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Spatial chaos in a nonlinear monatomic chain
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We derive an area-preserving map from the microscopic model of a nonlinear monatomic chain

at a T=O first-order phase-transition point. The model is useful for describing first-order structural

phase transitions and the metal-insulator transition in various condensed-matter systems. We nu-

merically study the nature of the trajectories of this two-parameter map associated with the lattice

displacement pattern. The map displays spatial chaotic behavior for various values of the parame-

ters m and 5. The result is interpreted in terms of soliton interaction, soliton pinning, and the

metal-insulator transition in these systems.

In recent years nonlinear monatomic-chain models
have been extensively used in condensed-matter physics,
because they provide a nonperturbative approach to
strongly anharmonic systems. These models have been
found particularly useful for systems that show structural
phase transitions like the ferroelectric phase transition,
charge-density-wave transition, metal-insulator transi-
tion, etc. They usually consist of a one-dimensional lat-
tice with harmonic coupling between neighboring lattice
points and a nonlinear on-site potential. The nonlinear
on-site potential gives rise to soliton states in the system.
A typical example is the discrete A,P theory in which the
amplitude at the nth site is given by

random distribution of the soliton states in the lattice.
Such stable random distribution of the soliton states ap-
pears as a "chaotic" solution of the discrete map of the
given system.

However, these studies so far have been con6ned most-

ly to systems which show a second-order phase transi-
tion. '

Recently we have considered a model of a nonlinear
rnonatornic chain with higher-order nonlinearity that de-
scribes a first-order structural phase transition at zero
temperature. The generalized nonlinear on-site potential
considered is

P„=(
—l )"Potanh( na /10 ), V(y)=cy2 +2+//~+2+ gyz+D (2)

where a is the lattice constant, lo represents the width of
the amplitude soliton, and $0 denotes distortion in the
dimenzed state. Because of the existence of the modulat-
ed structure (lattice distortion) in the system, there
occurs a competition between the modulated period (P)
and the lattice period (Q). The wave number of a com-
mensurate state of the system is tI =P/Q. As is well

known, such types of competition between the spatial
periods usually lead to spatial chaos. In fact, spatial
chaos has been seen in the discrete area-preserving itera-
tive maps of this particular system ' and also in other
systems. '

In terms of the soliton picture, the occurrence of spa-
tial chaos can be understood more clearly. The soliton
gets pinned to the lattice due to lattice commensurabihty.
The pinning of the soliton to the lattice is overcome by
the soliton interaction energy E;„,-exp( —al ), where 1 is

the distance between solitons. So when the distance be-
tween the solitons becomes large, the soliton interaction
cannot overcome the pinning energy, and the soliton
remains pinned to the lattice. %hen the pinned soliton
states are regularly spaced, we get high-order comrnensu-
rate states. If the interaction between the solitons is very
weak (for large separation between them) one expects a

with an adjustable order of nonlinearity for
m =1,2, 3, . . . . At the transition point

8'=4AC, A, C &0 and 8 &0 .

F. = f [ ,'A(dg/dx ) +y V(—$))dx, (4)

and the equation of motion (static) in the displacive re-

gime is given by

A.(d P/dx ) y(dV(ttt)/dg)=0 .—

We have obtained the exact solutions (kinks and an-
tikinks) of Eq. (5) as

The potential has doubly degenerate minima for all odd
values of m and triply degenerate rninirna for all even
values of m. For rn =2, this potential [Eq. (2)] describes
the well-known A,P theory.

The energy E of the system can be written in the con-
tinuum approximation as
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2 '~ Po[1+tanh(mx/2(o)]'

for m =1,3, 5, . . .

+2 '~ Po[1+tanh(mx /2/0)]'
h(x)= '

(6a)

for m =2,4, 6, . . . , (6b)

where Po=(2A/~B~)', (&=A/2Ay. We have also
shown that these solutions are stable and have finite ener-
gy. In general, the solution to Eq. (5) is a soliton lattice
with distance i =a/c (c being soliton density) between
the solitons. As mentioned above, the solitons interact
with each other through an exponential repulsive poten-
tial. In the continuum limit, we obtain the energy of in-
teraction between the solitons separated by a distance I as

E;„,=k exp( —im /2(o) -exp( —1 m &A 5/2), (7)

where k is a constant that depends on the soliton energy
E, [Eq. (4)] and 5=2y/A, . The soliton energy can be easi-

ly evaluated, which in our case is given by

E, = A ygo(2A /~Bi) [1/(1+2/m)] .

Thus we see that E;„, decreases with increase of parame-
ters m (order of nonlinearity) and 5 (strength of non-
linearity).

The solution has translational symmetry, and the lat-
tice can be shifted along the x axis without any cost of
energy. Since the solitons are charged (+e), the soliton
lattice can conduct. However, as mentioned above, the
solitons also experience a pinning potential (attractive)
due to the periodic nature of the lattice. Using the Pois-
son summation method we can estimate the pinning en-
ergy of soliton as

E;„= g J dx E, ( x)exp( 2mimx) .

We estimate the term with m =1 only, since the term
with m =0 gives the continuum energy E, [Eq. (4)] and
the remaining terms are small. Now from Eq. (5) we get

—,'A, (dgldx ) =y V(P),

which gives E,(x)=2y V(P). Substituting this in Eq. (8)
and using Eq. (6) we can write the pinning energy of the
soliton as

E~;„=4yf dx[(1+tanhmx/2)0)' ' sech mx/2(ocos2mx]

exp[ —2(1+i(0m /m )k]=2 ™2(go/m)Re dk
[1+exp( —k)] + ~

This integration can be evaluated exactly for arbitrary
values of m, and we obtain

22+2/m(g /m )

X Re[8 ( 2 2i gon lm, 2—/m + 2i (on /m )],
where B(x,y) denotes a 13 function. Using the relation
between the P and y functions and the Gauss multiplica-
tion formula for the y function, it can be shown that, for
g, »1,

E~,„=k ( )emxp( 2gzm. Im ) ——exp( —2n. Im & A 5),
(9)

where k (m) is a constant that depends on the value of m.
For m =1, k(1)=64/3(go~) . Similarly, it can be ob-
tained for other values of parameter m. Thus we see that,
in contrast to the soliton interaction energy E;„„the soli-
ton pinning energy increases with an increase in the pa-
rameters m and 6.

As has been mentioned above, the soliton gets pinned
to the lattice if the soliton interaction energy cannot
overcome the pinning energy. The translational invari-
ance is lost and the lattice cannot have Frolich conduc-
tivity. A depinning transition takes place when
E;„,=E;„,which determines the critical concentration
(density) of the solitons as

c,„=(m a)/4m. (0=m aA5/(4n ) . (10)

A metal-insulator transition takes place at soliton con-
centration (density) c & c,„. This can be very easily seen
from the numerical study of Eq. (5).

The energy of the system can be written in the discrete
form as

E= g A, /2(P„—P„,) +yV(P„) .

0„+i
=0„+54„[1—0„1[1—(m +1)4„],

4.+i=4'. +0.+i .
(13)

For a given arbitrary initial value ($0,$0) the above map
determines the displacement field P„at all subsequent
sites along the chain for difFerent choices of the parame-
ters m and 5.

The discrete form of the equation of motion [Eq. (5)] can
be written as infinity of coupled difference equations,

(4"+i 0. ) —(0.—4.-—i)
=(2y/A. )$„[1—$„][1—(m +1)$„], (12)

where P„denotes displacements of the particle at the nth
site on the chain. Introducing P„=P„—P„,, we get a
two-dimensional discrete map,
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Now we present the results of the numerical study of
this discrete map. The advantage of studying this map is

that it has two parameters, namely, 5 and m. By varying
5 in the corresponding discrete map [Eq. (13)] we can
study the effect of variation in the strength of nonlineari-

ty, whereas by varying m we can study the effect of vary-
ing order of nonlinearity, on the lattice displacement pat-
tern. So far other studies have been confined to variation
only in parameter 5 with fixed order (m) of nonlineari-
ty. ' Jensen and Lomdahl have studied a two-
dimensional area-preserving map that depends on two pa-
rarneters. However, in their case the parameters depend
only on the strength of the coupling constants (the
strength of the interaction between the ions on the chain
and that of interchain interaction), and hence by varying
the parameters they could study the effect of variation of
strength of nonlinearity of the soliton states. In their
model it is not possible to check the effect of higher-order
nonlinearity on the soliton states. The other advantage of
studying this map is that it represents a model for first-
order phase transitions, while other similar studies so far
have been confined only to models of second-order phase
transitions. It should be noted that for odd values of
m, the nonlinear on-site potential [Eq. (2)] is asymmetric
(in P~ —P), whereas it is symmetric for even values of
Pl.

The map [Eq. (13)] is area preserving. From the stabil-

ity analysis' it can be easily checked that this map has
three fixed points (p, 1(i) at (0,0), (1,0), and
([1/(m+1)]'~, 0} for odd values of m (=1,3,5, . . . ).
Out of these three fixed points the first two are hyperbolic
fixed points and the last one is an elliptic fixed point.
Similarly, for even values of m (=2,4,6, . . . ), there are
five fixed points, of which the three points at (0,0) and
(+1,0) are hyperbolic fixed points, and the two others at
(+[1/( m + 1 )]1™,0} are elliptic fixed points. The
iterates of the discrete map given by Eq. (13) are shown in

Figs. 1 —3 and are obtained for different values of the pa-
rameters m and 5 with some chosen sets of initial condi-
tions (i))o, Po). To be specific we have chosen the initial
conditions on the $„=0 axis. For our study we have

chosen two values of 5 (one low value, 5=0. 15 and a
high value, 5=0.41) and vary the order of nonlinearity
(m).

Let us first consider the case in which the values of m
are odd. The g„versus P„plot for 5=0.15 and m =1
displays periodic incommensurate states for different
chosen initial conditions. When the value of 6 is in-
creased to 0.41, we get the regular orbits again. Thus for
m = 1 and for these values of 5 we do not find any chaotic
trajectory. As the order of nonlinearity is increased to 3,
for 5=0.15 we get regular orbits and chain of islands
(high-order coinmensurate states) but chaotic orbits are
still absent in this case [Fig. 1(a)]. The system is still con-
ducting. However, when the strength of nonlinear cou-
pling is increased to 5=0.41, the plot for m =3 [Fig.
1(b)] displays well-pronounced chaotic states along with
the regular orbits and chains of islands. This is expected
because, as shown above (analytically), the pinning ener-

gy increases with an increase in m and 5, and the soliton
gets pinned. When the pinned solitons are regularly

placed, we get a high-order commensurate state (islands),
whereas the chaotic regime is formed by the random dis-
tribution of pinned solitons. Figures 2(a) and 2(b) show
the plots for m = 5 with 5=0. 15 and 5=0.41, respective-
ly. Thus, when m =5, the nonlinearity is already in-
creased to such an extent that, even for a low value of
5=0. 15, well-pronounced chaotic states are seen as
shown in Fig. 2(a}. Similar lattice displacement patterns
are also seen for even values of m, in which case there are
five fixed points. For m =4 and 5=0.15 and 0.41 the
plots are shown in Figs. 3(a) and 3(b), respectively. Here
again the chaotic states are very pronounced for 5=0.41.
Similar plots are also obtained for rn =6. For higher
values of m (&7), the lattice displacement patterns show
chaotic behavior for almost all the initial conditions.

In conclusion, we say that we have yet another exarn-

04

~ Ineeiit
~~ I( ~I~

~~"'
~oil

ail ~af I
~It ~ \'Ill Ii

it"
ti'

I I

,I i I I w J ~ ii
t1

I )1 il

I(

iiei iiit» Jl uP
~"

1P
Ol

H
'Ha

-0 4'----
0 0 I 0

04

illlo II ~14i ~

~teIii '
%ooii

) II

L~/;P
I

1 ii ~'

")iN ilK»'

-04
00

I

I

t

(b)
l

FIG. l. i(„vs P„plots of Eq. (13) for (a) m = 3, 5=0.15 and

(b) m =3, 5=0.41.
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pie of the discrete area-preserving map, which is derived
from a microscopic model. The advantage of this map is
that it is a kind of generalized map such that we can vary
two parameters, m and 5, to see the effect of higher-order
nonlinearity and strength of nonlinearity on the lattice
displacement patterns. As compared to a discrete A,P
map, the numerical iterations of this map display a
greater number of high-order commensurate states
(chains of islands). It is seen from the plots that as the
order (m) and strength (5) of nonlinearity is increased,
the chaotic regime becomes more pronounced. This
agrees with the analytical calculation that shows that the

pinning energy increases and the interaction energy de-
creases with an increase in m and 5, thereby creating soli-
ton states. The chaotic regime is formed by random dis-
tribution of the pinned solitons. Also it is seen from the
plots that, as the order of nonlinearity is increased the
chaotic solutions occur even for lower values of 5. The
plot also shows a very sensitive dependence of the trajec-
tories on the initial conditions for higher values of m.

Recently we have shown that" a diatomic chain with
this nonlinear on-site potential [Eq. (2)] also supports sol-
iton solutions apart from the nonlinear phonon and
periodic solutions. It would be interesting to see the
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FIG. 2. P„vs P„ for (a) m =5, 5=0.15 and (b) m =5,
5=0.41.

FIG. 3. g„vs P„ for (a) m =4, 5=0.15 and (b) m =4,
6 =0.41.



42 SPATIAL CHAOS IN A NONLINEAR MONATOMIC CHAIN 6437

effect of an m and 5 variation on the lattice displacement
pattern in this system.
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