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Momentum constraints in collective-variable theory

R. Boesch' and C. R. Willis
Department of Physics, Boston Unioersity, 590 Commonwealth Avenue, Boston, Massachusetts 02215

(Received 2 April 1990)

We present an analysis of the constraints used in collective-variable treatments of kink-bearing
nonlinear Klein-Gordon equations, which appear in field theory and in continuum and discrete
condensed-matter systems. In particular, we introduce into the collective-variable theory a family
of momentum constraints that includes the momentum constraints that have been used in the litera-
ture so far. We derive the collective-variable Hamiltonian and show that there is a single member
of the family of constraints for which the kinetic energy of the collective mode separates from the
other variables in the theory so that a truly particle-like description of kink dynamics results. We
discuss the general structure of the Hamiltonian collective-variable equations of motion and also
present a simple derivation of the collective-variable theory beginning from a Lagrangian. We ob-
tain, therefore, the correct choice of momentum constraint within the family for both Hamiltonian
and Lagrangian approaches to multiple collective-variable theories.

I. INTRODUCTION

Collective-variable treatments of nonlinear Klein-
Gordon equations have been successfully used for field
theories' and for both continuum and discrete '

condensed-matter systems. We will hereafter denote Ref.
2 by the Roman numeral I. Various approaches such as
Lagrangian dynamics with Lagrange multipliers, Hamil-
tonian dynamics using Dirac brackets, and projection-
operator methods have been used to derive the
collective-variable equations of motion. All of the treat-
ments have in common the introduction of constraints.
All of the treatments use the same kind of constraint on
the collective variable which can be thought of as deter-
mining the value of the collective variable so as to obtain
the best least-squares fit to the profile in the system, see
Eq. (2.6) below. However, various approaches have been
used for the constraint which determines the form of the
momentum conjugate to the collective variable, such as
no constraint on the momentum, a constraint for the
momentum of the same form as the constraint on the col-
lective variable' or a constraint for the conjugate
momentum that is of a form different than the constraint
on the collective variable.

In this paper we introduce a family of constraints for
the conjugate momentum collective variable by choosing
the momentum constraint to be a function of a parameter
a. As e varies we include all the constraints that have
appeared in the literature. We obtain the collective-
variable Hamiltonian and show that there exists a single
value of o. that defines the form of the collective-variable
momentum such that the kinetic energy of the collective
mode acquires a simple particlelike description in the
Hamiltonian. The momentum constraint corresponding
to that particular value of a is given by Eq. (3.7) below.
For other choices of cz we show explicitly that the parti-
clelike description in the collective variable Hamiltonian

is lost. In addition, we present a Lagrangian collective-
variable theory using Lagrange multipliers which al-
though known to many in the field is unpublished and is
superior to a recent Lagrangian approach. We will show
that the momentum constraint, Eq. (3.7), used in field
theory' and in I, is the best momentum constraint from
the point of view of both Hamiltonian and Lagrangian
descriptions of collective-variable theories.

In Sec. II we use the Dirac bracket in order to find the
canonical transformation from the original set of vari-
ables to the set containing the collective variable. We
derive the Hamiltonian and equations of motion in Sec.
III and a Lagrangian approach to collective-variable
theory in Sec. IV. In Sec. V we compare our results with
other collective-variable theories and conclude.

II. CANONICAL TRANSFORMATION-
HAMILTONIAN APPROACH

and

H= —,'gP +V
1

where the potential Vis defined as

V=——,
' g(Qt+t —Qt)'+ g V, (Qt)

1 I

(2.lb)

(2.2)

We consider a system of harmonically coupled parti-
cles of mass trt = I and spring constant k = I subjected to
a periodic substrate potential V, ( Qi ). Qi is the position
of the Ith particle measured with respect to the 1th
minimum of V, . The only requirement on V, is that it be
such that the system supports stable kink profiles. The
Lagrangian and Hamiltonian functions for the system are

(2.la)

42 6371 1990 The American Physical Society



6372 R. BOESCH AND C. R. WILLIS 42

=QI
dL

dQI

and the equation of motion for Q, is

(2.3)

and represents the sum of the harmonic and substrate po-
tentials. The momentum PI conjugate to Q& is

dx&(Q' f"='d
(2.6)

duced into the system. The first constraint gives meaning
to the variable X by requiring the function fI(X) to be a
best fit to the field QI in the following simple way:

aQ,
(2.4)

Equations (2.6) and (2.5) lead to the first constraint condi-
tion

We assume that our system admits a single-kink struc-
ture and we let the collective variable X(t) denote the
motion of the collective mode we wish to consider. (We
consider the single-collective-variable case for simplicity
and then generalize to the multiple-collective-variable
case later on. ) For instance, X could represent the posi-
tion of the kink's center of mass, or the slope of a P
kink (representing the displacement of the P kink's
internal mode) or the separation of subkinks in a double
sine-Gordon kink. ' In other words, it is important to
realize that X is in general any collective mode and not
necessarily a center-of-mass mode.

In order to introduce X into the system, we construct
the ansatz

QI =fi(»+e (2.5)

where fI(X) is chosen to best represent the configuration
of the system and ql is then the remaining field such that
the sum of q& and f& satisfies Eq. (2.5). For example, one
may choose f,(X) to be the kink profile of the system in

the continuum limit. The ql would then represent not
only extended phonon states but quasistatic dressing of
the kink function fr. Of course, it is not necessary to
choose fr to be the continuum kink form. Any suitable
choice of fI will do. The choice of f& will merely govern
what type of approximation one would be able to make
on the q&. The function afr lax represents the shape of
the mode corresponding to the variable X. If X is the
slope of a discrete p kink then afI /ax represents the ap-
proximate shape of the discretized P internal mode.

We now seek a canonical transformation from the old
variables Q&, PI to the new variables q&,p&, X,P where pI
and P are the momenta conjugate to ql and X, respective-
ly. Half of the transformation is given by Eq. (2.5).
What remains is to find PI as a function of the new vari-
ables. We will see that P, (q„,p„,X,P) is determined up
to a function hl (ql, x) and that hI must satisfy a
differential equation [see (Eq. (2.18)]. That is, we find a

family of canonical transformations to the new set of
variables where a particular member of the family is
chosen by specifying an appropriate hl. We will show
that nontrivial solutions for hl exist and give one explicit-
ly. However, we will also show that all conditions on hl
are satisfied if we choose hl =0, which merely singles out
a particular member of the family of canonical transfor-
mations. The choice hl =0 was used in I for the canoni-
cal transformation.

In order to construct the canonical transformation we
must first introduce two constraints to balance the two
extra degrees of freedom (X and P) that have been intro-

C, —:g f/'q, =0,
I

(2.7a)

where = indicates Dirac's weak equality. We choose
the second constraint to be of the form

C2 =—g f/'pI aP =—0,
I

(2.7b)

where a is real and takes on values in the range
—~ (a & ~. Since the collective variable X is given its
meaning by Eq. (2.7a), specifying different values for a
merely redefines the momenta P and pI and does not
affect the meaning of X and the ql.

In the general case of a system with constraints the
dynamical bracket that is invariant under a canonical
transformation is the Dirac bracket which, for two func-
tions A and 8 of the new variables, is defined as

I A, B j'=
I A, B j

—g (A, C, jC; 'IC, Bj, (2 8a)

where the sum on i,j is over all second-class constraints,
the ijth element of the matrix C is given by CJ =—

I C;, CJ j
and C;1

'—= (C ');~. The bracket without the asterisk is
the Poisson bracket defined as

aA aB
t A» j(q, ,p„x,s)= 2

I ql PI

aB aA

apr

aA aB aB aA+ ax ap ax ap
(2.8b)

j c, , c, j =0, i = 1,2 (2.9a)

and

t C„cq j =M(1 ab), — (2.9b)

where we have defined the kink mass M and the function
has

M—:g(fr'), b= g fr"qI .
M (

(2.9c)

When we calculate the matrix C ' and substitute into
Eq. (2.8a) we find that the Dirac bracket for our single-
collective-variable case reduces to

Note that the Dirac bracket reduces to the Poisson
bracket when there are no constraints present. Also note
that for our single-collective-variable case we have that i
and j each take on the values 1 and 2. Therefore, using
the constraints in Eqs. (2.7a,b) and the definition of the
Poisson bracket in Eq. (2.8b) we find
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Ig, BI*=I~,Bj+, (I~,C, ]IC,,Bj ap„ =5,„+f,'d„(q„,p„,X,P ),
Ps

(2.15a)

—I~ C21ICi»I) .

(2.10}

Note that the Dirac bracket of C, and C2, i.e., I C„C2 )
*,

is zero.
Making use of the invariance of the Dirac bracket un-

der a canonical transformation, it is possible to determine
the function PI(q„,p„,X,P). The same technique was
also used in I. Since the Dirac bracket for the old vari-
ables is simply the Poisson bracket, we require for any
functions A and B of the coordinates and momenta that
the following condition holds:

I ~ {qI pi X P) B(qi pi X P ) J

A(QI PI ) B(Qi PI)1 (2.11a)

where d„ is an arbitrary function of the indicated vari-
ables. Then substituting Eq. (2.15a) into Eq. (2.14a) and
simplifying yields

dP„

ap

f„'(1—a)
M(1 b)— (2.15b)

Integrating Eqs. (2.15a}and (2.15b} we obtain, respective-
ly,

P„=p„+C2d„+g, (q„,X,P ),
f„'(1 a)P-

P„= +C21„+gz(q„p„,X),

(2.16a)

(2.16b)

where C2 is given by Eq. (2.7b) and g& and g2 are arbi-
trary functions of the indicated variables. Consistency
between Eqs. (2.16a) and (2.16b) requires that

where the derivatives for the bracket on the right-hand
side of Eq. (2.11a) are taken with respect to the old vari-
ables Q& and P&. We therefore require

f„'(1 a)P-
P„=p„+ +C~d„+h„(q„,X), (2.17)

IQi Q. l"=o

IQi P. l'=fiI.

(2.11b)

(2.11c)

(2.11d)

BP„st„
+fI'(1 —b }

ap„ap„+a b 5I„— +Pi,
dpI s3ps

(2.12)

where in Eq. (2.12) and from now on a sum over repeated
indices is implied and

(2.13a}

IP, ,P„}'=0,
where fil„ is the Kronecker delta function.

In particular if we substitute Eq. (2.5) for QI into Eq.
(2.11b) we obtain the identity 0=0.

Next, we substitute Eq. (2.5) into Eq. (2.11c)and obtain
a differential equation of motion for PI.

where hi is an arbitrary function of qI and X.
Note that taking the derivative of Eq. (2. 17) with

respect to P, for example, yields the right-hand side of
Eq. (2.15b) with an additional term, namely C28d„IMP,
which we set to zero since it is proportional to C2. In
fact, at this point it is permissable to set the C2 term in
Eq. (2.17) to zero even before derivatives are taken. The
reason is because C2 is strongly equal to zero in Dirac's
sense: any terms appearing in the Hamiltonian that are
proportional to a constraint contribute nothing to the
equations of motion when the Hamiltonian is varied.
Since the constraint terms that will appear in the Hamil-
tonian originate in Eq. (2.17) we can set C2 equal to zero
in Eq. (2.17). However, we retain the C2 term in order to
see, for completeness, if any conditions appear on the
function d„when we impose the requirement of Eq.
(2.11d). Therefore, substituting Eq. (2.17) for P„ into Eq.
(2.11d), performing the derivatives and simplifying, we
find that terms proportional to C2 (or equivalently d„)
cancel exactly, a drops out and that only terms propor-
tional to h„survive:

is a projection operator with the properties

(2.13b)

ah, ah,

Bq„BXM(1 b}—

, (1 ab)—
"M(1 b)—ap„ap„

aP 'Mf' a,,
(2.14a)

Next, we project Eq. (2.12) in the direction 5« —P« to ob-
tain

ap„
(fi„—P„)

aS's
=0. (2.14b)

Equations (2.14b) and (2.13b) allow us to write

Although Eq. (2.12) looks somewhat complicated, it is
simple to solve, which we now do. First, we project Eq.
(2.12) in the direction of f/ to obtain

fI Bh„+ f„'—(1~n )=0, (2.18)
M(1 b) Bq„—

where the symbol (l~n) means interchange I and n in
the entire preceding expression. Thus, there are no con-
ditions imposed on d„, nor since it is multiplied by C2
does d„contribute to the equations of motion. There-
fore, d„ is completely arbitrary and we set it to zero. [We
note that in I the term proportional to C2 (or equivalent-
ly d„) in the momentum transformation, following Eq.
(A15b), was set to zero but should have been retained.
Consequently, the term proportional to d„should not be
present in Eq. (A29} in I. With this correction, Eq. (A29)
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h, = Af, (X)+Bq(, (2.19)

where A and 8 are independent arbitrary constants. The
solution given by Eq. (2.19) can be verified by substitu-
tion. Since there are no conditions on A and B they are
completely arbitrary and we choose A =B=0 and so
h(=0. By choosing h(=0 we single out a particular
member of the family of canonical transformations to the
system of collective variables for a given a.

With these choices of d„=O and h„=O the particular
canonical transformation we have chosen under which
the Dirac brackets are invariant [subject to the con-
straints in Eq. (2.7)] is

reduces for the single-collective-variable case to Eq. (2.18)
derived above, all other results of I being unaffected by
the correction. ]

We see that h( must obey Eq. (2.18). One nontrivial
solution to Eq. (2.18) is

so that the Hamiltonian may be written

P2
+ ,' y p('+ ~(f(+q() .

2M
(3.2b)

X=rX,H]}',
which yields

pX=
[ (1 —a)[1+a(1 2b )]-

M(1 ab )—

+a(1 b) ]—.

(3.3)

(3.4a)

The first term in Eq. (3.2b} seems to be the kinetic energy
of the collective mode —but in general it is not. It is only
the kinetic energy of the collective mode for the single
value a=0.

In order to show this explicitly, we consider the Hamil-
tonian equation of motion for X which we calculate from
Eq. (3.1a) or (3.2b) using the Dirac bracket

Q(=f(+q(

f((1—a)P

(2.20a)

(2.20b)

From Eq. (3.4a) we obtain

p2 =
—,'M, X g(a),

2M
(3.4b)

We note that a dependence is in the momentum trans-
forrnation and not in the coordinate transformation. For
explicit examples we consider the two cases a=O and
a=1. For a=0 Eq. (2.20) reduces to that of I. When
a= 1, corresponding to the constraint C2 [cf. Eq. (2.7b)]
used by Igarashi and Munakata, the momentum trans-
formation becomes

(2.21}

The momentum transformation Eq. (2.21) looks simple,
but in fact it is too simple. The idea in collective-variable
theory is to separate out the nonlinear collective modes
from the rest of the system; but one should not separate
out the collective modes in the coordinate transformation
Eq. (2.5) and then neglect to do so for the momentum
transformation. Eq. (2.21} makes interpretation of the
Hamiltonian difficult, as we discuss in the next section.

III. COLLECTIVE-VARIABLE HANIILTONIAN
AND EQUATIONS OF MOTION

In order to calculate the collective-variable Hamiltoni-
an, we substitute the transformation Eq. (2.20) into Eq.
(2.1b). Doing so and making use of Eq. (2.7b) yields

p2H= (1—a)[1+a(1 2b)]-
2M

where

2

g(a)= (1 ab )(1—a—)[1+a(1 2b )]—
(1—a}[1+a(1 2b)]+a—(1 b)—(3.4c)

P2'- =-,'M.X'
2M0

(3.5a)

Equation (3.4b) indicates that in general P /2M does
not equal M X /2 and therefore cannot be the kinetic
energy of the collective mode. It also does no good to
define X:—g(a)X in an attempt to obtain the particle-
like expression

P /2M~=M X /2,
because then X would imply a redefinition of the veloci-

ty of the collective mode which in turn would imply a
different constraint C, for the definition of the collective
coordinate. Therefore, we note simply that Eq. (3.4b) in-
dicates in general that the rnornenturn of the collective
mode is accounted for partially by P and partially by the
other rnomenta p&.

However, only for the choice a =0 (because b is a func-
tion of time) does g(a) become unity yielding the parti-
clelike description

where

+ ,' g p('+ V(f(+q(»-
I

The Hamiltonian for the case a =0 becomes
3.1a

p2
H.=0= —+ ,' P p('+ V(f(+q-(»

2M
(3.5b}

M —=M(1 b)— (3.1b)

M:—M
(1—a )[1+a(1 2b)]—(3.2a)

is the renormalized mass. It is tempting to renormalize
the mass further by defining

where we used MD=M. Equation (3.5a) shows that the
kinetic energy of the collective mode is identified as the
first term in Eq. (3.5b) whereas the second term in Eq.
(3.5b) is the kinetic energy of the new field variables.

We contrast the a=O case with the case a=1 for
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which the Hamiltonian takes on a completely different
form:

(3.6}

For completeness, however, we briefly focus on some
general properties of the equations of motion derived
from Eq. (3.1a), one of which (the X equation) is given by
Eq. (3.4a} and other three (q(, p(, and P) of which we do
not include for brevity.

One obvious feature is that the first-order equations of
motion are functions of a. Therefore equations of motion
for the same variable corresponding to two different
values of a cannot be the same. It is easy to understand
why this is so: it is the constraint Cz(a) that gives mean-
ing to pl and P. Therefore, the momentum variables pI
and P have, respectively, different meanings for different
values of a and must therefore be determined by a
different set of equations in order that the same physics
emerge.

The only variables that have the same meaning for
different a are the collective coordinates X and the qI
since the constraint C& that gives meaning to these vari-
ables is independent of a. Therefore, eliminating the mo-
menta variables from the general equations of motion de-
rived from Eq. (3.1a), we obtain second-order (in time)
equations of motion for X and the q( that are independent
of a:

dV(Q, )
(5(„—P(„) Q„+

n

=0, (3.8a)

dV(Q, ) =0 (3.8b)

The term one would like to associate with the kinetic en-
ergy of the collective mode has vanished in Eq. (3.6), a
consequence of the inappropriately transformed momen-
ta in Eq. (2.21). Although the kinetic energy of the col-
lective mode, however, is accounted for in Eq. (3.6), it is
not identifiable because it is absorbed into one term with
the field kinetic energy. It therefore makes no sense to
pursue the Hamiltonian theory for any value of a other
than a=0 for which the constraint C2 defined by Eq.
(2.7b) becomes

(3.7)

dependent. The second-order equations of motion for the
coordinates are independent of a and yield the
projection-operator equations derived in I. The reason
the results also hold true for the multiple-collective-
variable case is because the mathematical structure of the
multiple-variable theory is the same as that of the
single-variable theory, most terms in the multiple-
variable theory becoming matrix counterparts of those in
the single-variable theory.

In this section we have derived the collective-variable
Hamiltonian as a function of a and showed that only the
value a=0 corresponds to a Hamiltonian for which the
kinetic energy of the collective mode separates complete-
ly from the momenta pl yielding a sensible particlelike
description of the collective mode in the Hamiltonian.
We also showed that the second-order equations of
motion obtained by eliminating the momenta are a in-
dependent and yield the projection-operator equations in
Eq. (3.8).

In the next section, we carry out a simple Lagrangian
approach to the problem of the canonical transformation.

IV. CANONICAL TRANSFORMATION—
LAGRANGIAN APPROACH

Recently, Igarashi and Munakata proposed a La-
grangian approach to collective-variable theory for the
case a = 1, which led them to the Hamiltonian Eq. (3.6) in
which the collective mode kinetic energy does not explic-
itly appear. We now present a simple Lagrangian formal-
ism' for the a=0 case in order to construct the canoni-
cal transformation to the new variables that leads instead
to the correct Hamiltonian Eq. (3.5b). We therefore use
the constraints defined in Eq. (2.7) with a =0:

(4.1a)

(4.1b)

We express the Lagrangian in terms of the collective
variables by substituting the ansatz Eq. (2.5) into Eq.
(2.1a) and adding a Lagrange multiplier A, times C„ the
time derivative of the constraint C&, to obtain

L =
—,
' g (fI X+q() —g V, (f(+q()

I I

—((.g (f("Xq(+ft q(),
I

(4.2a)

where Eq. (2.5) for Q( is to be substituted into Eq. (3.8)
and the projection operator P(„ is defined in Eq. (2.13a).
Eqs. (3.8) are the projection-operator equations that were
derived in I, which treats only the a=0 case. The form
of Eq. (3.8) suggests the existence of a powerful shortcut
for deriving the collective-variable equations of motion.
One needs only to substitute the ansatz Q, Eq. (2.5) into
Eq. (2.4) and operate with P(„as indicated in Eq. (3.8).

In addition, when the above analysis is carried out for
multiple-collective-variable systems, the same result
holds rigorously: the first-order equations of motion de-
rived using the Dirac bracket method are a dependent
because the definition of the momentum variables are a

where

(4.2b)

Our motivation for incorporating the time derivative of
the constraint, i.e., C& =0, into the Lagrangian instead of
C, =O is the following. We note that the collective-
variable equations of motion that are derived from the
co11ective-variable Hamiltonian have the property that
they satisfy the equations C, =O and C2=0. That the
constraints C, and C2 are zero xnust be supplied as an in-
itial condition. Therefore, using C& =0 as the constraint
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Ps=—
BL =fi'X+qi A.f/ . — (4.3)

We see that the effects of the constraint C, =0 enter into
the momentum variables through the Lagrange multi-
plier A, . Next, we invoke the constraint C2 in Eq. (4.1b)
in order to solve for A, . We multiply Eq. (4.3) by f/ and
sum over 1 to obtain (invoking the summation conven-
tion)

O=MX+ fi' ji —
A,M, (4 4a)

where M is the kink mass given by Eq. (2.9c). Solving Eq.
(4.4a) for )i, we obtain

1
A, =X+ fi'q( .

M

Then substituting Eq. (4.4b) into Eq. (4.3) we obtain

(4.4b)

(4.5)

where 5,„ is the Kronecker delta function and P&„ is the
projection operator defined in Eq. (2.13).

Next, we calculate P, the momentum conjugate to X,
and obtain

(4.6a)

into which we insert Eqs. (4.4b) and (2.9c) to obtain

for the Lagrangian is consistent with the properties of the
equations of motion we seek and sacrifices no informa-
tion. Igarashi and Munakata use instead C, =0 times a
Lagrange multiplier. Since they do not have velocities in
their constraint term, the calculation of the collective-
variable Hamiltonian is quite involved. Using C, =0 in-

stead leads to a direct dependence of the conjugate mo-
menta on A, , which allows us to find the canonical trans-
formation very simply and ultimately yields the more sen-
sible collective-variable Hamiltonian Eq. (3.5b). Cz is not
incorporated into the Lagrangian since it is a function of
the rnomenta p&. Cz will be incorporated differently in
order to determine A, .

The momentum p& conjugate to q& is

immediately

X=-
M(1 b—)

(4. 10)

In order to solve for j& we substitute into Eq. (4.3) the ex-
pressions for A. [Eq. (4.4b)], X [Eq. (4.10)], make use of
Eq. (4.7), and solve the resulting equation for j& to obtain

fiPb
M(1 b)—

(4.11)

Then substituting Eqs. (4.10) and (4.11) into Eq. (4.9) we
obtain for the momentum transformation

f)'P
(4.12)

The canonical transformation is now complete and the
Hamiltonian is calculated by substituting the momentum
transformation of Eq. (4.12) into the original Hamiltoni-
an Eq. (2.1b). We obtain

P
i 2 P(1 6)H= +—,
' yp/+C2 + V(f[+q/) . (4.13)

2M t M

The term proportional to C2 may of course be set to zero
(Cz is strongly equal to zero as discussed in Sec. II).

The Hamiltonian Eq. (4.13) corresponds to Eq. (3.1a)
with a=0. We also note that the momentum transfor-
mation Eq. (4.12) corresponds to Eq. (2.17) for the case
n =0 and h~ =0. Therefore, the canonical transformation
derived using the Lagrangian approach above is not the
most general transformation possible. The most general
transformation possible consists of a further contact
transformation among the coordinates as indicated by the
presence of the function h&(q„,X), in Sec. II. The func-
tion h& appears in the derivation given in Sec. II as an
"integration constant" of the differential equations aris-
ing from the utilization of Dirac brackets. In the La-
grangian approach, there is no differential equation of
that nature and so the function h& does not appear and is
effectively zero. It is possible to find other canonical
transformations using the Lagrangian approach
(equivalent to using difFerent functions h&) by modifying
the Lagrangian so that one again obtains the second-
order equations of motion derived in I, but we have not
carried out the calculation.

P =MX ( f('qi Xf("qi ) — f—('q(f„"q„. (4.6b)

We simplify Eq. (4.6b) by first writing C& =0 as

P=M(l b) X=MX, —

where b is defined by Eq. (2.9c) and M by Eq. (3.1b).
In order to find the momentum transformation

(4.8)

Pi =Qi =X''+4 (4.9)

we must solve for the velocities X and q& as functions of
the new coordinates and momenta. Equation (4.8) yields

(4.7)

and then use Eq. (4.7) to eliminate the sums fi'q& that ap-
pear in Eq. (4.6b). We thus obtain for the momentum P

V. DISCUSSION AND CONCLUSION

We first comment on the work of Tornboulis, who has
introduced a collective variable X into continuum non-
linear field theory by using the Dirac bracket approach to
handle the constraints. For Tomboulis X represents the
center of mass of the kink. His constraints are of the
same form as Eqs. (4.1) of the present paper where he
used continuum fields X and m (corresponding to our
discrete q& and p, ) which are in addition functions of X.
For Tomboulis the variable P then is the total momentum
of the system for which P=O. However, he obtains for
the kinetic energy of the kink not P /2M but instead the
more reasonable expression Pz/2M where P~=MX is

the kink momentum, thus obtaining a particlelike
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description of the collective mode at the Harniltonian lev-

el. Applying the above a-dependent theory with the
necessary modifications for the case where the new field
variables are functions of X (like Tomboulis' X and m), we
see again that only for the case a=0 does the kinetic en-

ergy of the collective mode separate from the rest of the
Hamiltonian and that Tomboulis' approach corresponds
to +=0. We further note that since Tomboulis used a
Lagrangian approach in order to find the momentum
transformation to the new variables, his analysis corre-
sponds to the case h&=0 (see last paragraph of the
preceding section).

Igarashi and Munakata have derived a collective-
variable theory corresponding exactly to the case a = 1 in
the present paper. Equation (3.6) is identical to their
Hamiltonian [which is Eq. (16) of Ref. 6] with their parti
cle mass M set equal to unity. We see they have
effectively separated out the collective mode in the coor-
dinate transformation equivalent to Eq. (2.5}but have not
done so for the momentum transformation that is given
by Eq. (2.21); and so the explicit kinetic-energy term of
the collective mode does not appear in their Hamiltonian.
The a-dependent equations of motion derived from Eq.
(3.1a) using the Dirac bracket reduce for a=1 to their
equations of motion from which they did not eliminate
the momenta. By the theory of Sec. III we see that the
elimination of the momenta from their equations of
motion yields the projection-operator equations in Eq.
(3.8). Nevertheless, their Hamiltonian cannot be
remedied without changing their constraint C2 so that is
corresponds to the a =0 case.

We now address some points on collective-variable
theory that Igarashi and Munakata have raised. They
remark that the proof of the projection method in I,
which uses the Dirac bracket technique to find the canon-
ical transformation to the system of collective coordi-
nates (as in Sec. II above), is incomplete because the func-
tion h I cannot be determined within the formalism and
that we have therefore set hI equal to zero "without any
rational reason. " Their statement is incorrect because as

explained in I any function hi satisfying Eq. (2.18) defines
a rigorous canonical transformation to the system of
coordinates containing the collective variables and there
only remains the matter of choosing the particular
member of the hI family with which to work. We chose
to use the transformation corresponding to hI =0 since it
led to the simplest canonical transformation. In fact,
since Igarashi and Munakata have used a Lagrangian ap-
proach to collective-variable theory they have (see last
paragraph of Sec. IV above) formulated their analysis for
exactly the hI =0 case. We next recall that the first-order
equations of motion derived from the Hamiltonian Eq.
(3.la) are a dependent, see Sec. III. Therefore, the state-
ment made by Igarashi and Munakata that their first-
order equations of motion are "completely equivalent" to
the first-order equations of motion in I is now clearly seen
to be incorrect simply because their momenta (a= 1 ) are
defined differently than in I (a=O). Lastly, we note that
Igarashi and Munakata use their theory to calculate the
function X(t) corresponding to the center-of-mass
motion of a discrete sine-Gordon kink trapped in the
Peierls-Nabarro well, compare their results with X(t) cal-
culated from the theory of Ref. 3, and they obtain
disagreement. This is not surprising, however, because it
was already explained in I that the theory of Ref. 3 con-
tained an error —hence the disagreement. They do not
calculate the Peierls-Nabarro frequency or radiation
effects on the kink dynamics. See Refs. 11 and 12 for a
detailed analysis of discreteness effects on kink dynamics
in the sine-Gordon system.

In this paper we have shown that the second-order
equations of motion for the coordinates Eq. (3.8) are in-
dependent of a, but that the Hamiltonian Eq. (3.1a} and
its corresponding first-order equations of motion are a
dependent because the meaning of the momenta P and pI
are a dependent. We have also shown that in order to
correctly define the collective momentum P and obtain
the proper particlelike description of the collective mode
in the Hamiltonian, it is necessary to choose a =0 corre-
sponding to the constraint Cz defined by Eq. (3.7).
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