)

Hence, in the weak-screening limit the XPS spectrum
Ny(w) will be shifted upwards towards &5 by v, but will
retain the overall shape determined by the initial-state
effects (except for some asymmetry at the lower band
edge).

In the opposite limit of strong screening (a large), the
width of N will largely exceed the initial-state width
2D of the f band. In this situation N7, which is also nor-
malized to unity, may be approximated by 8(e—¢,), now
yielding for large a:

Nf(a))sz"a"S(a)—ef—vf) . (60)

In this case the XPS spectrum is dominated by the final-
state effects both through the upward relaxation shift v,
and the pronounced asymmetric shape tailing towards
higher binding energies. The initial-state structure enters
here only through the position €, of the center of the oc-
cupied f band.

In both limits of the XPS line shapes discused [viz.,
(59) and (60)], the upward relaxation shift and the overall
asymmetry of the f peak would persist, signifying an in-
terplay between the initial- and final-state effects in pho-
toemission from the occupied narrow f bands lying well
below e5. This feature becomes more pronounced as the
efficiency of screening of the f hole brought about by the
conduction-band electrons is enhanced (i.e., as grp is
lowered). These facts should be taken into account when
interpreting the XPS and other experimental data on the
f-band electronic structure of strongly correlated fermion
systems.

The above conclusions apply equally well to the inverse
photoemission (BIS) spectra of the unoccupied part of the
f band lying above g, in which case all the final-state
features are reflected across €x. Thus, by applying the
time reversal to Eqs. (35)—(54), one finds (cf. Refs. 11 and
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23) that the BIS spectra of unoccupied f states exhibit
downward relaxation shift and asymmetric broadening to-
wards higher energies.

IV. DISCUSSION

Before applying the results of the preceding sections to
the electronic spectra of actinide intermetallic com-
pounds we recall some of the simplifying assumptions
made in the course of our derivations and summarize
briefly the experimental status in the field.

Our treatment is based on the nondegenerate periodic
Anderson model in which the correlated electrons are
delocalized through the hybridization with the neighbor-
ing ligands, like in actinide intermetallics. Thus, with the
actual orbital degeneracy and the spin-orbit coupling be-
ing neglected, the occupied 5f band of actinides is re-
duced to an effective “‘one-electron” band which accom-
modates most of the f charge. Its width, 2D, is found not
to be very different from the values given by the local-
density approximation (LDA), but, in contrast to the re-
sults obtained by the LDA, its center is displaced away
from € by U/2, due to the effects of local correlation,
U >>D. Within our full many-body treatment the effect
of correlation U also gives rise to the formation of a nar-
row ‘“heavy-particle band” right at €5 (cf. Ref. 6). How-
ever, the contribution of these ‘“heavy states” to the
overall charge neutrality of the system is so small that it
can be neglected. Hence, only the states in the effective
“one-electron” band are assumed to be probed in XPS (or
BIS) experiments. Furthermore, we assume that the time
scale characterizing the charge redistribution in uncorre-
lated s,p,d bands is so short that the transient effects as-
sociated with XPS (or BIS) can be treated independently
from the “Kondo effect.”

As regards the experimental data, the characteristic
feature of the 5f-derived part of the uranium XPS spec-
tra is the presence of a single, asymmetrically broadened
peak centered a few eV below €. In heavy-fermion com-
pounds such as UBe,;, UAl,, or UPt;,**? the peak over-
laps the Fermi level but much more weight is found in a
broader interval around €y than could be expected from
the narrow ‘“heavy-particle band,” whose existence is
otherwise indicated by the equilibrium data. If the dis-
tance between the center of the f peak and €, as ob-
served in XPS, would be taken as a measure of the f-f
correlation U, the derived Kondo temperature and the
associated width of the “heavy-particle band” would
again turn out to be inconsistent with low-temperature
thermodynamics. Moreover, the overall width of the
measured 5f peak greatly exceeds the theoretical predic-
tions based on the independent-electron approxima-
tion.?®2” The puzzling spectra are also obtained for the
Y,U,_,Pd; compounds, in which the 5f states are as-
sumed to be localized.* Here, the f-derived peak is well
separated from e, but the separation decreases with the
addition of Y impurities. Since the dilution of uranium,
if anything, should increase the local character of the f
states, it seems that the position of the 5f peak in ac-
tinide intermetallics is not related only to the f-f corre-
lation. Thus, we would like to understand the following
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observations made for uranium-based heavy-fermion in-
termetallics: (i) the excess width of the experimental 5f
XPS spectra relative to the one-electron description, (ii)
the proximity of these broad spectra to € in systems that
exhibit large mass enhancement, and (iii) the absence of
additional spectral weight which would give the spectro-
scopic evidence for the Kondo peak. In UPd; com-
pounds, in which the f electrons are assumed to be local-
ized,?®?° we would also like to understand the unusual
shifting of the spectra upon doping.

Having in mind the simplifications made in order to
carry out the calculations, we can only attempt a qualita-
tive comparison between the theory and the experimental
data. The question of our prime interest here is whether
the observations mentioned above, together with the
thermodynamic and transport data, could be interpreted
and understood within the framework of the periodic An-
derson model.

Let us focus our attention on the position of the re-
laxed peak as given by Eq. (43). The center of the occu-
pied f band of width 2D lies at e ;= — U /2, well below ¢,
(cf. Fig. 1), but the observed energy €, of the f states will
be shifted upward by the final-state relaxation effects [cf.
Eq. (42)] to a value

éf:£f+vp, (61)

i.e., closer to £, by the amount v, given by Eq. (42). The
magnitude of v, can be estimated only roughly because
its explicit calculation would require the knowledge of
the full response function of the systems studied, and
these are currently not available. In making the estimate
we notice first that the final-state relaxation effects of lo-
calized core levels of some 3d metals have been calculated
and found®3! to vary between 3 and 6 eV. As regards
the uranium 5f states, the additional change of the mag-
nitude of the relaxation shift due to the delocalization is
an effect of the order v, .(D /), where v, is a shift of
an ‘“‘equivalent” localized 5f level and () is the charac-
teristic excitation energy of the electronic response (typi-
cally the plasmon energy, which exceeds 10-20 eV in
most metals and intermetallics), and therefore the main
effect comes from v,,.. Thus, from the arguments of per-
fect screening in metals, we should expect the relaxation
shifts of about 3—6 eV in our problem as well. This im-
plies that although the ground-state position of the center
of the f band may lie well below &5 (cf. Fig. 1), in XPS
the corresponding peak will show up much closer to the
Fermi level, the actual position depending on the magni-
tude of U/2—v,. Thus, in the uranium-based heavy-
fermion intermetallics, we identify the f-derived XPS
peak as originating from the one-electron density of the
occupied f states centered around &, in the ground state
(charge equilibrium state), and shifted upwards by screen-
ing effects in the relaxed final ionized state.

Such an identification is further supported by the com-
parison between the shape of the observed XPS spectra
and the calculated spectral lines displayed in Fig. 3. The
characteristic feature of measured spectra is their width
and asymmetry with a tail extending towards negative en-
ergies (i.e., away from €g). This feature is interpreted in
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our model as originating from final-state dynamic screen-
ing of the f hole whose sudden appearance in photoemis-
sion gives rise to a nonadiabatic excitations of charge-
density fluctuations within the conduction band. As a
consequence, the hole recoils and the energy of the pho-
toemitted electron is reduced by the amount of the exci-
tation energy of the charge-density fluctuation. Both
processes contribute to the observed peak width I'y>2D
[Eq. (50a)], and the latter process gives rise to the peak
asymmetry. A mere inspection of the experimental spec-
tra of Ref. 4 and the comparison with our Fig. 3 shows
that the experimental XPS f-line shapes are modeled
quite well by our curves (i) and (ii). The latter were calcu-
lated with the choice of the free-electron parameter
qtr=¢q1r(r,) for which the free-electron parameter r, lies
in the range 2 <r, <3, and this spans the interval of real-
istic r; values for a large number of metals. If the low-
energy part of the XPS line is too close to g, the small
additional feature that might be expected due to the Kon-
do resonance will not be observed.

As regards the UPd; and similar systems with localized
f states, we believe that the addition of impurities could
change to some extent only the screening properties of
the conduction electrons, which may manifest itself in the
position and the shape of the XPS line upon doping. On
the other hand, the unperturbed “one-electron” f band is
insensitive to the addition of impurities.

We also remark that in the systems where the f-
derived XPS line remains to be split off from the Fermi
level, as the consequence of different conduction electrons
screening properties, the Kondo resonance could be ob-
served at low enough temperatures, T < T, provided the
experimental resolution is large enough. We believe this
is the situation one encounters in cerium-based heavy-
fermion intermetallics,* but even there the width and po-
sition of the experimental XPS spectra could not be sim-
ply related to the parameters of the Anderson Hamiltoni-
an so as to yield a quantitative agreement between the
model parameters deduced from the low-energy and
high-energy experiments, unless the final-state effects are
taken into account.

To summarize, our model, which incorporates the
band characteristics as an initial-state effect and the re-
laxation shift and the line shapes as the final-state effects,
enables us to make a proper assignment and give the in-
terpretation of the XPS spectra as an interplay between
the ground-state properties of the system and the dynam-
ic screening effects characteristic of photoemission from
metals. The present assignment of the peaks allows us to
remove the conceptual difficulty in understanding the
data acquired independently from thermodynamic and
spectroscopic measurements of actinide systems within a
unified framework.
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