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We analyze the possible existence of incommensurate correlations in the t-J model as a function

of doping and in the J&-J2-J3 spin-
z Heisenberg model as a function of frustration using exact diag-

onalization techniques on small lattices. For the t-J model we found that when holes are introduced
the spin structure factor S(q) shifts the position of its maximum away from (m, m). However, we do
not observe indications of the existence of long-range incommensurate order. The frustrated
Heisenberg model is analyzed using spin-wave techniques. We present the phase diagram including

1/S corrections. It has special regions where there is no magnetic order that are natural candidates
for new nonclassical ground states. Using a Lanczos method we study the line J3 =J2/2, which is

completely disordered in the spin-wave analysis for J~/J, & 4. S(q) behaves as in the t-J model re-

placing doping by frustration. We also study the square of order parameters related with Neel,
twisted, dimer, and chiral order. After the Neel order is destabilized by frustration, the twisted and

dimer states are enhanced. On the other hand, there are no indications that the uniform or stag-

gered chiral state can be the ground state of the frustrated Heisenberg model.

I. INTRODUCTION

Since the discovery of the new high-T, superconduct-
ing materials' there has been a renewal of interest in the
theoretical study of strongly correlated electronic systems
mainly in two dimensions (2D). Among the most fre-
quently analyzed Hamiltonians are the Hubbard and
Heisenberg models with holes. (t Jmodel) and-their many
variations and generalizations. Many scenarios have
been presented where these models lead to a supercon-
ducting phase in the presence of doping of holes but none
has been universally accepted. Due to the apparent
short-range correlations of the new superconductors it is
believed that numerical studies may help in deciding
what mechanism leads to superconductivity. However,
the sign problem of Monte Carlo simulations introduces
complications at low temperatures while exact diagonali-
zation studies can handle only small 1attices. In this pa-
per we will not address the important (but subtle) issue of
the existence of a superconducting phase in the Hubbard
model but rather we will concentrate on the possibility of
incommensurate correlations in this model at zero tem-
perature ( T=O) and strong coupling. Understanding the
behavior of the ground state of the Hubbard model in
different limits may allow us to gain intuition about the
superconducting phase (if it exists) and select what ap-
proxirnations and scenarios are more realistic. The im-
portance of a normal-state analysis has been remarked in
Ref. 2 where a list of unusual properties of the new ma-
terials was presented. Recently, it has been shown nu-
merically that one of this abnormal features i.e., the
mid-infrared band of the optical conductivity may be ex-
plained within the context of the t-J or Hubbard models
due to the excitations associated with holes distorting the
spin Neel-like background. This is an example of how

important it is to study the strong-coupling limit of
Hubbard-like models with some reliable technique like
the exact diagonalization method applied to small clus-
ters used in this paper. Features that otherwise seem
anomalous or nonstandard may have a clear explanation
in these models in a region of parameter space away from
weak coupling.

An important feature observed experimentally in the
structure factor S(q) of the new materials is an incom-
mensurate double-peaked structure present in supercon-
ducting samples which is not present in the nonsupercon-
ducting crystal. It is not clear in what direction in
momentum space that splitting occurs but this situation
may be clarified experimentally in the near future. The
fact that superconductivity and incommensurability seem
to coexist suggest that understanding the splitting of the
antiferrornagnetic peak with doping may be important in
the analysis of the pairing mechanism of the new super-
conducting materials.

What do we know theoretically about incommensurate
phases in strongly correlated electronic systems?
Hartree-Fock calculations have been presented for the
Hubbard model at large and small ' U and for the two-
band model. These studies agree in that there are local-
ly stable solutions of the self-consistent equations consist-
ing of line defects (solitons) in the antiferromagnetic or-
der parameter. While these solutions are not optimal for
the magnetic part of the Hamiltonian they provide low-
energy modes for the holes which are thus trapped in the
solitons. Then, the predictions are that in the Hubbard
model at small doping holes form charged lines of de-
fects. For small U they are aligned along the crysta1 axis
(0,1),(1,0) while for large U along the diagonal direction
(1,1). This effect produces a shift in S(q) similar to that
found experimentally. Although these calculations seem
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robust it may occur that the Hartree-Fock equations are
missing solutions of lower energy and thus an indepen-
dent calculation without approximations (besides the
small size of the system) is important. This is one of the
purposes of this paper i.e., we study S(q) in the r Jm-odel
(strong-coupling limit of the Hubbard model). Also note
that the Coulombic repulsion between holes which is not
taken into account in these calculations may destabilize
the defects. We will not address this important issue in
this paper but in a future work.

While the Hartree-Fock calculations show an incom-
mensurability coming from configurations with spins
pointing, for example, in the z direction having a modula-
tion of the amplitude (linearly polarized), a different
scenario (recently emphasized by Shraiman and Siggia )

may exist. They argued that a mobile hole produces a
"roton"-like distortion of the spin background. This dis-
tortion is long ranged and decays as 1/r. In the presence
of a finite but small density of holes they found that the
commensurate Neel state is unstable at T=O in 20 to-
wards a spiral state where the background spins have in-
commensurate order characterized by the vector order
parameter (S;XS,.+, ) where S; is the spin on site i and
a=x, y is a unit vector along the crystal axis. In this
phase the spins can be thought of as living on the plane
with a small twist (proportional to the hole doping) in
some direction.

More exotic spin configurations are also possible. It
has been argued in the context of anyonic superconduc-
tivity' that a uniform order parameter

y, = (S,"(S,,„xS„))
which breaks parity (reflexions) and time reversal ac-
quires a nonzero vacuum expectation value. A
configuration of spins producing this type of order cannot
be accommodated on a plane but it involves the three
spatial directions. Although this possibility is very popu-
lar among quantum-field theorists, experimental results
based on a @SR (muon spin relaxation)" as well as nu-
merical studies of frustrated spin- —,

' Heisenberg models'
have shown no evidence of such a spin order. Besides it
is not clear if the chiral state will induce a shift in S(q) as
found experimentally. There are other even more exotic
possibilities: for example Kane et al. recently suggest-
ed' the existence of a "double-spiral" state where the
spins are characterized by a staggered chirality with an
order parameter g; that changes sign under a translation
in one lattice spacing. This staggered, rather than uni-
form, chiral state was not studied in Ref. 12 and it is
another of the purposes of this paper to calculate numeri-
cally its value.

There have been some recent previous numerical stud-
ies of incommensurability in the Hubbard model with
doping. ' ' In these quantum Monte Carlo (QMC) simu-
lations a shift in S(q) from (m. , m ) as a function of doping
was observed. No indications were found' that in the re-
gion of incommensurability there was long-range order
since the peaks were not increasing their intensity by in-
creasing the size of the system. Since these results were
obtained at nonzero temperature (due to the sign prob-

lern) it is important to check them in an independent cal-
culation at zero temperature.

In addition to the t-J model, in this paper we will also
study the related problem of spin systems with frustra-
tion. Besides the chiral state described above, many oth-
er types of magnetic order have been presented in the
literature concerning the frustrated spin- —,

' Heisenberg
model. For example in a large-N expansion of a general-
ized Heisenberg model it was concluded' that a "dimer"
phase (also known as valence bond crystal or spin-Peierls
state) may be stable in the Heisenberg model. Another
possibility is the existence of a "twisted" state' ' some-
what similar to the spiral phase of the t-J model with
holes. Numerically it has been found' that both states
(dimer and twisted) have chances of being the ground
state of the so-called J, —J2 model in a narrow region of
parameter space. Series expansions' seem to favor the
presence of dimer order. There are other possibilities in
the literature for the ground state of frustrated Heisen-
berg models like "flux" states and resonating valence
bond (RVB) states ' that we will not discuss in detail
here.

The organization of the paper is as follows: In Sec. II
we study the spin-spin correlation functions of the t-J
model at finite doping. In Sec. III the J, —J2 —J3 frus-
trated Heisenberg model is analyzed specially for the par-
ticular case J3 =Jz/2. Results are presented not only for
the spin correlation function but also for different suscep-
tibilities associated with different types of magnetic or-
der. Spin-wave calculations are also discussed. Con-
clusions are presented in Sec. IV.

II. INCOMMENSURABILITY IN THE t-J MODEL

In this section we concentrate on the t-J model which
is defined by the Hamiltonian

—r g (c; c,. +s +H. c. ),
i, 5,o

where c; =c; (1 n; ) —is a hole operator acting in
the space where there is no double occupancy. n; is the
number operator (n;=g n; ), i labels sites of a two-
dimensional lattice with periodic boundary conditions
and o is the spin of the electrons. 5 connects nearest-
neighbors sites. The rest of the notation is standard. The
term —

—,'n;n, .+g appears when the t-J is thought of as the
strong-coupling limit of the Hubbard model. As nu-
merical technique we use the Lanczos method working
on 4X4 lattices due to constraints in the size of the Hil-
bert space that we can handle numerically. We have
studied ground-state properties at all possible doping
fractions in this lattice which is a considerable larger nu-
merical effort with respect to previous studies that have
concentrated only on the 0,1 and 2 holes subspaces. For
example, on the 4X4 lattice the subspace with the max-
imum size corresponds to 5 and 6 holes and total spin
projection 5, = —,

' and 0, respectively, with a total number
of states of 2 018 016 (reduced in practice by symmetries).
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This is -5 ( —157) times bigger than the subspace of 2
holes (0 holes) with S, =O. A Cray-2 supercomputer
which has a large memory was necessary for the present
study. Typical accuracy of energies in the ground state
was of 10

In Fig. 1 we present the ground-state mean value of the
spin-spin correlation function in momentum space

2.0—

s(q)

l6—

l.2—

0.8—

0.4—

I I I I

(o,o} (& o) (,o} ( ~) (, ) (& &)
g

I6—

defined as

(2)

where ~Ps,". ) is the ground state of the system in the sub-

space with nh holes and X the number of sites. The sum
in I, j is over all the sites of the lattice. In Fig. 1(a) it can
be observed that for J=0.2 and two holes (nb=2) the
maximum in S(q) is still at q=(n. , m) as it happens at
half-filling, but with a reduced intensity since for this lat-
tice S(m, m. )-5.9 in the case of zero holes. The impor-
tant detail is that with four holes the maximum is ob-
tained at the next available momentum on our 4X4 lat-
tice which is q=(m, n. /2) rather than at (m, n) Th. e in-

tensity of the peak is greatly reduced with respect to the
q=(m, n) peak at lower doping. Increasing the number
of holes up to 11 holes we observe that S(q) is now virtu-
ally flat obtaining its maximum value at (0, m. ) and
(n/2, n. /2) which are degenerate on the 4X4 lattice. 2 A
very similar situation is observed in Fig. 1(b) at J=0.8.
In this case the peak is at q=(m. , m ) even for 4 holes i.e.,
more doping is required to start moving the antiferro-
magnetic (AF) peak than at small J.

Our results indicate that as a function of doping the t-J
model has a tendency to develop incommensurate corre-
lations between the spins. This is a nontrivial result since
the peak at (rr, n ) could have simply reduced its intensity
with doping without changing its position. Our results
are in qualitative agreement with experiments and also
with the frustrated Heisenberg model results described in
the next section. However, note that studying only one
lattice size we cannot show whether the peaks at momen-
tum different from (m., m) will diverge in the thermo-
dynamic limit. The intensity of the shifted peaks is very
much suppressed with respect to the case of (m, n) at
half-filling and that may be an indication that the correla-
tions will remain of short range in the bulk limit although
only a study in larger lattices will clarify the situation. In
Fig. 2 we show the "phase diagram" of the t-J model ob-
tained by monitoring the position of the maximum in
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FIG. 1. (a) Spin-spin correlation function S(q) as a function
of momentum for the 4X4 lattice and different number of holes.
J=0.2, t =1. (b) Same as Fig. 1(a) but for J=0.8.

FIG. 2. "Phase diagram" of the t-J model showing the re-
gions where the maximum in the spin-spin correlation is at
(m., m) (AF) or at (m, m/2) (IC). For more details see the text.
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S(q). The AF region indicates that the maximum is at
(vr, m) while incommensurate (IC) denotes that the max-
imum is now at (m, n. /2) (they are separated by line a).
For large J/t more doping is needed than at small J/t to
move the AF peak. This may be due to the fact that anti-
ferromagnetic correlations are more robust for almost
static holes than for highly mobile ones. For very small
J/t it is difficult to decide if the line separating the AF
and IC region will move smoothly to zero doping as
J/t ~0. This difficulty comes from many sources: (i) on
a 4X4 lattice the finite-size effects at small Jjt and low
doping are important for J/t (0.1 as was recently
shown, (ii) in that regime ferromagnetic instabilities are
important. Actually in Fig. 2 we found, although we did
not show it there, a ferromagnetic phase at very small
J /t and intermediate doping. We have also not analyzed
in detailed the possibility of phase separation in this mod-
el, only the IC correlations. Finally, line c is a cross-
over to a regime where the spin-spin correlation function
is virtually Aat.

It is clear that using a 4X4 lattice we have very little
resolution to analyze at what doping the antiferromagnet-
ic peak begins moving from (m, m ). One way to improve
on this situation is to use twisted boundary conditions
which allow momenta different from those of a lattice
with periodic boundary conditions. For that purpose we
can define at the boundary an angle 8 and a new bound-
ary condition BC given by c~L +, ; ~

=e' c~&; ~

where L, is the length of the lattice in the direction
x,i=(i„,i~) and a similar definition holds for the direc-
tion y. The Hamiltonian can be diagonalized numerically
with this boundary condition and S(q) can be studied as
a function of 0. Since this is very computer time consum-
ing, in this paper we have only studied the special case of
antiperiodic boundary conditions (ABC) in both direc-
tions which produce momenta q„=(2m/L)(n„+. —,

'
)

and q~=(2m/L)(n~+ —,'). on a L XL lattice

(n„,n =0, . . . , L —1). Line b in Fig. 2 shows the results
obtained with ABC and small J/t for the line separating
the AF and IC regions. With this BC the line where the
antiferromagnetic peak starts moving occurs at smaller
doping than with PBC. This is obvious since now we
have an additional momentum between ( ir, ir ) and
( m, ~/2). Without a more detailed study we can not show
for a given J at what value of the doping the AF peak
starts moving. However, Fig. 2 seems to suggest that the
movement of the (~,~) peak does not begin immediately
with doping. To show this assume that the position of
the maximum is given by Q = ( vr, m ) —a 5(1,0) where 5
represents doping and a is a constant. Since with PBC
the closest momentum to (m, m ) is (~/2, vr ) while for ABC
it is (3'/4, 3m/4), it is (roughly) true that the "critical"
dopings of each BC for a given J should differ by a factor
-2. This behavior is not clear from Fig. 2. For example,
at J=0.4 the point where the IC "phase" starts in the
bulk limit is better approximated by 5, -2.5 (linear ex-
trapolation) than by 0. If this result is confirmed, then it
will have important implications for theories of supercon-
ductivity based on spin bags since these polarons will be
stable in a finite doping region near half-filling.

In Fig. 3 we show the AF and IC spin structure factors
versus doping. From this figure it is clear that the incom-
mensurate correlations are actually not much enhanced
with doping but rather the AF ones are very much
suppressed. There is no evidence that the IC form factor
will diverge in the bulk limit. This is also in agreement
with the QMC results of Moreo et al. ' for the Hubbard
model. We think that this type of behavior may well be a
common feature of many strongly correlated electronic
systems. Note also that in our study on a 4X4 lattice we
cannot distinguish if the maximum in S(q) migrates with
doping towards (O, m), (n, 0) or along the diagonal in
momentum space.

There are mean-field studies of the t-J model to com-
pare our results with. For example, Jayaprakash et al.
also found a "spiral" (IC) phase in the t Jmode-l produc-
ing a phase diagram qualitatively very similar to our Fig.
2. The differences with our results are the following. (i)
the actual position of the different phases. Their fer-
romagnetic phase is too much enhanced, (ii) the spiral
phase at small J/t appears as soon as doping is turn on in
the mean-field calculation. This may be a problem of this
approximation or a lack of resolution of our small lattice
to obtain correctly the "critical" doping where the AF
peak starts moving. Other differences are that these
mean-field calculations ' predict long-range incom-
mensurate correlations along the diagonal (1,1) for the tJ-
model. We only have observed evidence of short-range
IC correlations. Also note that the QMC results' show
movement of the peaks along (0,1),(1,0) rather than (1,1)
but that occurs in the small U Hubbard model and the
situation can be different at large U. In any case, it is
very encouraging that both an analytic mean-field calcu-
lation and a numerical study agree in the existence of IC
correlations in this type of models. More detailed results
with ground-state energies at various fillings, analysis of
binding of holes and susceptibilities of different order pa-
rameters will be presented in a future publication.
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FIG. 3. S(q) as a function of the number of holes. The thick
continuous (dashed) line denotes q=(m. , m) and J=0.2 (J=0.8);
while the thin continuous (dashed) line indicates q=(m, m. /2)
and J=0.2 (J=0.8).
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III INCOMMENSURABILITY IN THE J
& J2 J3

MODEL

In this section we study the frustrated spin- —,
' Heisen-

berg model defined as

S'; =S—b;b

S,+ =+2S —b,.'b, b, ,

S; =b; l/2S —b;b;,

(4)

H =J, (H
&
+azHz+a3H3 )

=J) g S;.S;+s +Jz g S,- S;+s +J3 g S; S;+s

(3)

where S; is a spin- —, variables at site i =(i„i) of a square
lattice with PBC. 5, connects sites of the lattice at dis-
tance 1, Sz at distance &2 (along the diagonals of the pla-
quettes of the lattice), 53 at distance 2 and az 3=Jz 3/J, .
The study of this Hamiltonian is interesting per se since
not much is known about ground-state properties of frus-
trated models when quantum fluctuations are taken into
account in two dimensions. As a further motivation for
this analysis, it has been conjectured that a relation may
exist between the Hubbard or t-J models with doping and
the J, —Jz —J3 model Eq. (3) for the particular case of
J3 J2/2. In this framework the spin couplings are func-
tions of U, t and doping 5 of the Hubbard model.

The special case of J3 =0 was previously studied using
exact diagonalization techniques' on lattices of 16 and
20 sites. The main conclusions of that analysis were that:
(i) for large Jz the rotational symmetry of the lattice is

spontaneously broken due to the phenomenon of "order
from disorder" in which a degenerate classical ground
state lifts its degeneracy by quantum fluctuations ' (we
will describe this calculation in detail in the appendix),
(ii) in the region near Jz/J, -0.5 where chances are that
quantum effects may lead to a new ground state ' we
found that the dimer' and twisted states' have a peak in
the square of their order parameters suggesting that one
of them (or both in some combination) may be stable in a
narrow region of parameter space. This resu1t should be
contrasted with those of series expansion calculations'
where it was found that the dimer state was stable in the
J, —Jz model (also in a narrow region near Jz/J& -0.5)
while the twisted state was not enhanced. Numerical
results in larger lattices (in progress) will clarify this is-
sue. The order parameter of the uniform chiral state was
found to be featureless and thus there were no indications
that such a state was the ground state. Below, first we
discuss spin-wave results for this model and then ela-
borate on the numerical results along the line J3 =J2/2.

A. Spin-waves calculation

In this subsection we present results based on the stan-
dard spin-wave formalism applied to the J& —Jz —J3
model. We include many details of the calculation to
make the section self-consistent for nonexperts in this
subfield. As usual we use the Holstein-Primakov method
where the SU(2) algebra of the spin operators is realized
through the use of a set of bosonic harmonic oscillators,
the so-called Holstein-Primakov (HP) bosons:

with the standard commutation relation: [b;,b
&

]=6;&.

We use this parametrization of the quantum spins to
study fluctuations around a classical ground state. The
expansion parameter is then 1/S. Of course, one can at
best hope to obtain qualitative results when setting S
equal to —,'. However, in the unfrustrated case there is

some evidence that the semiclassical approximation cap-
tures the essential physics. So it can be an interesting
guide to our ab initio Lanczos study.

We will describe the calculation in the Neel phase and
present results for the rest of the phase diagram. Let us
study what happens in the case of small J2 and J3. When
J3/J, ~

—,
' —

—,'Jz/J, the classical ground state has the
conventional Neel order with two sublattices and it is non
degenerate (the degeneracy due to rotational invariance is
spontaneously broken). As explained in textbooks33 it is
convenient to reflect the x and z axis (for example) in one
sublattice in order to consider fluctuations about the Neel
state. After this reflection, for the nearest neighbors
(NN) part of the Hamiltonian we write

H = y s,"s,= y [ —(s",s,"+s;s;)+SI's&],
NN NN

while for the couplings at distance 2 and &2 there is no
(
—

) sign since the sublattices are ordered in a ferromag-
netic way. Using the HP representation, expanding the
square roots and keeping only the terms which are quad-
ratic in the b, b operators we obtain the first nontrivial
order in the semiclassical approximation. For H„one
finds

H, = S2N+S g (b;b;—+bzbt b;bi b;bt—), (6)—
NN

where X is the number of sites on a square lattice. By
Fourier transforming, this can be written as

H) = S2N+4S g—[b~bt, —
—,'yt, (b~b t, +bt,b ~)],

k

where the sum over k runs over the first Brillouin zone
[—~, w] of a two-dimensional lattice and

y„——,'[cos(k )+cos(k )] .

We perform the same treatment on H2

Hz=azS 2N+azS g (b;bi+b b; b;b; b b. ),—(8)—. .

NNN

which in rnomenturn space is

Kz =azS 2N 4azS g (1—
yI, )b q—bq,

where yi, =cos(k, )cos(k~). The result for H3 is obtained
from Eq. (9) for Hz by replacing az~a3 and

yI, ~yI,'= —,'[cos(2k„)+cos(2k )] .
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We thus have to diagonalize the following quadratic form
in the HP bosons:

4S g I [1—a2(1 —yk) —a3(1 —y'„')]
k

Xbkbk —
—,'yk(bkb k+bkb k)j .1 (10)

This can be done by using a Bogoliubov transformation

bk =akcosh8k+a ksinh8k, tanh(28k}

Xk

[1—a2(1 —yk) —a~(1 —yk') ]

At this order in 1/S we obtain a Hamiltonian describing
decoupled spin waves

4S g [1—a,(1—y„'}—a,(1—y„") ]
k
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FIG. 4. Phase diagram of the J& —J& —J3 model from a
spin-wave calculation to order 1/S. The meaning of the
different phases and lines of transitions is explained in the text.

+ 1 I

h(28 )
ak k T T (12)

Higher-order terms will lead to interactions between
these modes. The zero-point motion of the harmonic os-
cillators ak produces a shift of the energy with respect to
its classical value and also decreases the mean value in
the ground state of S', the sublattice magnetization.
Since the vacuum is at this order defined by ak~o ) =0,
one finds that the staggered magnetization (S')
=S —(b b), is

(s') =s+-,'— 1 1

[1—tanh(28k) ]' (13)

NJ
= —2S(S+1)(1—a —a )

1

2 3

d k+2S 1 —o2 1 —
yk

(2m. }

(1—y")]'—y'j '" . (14)

From Eq. (13) we can obtain the boundary of the Neel
phase with S =

—,
' as the point where (S') vanishes. Nu-

mericaHy studying this equation we found that this
boundary is approximately given by the straightline
J3/Ji -—0.2 —0.5J2/J, . This is shown explicitly in Fig. 4
where we also present the rest of the phase diagram. At
S = —,

' there are four distinct ordered phases separated by
a narrow disordered region. Phase l is the Neel phase al-

ready discussed, phase 2 corresponds to a phase which is
infinitely degenerate at the classical limit. The quantum

Taking a&=0 in Eq. (13) it can be found ' that (S') van-

ishes somewhere before n2= —,
' when the spin S is set to

the value —,'. For S =
—,
' and a2, n3 =0 we obtain

(S') =0.30 showing the reduction of 60% in the classical
magnetization due to quantum fluctuations. Independent
of the value of S, Eqs. (12) and (13}become singular at
the classical limiting point J3/J, =

—,
' —

—,'J2/J, . This is

due to the fact that beyond this point the classical ground
state is no longer the Neel state. For the ground-state en-

ergy, we find

fluctuations drastically a6'ect this degeneracy as discussed
in the appendix producing a spontaneous breaking of
rotational invariance. ' Phase 3 corresponds to an
incommensurate phase ordered with momentum
(m, +Q), (+Q, m ) where cos(Q) =(2Jz —J, )/4J3 while

phase 4 is also an IC phase with momentum (+Q, +Q)
where cos(Q)= —J, /(2J2+4J3). The continuous lines
in Fig. 4 denote the boundaries between the diferent
phases in the classical limit and the dashed lines are the
borders of the disordered regions found in the spin-wave
approximation.

Note that the line J3=J2/2 is very particular. At
the classical level and for a2) —,

' it corresponds to a line

of phase transitions between two IC regions. It has an
infinite degeneracy of spiral states given by

cos(Q„)+cos(Q )=—
2Q2

(15)

J(k)=
—,
' [cos(k„)+cos(k )]+J2cos(k„)cos(k»)

+(J3/2)[cos(2k„)+cos(2k»)] .

The ground-state energy is then (setting S =
—,
' )

Eo =—', J(Q )+ fd k[ [J(k)—J(Q )]
sar'

(16)

X [J(QO+k)+ J(QO —k)

—2J(Q, )]j'" .

The staggered magnetization is given by

but quantum fluctuations completely disorder this line
(Fig. 4). It is thus a natural candidate for the search of a
new nonclassical ground state in the frustrated Heisen-
berg model and we will study it in detail in the next sub-
section.

For completeness we present here some general results
valid for all the phases of Fig. 4. We have performed the
SW expansion about a ground state with a spiral state
characterized by wave vector Qo. This vector Qo has to
minimize the function J (k) where
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(S') =S+—,
' — g [1—tanh (28&)]

where

and

—8k

[Bq+J(k) —J(QO)]

Bk = —,'[J(QO+k)+ J (Qo —k)]—
—,
' J(k) .

(19)

(20)

function has a large value corresponding to a Neel state
but when frustration is turn on it quickly decreases.
From Fig. 6 it is di%cult to say at what critical coupling
it will vanish. However, note that around Jz-0.7, M
changes concavity which may be due to our study of the
square of the order parameter. Then, a reasonable guess

—0.7

—0.8

B. Lsnczos results

In this subsection we present the Lanczos results for
the J, —J~ —J3 model in the special limit of J3=Jz/2.
We used square lattices of 16 and 20 sites with PBC iden-
tical to those analyzed in our previous study of the
J

& Jp model. ' ' We study the ground-state energy
and quantum numbers as well as mean values of selected
operators. Typical accuracy in the ground-state energies
of our study is 10

In Fig. 5(a) we show the ground-state energy per site
for a 4X4 lattice at J, =2.0 and other selected levels cor-
responding to states with the lowest energy in different
subspaces [there are other levels above and in between
those shown in Fig. 5(a)]. The ground state E+ is a spin
singlet with zero momentum k=(0,0), even under a rota
tion of the lattice in ~/2 and even under a reflexion with
respect to some axis. E differs from the ground state
only in the quantum number under rotations in m/2 since
this state is odd under that operation. Ez~, denotes the
lowest-energy state with momentum k=(n, m ) and spin
one (spin wave), Ess,z is also a spin one state but with
k=(n, O) or (O, m) while Esff3 has spin one and momen-
tum (n., m. /2) or it is rotated.

In Fig. 5(b) we show a similar result but for the 20 site
lattice with the same meaning for the different levels. A
difference to remark with respect to Fig. 5(a) is that with
N=20 and at Jz -2.0 there is a crossing of levels between
the E+ and E states. The same occured in the J

&

—Jz
model' and perhaps it is a finite-size effect. In this figure
we also present the energy of the ground state in the
spin-wave approximation described before (dashed line)
for 1/S=2. Both qualitatively and quantitatively it is an
excellent approximation to the actual ground-state ener-

gy. Even beyond the point where long-range order is lost
in this method, the predicted energy lies very close to its
correct value (this shows us that the region where the en-

ergy is maximum is not necessarily related with a critical
region). Finally note that although in Fig. 5(b) we do not
show other spin-wave states rather than Ez~, z, they may
have a small energy in the intermediate region.

In Fig. 6 we show the square of the staggered magneti-
zation defined as

(21)

as a function of J~ (at J
&

=2 and J3 =Jz/2). As expect-
ed, in the absence of frustration (Jz=0) this correlation

0 9

—1.0

—1.1
LLI

—1.3

—1.4

0.0 0.5 1.0 2.0 2.5 3.0

—0.8

—0.9

Qp 1 ~ 1
LLJ

—1.2

—1.3

—1.4
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 5. (a) Ground-state energy of the J& —J, —J3 model for
( J3 J&/2) on a l 6 site lattice. E+ is the ground state, E is
the first excited state odd under a m. /2 rotation, and Ez~& z 3 are
spin-waves states as explained in the text. (b) Same as Fig. 5(a)
but for the 20 site lattice. Only the spin one states E&~» are
shown. The dashed line denotes the energy in the spin-wave ap-
proximation.
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would be that the magnetization in the bulk limit will
vanish somewhere between 0.5 and 1.0.

At this point it is convenient to discuss special finite-
size effects of this model that may affect the results.
There are two important details: (i) for the 4X4 lattice,
J3 couples spins with an effective coupling constant
which is doubled from its original value due to the PBC.
This may affect the value-of the coupling where M be-
comes a small number, (ii) in the limit of large J3 working
as usual for J3 =J2/2 our model reduces to the J, —Jz
model (on two identical sublattices) at exactly the classi-
cal critical point J2/J, =0.5. From our results in this
model' we know that quantum mechanically this point
belongs to the region where dimer or twisted order may
occur. This limit may easily affect our conclusions for
the finite J3 specially on a small lattice. Also note that
for the 20 site lattice in the large J3 limit the lattice
decouples into two J, —J2 models on 10 site lattices
which cannot accommodate the correct "strip" or col-
linear order for this model as discussed before in Ref. 12.

In Fig. 7 we show two other squares of order parame-
ters. The twisted susceptibility' is given by

2

1

(22)

It is clear that y, is enhanced in the region where the
staggered magnetization (M ) decreased to a small num-
ber. The results for 16 and 20 sites show similar sys-
ternatic behavior as that of the J, —J2 model' i.e., y, for
20 sites is larger than for 16 sites (although in the present
model it occurs on a wider region of parameter space).
This is different from the behavior of M and it may be
due to finite-size effects or differences between the 16
and 20 site lattice that are not clear. Also note that from
the definition of y„this susceptibility should remain con-
stant (rather than increasing) with the number of sites if a
twisted order is favorable. In any case, the behavior of g,
shows that the twisted state is strongly enhanced when
the Neel state becomes unstable. This state has IC corre-
lations. Actually analyzing S(q) Eq. (2) but now for the

p p
0.& 0.5 1.0 1.5 2 0 2.5

Jp

FIG. 6. Staggered magnetization M' as a function of J& for
J3 J2/2 and J& =2. Solid (open) squares denote results for
N= 20 (16).

0.02—
ch

00 I I I

O.o
I i i i t I t s i ) I i i ) iTi

0.5 1.0 1.5
Jq

8.0 8.5

FIG. 7. g, (squares) and p, & (triangles) vs J& for J3=J2/2 and

J, =2. Solid (open) squares and triangles denote results for
N= 20 (16).

spin system [Fig. 8(a) and (b)] we found that the peak at
(tr, n ) in the absence of frustration weakens and actually
begins moving after J2 reaches some value. This is also
in excellent agreement with the results of Fig. 5(a) where
the lowest-energy spin one state is plotted as a function of
J2. Note that our results for the 20 site lattice suggest
that the peak in S (q) moves towards (0, n. ) or (m.,0) rather
than (km/2, +n/2). From our small lattice we can not
show convincingly that S(q) at other values difFerent
from (m, m) will diverge in the thermodynamic limit so
the IC correlations may be short range. All these results
are very much reminiscent of what we found for the t-J
model as a function of doping i.e., IC short-range correla-
tions appear when frustration or doping is added into the
system. Thus, there seems to exist some qualitative rela-
tion between the frustrated Heisenberg model at
J3 =J2/2 and the t Jmodel. -

Note that the spin-wave calculation of the previous
subsection showed us that the line we are analyzing cor-
responds to a disordered phase where the IC order disap-
peared. However, we are finding that g, is strongly
enhanced. This may be indicating a deficiency of the
spin-wave approach or the presence of a new type of non-
classical order.

In Fig. 7 we also show the square of the order parame-
ter corresponding to a uniform chiral state defined as

—g (S; S,.+ XS,.+
1

(23)

As it happened in the pure J, —J2 model' the introduc-
tion of frustration does not enhance this type of chiral or-
der. g,h is very flat and never drastically changes its
value at J2=0. We have also analyzed staggered chirali„+i
order i.e., we introduced a factor ( —1)" ' in Eq. (22).
This is related with the double spiral state of Ref. 13.
The result for this susceptibility resembles very much the
uniform chira1 parameter y,h i.e., it is flat without show-
ing interesting structure.

Finally, we have also studied the square of the order



42 INCOMMENSURATE CORRELATIONS IN THE t-J AND. . . 6291

0.25
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0.20—

parameter corresponding to a dimer state' defined as

—g g(1)SI (SI+ +iSI+„-—SI —iS( )
1

I

(24)
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O.ip-

0.05—

0
(0,0) ( p~0) (m,0) (m ~y) (~,a) (y~p)

q

0.25

where I runs only over even sites and g(1)=+1( —1) if
both l„and l» are even (odd). This operator takes the
values l, i, —1, —i for the column or dirner state and it
vanishes for the Neel state. The results are shown in Fig.
9. Its behavior is very similar to that found for the
J, —J2 model i.e., the presence of frustration enhances
this type of order. y„&is slightly smaller for the 20 site
lattice than for the 16 site lattice. Note also from Fig. 9
that there are strong finite-size effects for Jz &1.5. As
remarked above we believe that in that region the decou-
pling of the 20 sites lattice into two 10 sites sublattices
that do not accommodate collinear order may play an im-
portant role.

S(q)

0.20—

J —J—
I 2
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O.I5—
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FIG. 9. g„lvs J2 for J3=J, /2 and J, =2. Solid (open)
squares denote results for %=20 (16).

0 ~~T I I I I

(o,o) (~5i~s) (7r,o) (~5~~s) (+~+) (~,~)

q

FIG. 8. Spin-spin correlation function S(q) as a function of
momentum for the J& —J2 —J3 model on a 16 site lattice (at
J3 J2 /2 ). (a) denotes results for J,=0.5, (b) for J,= 1.5 and
(c) for J2=2.2.

In this paper we studied the possible existence of in-
commensurate correlations in the t-J model as a function
of doping and in the frustrated spin- —,

' model as a function
of frustration. For the t-J model we indeed found that
adding a certain number of holes (depending on J/t)
S(q) shifts the position of its maximum from (m., m ) to the
closest available momentum on our small lattice. Howev-
er, when this happens the intensity of the peaks is already
greatly reduced and thus we think that the IC correla-
tions are short ranged. Of course, our lattice has small
resolution and it may occur that the shift of the antiferro-
magnetic peak begins as soon as we start doping the sys-
tem although our results so far suggest that

aconite

dop-
ing is necessary for that effect to begin. We have present-
ed a phase diagram of the t-J model in good agreement
with a previous mean-field calculation. We have not
analyzed whether there is a spiral order producing the
short-range IC correlations or if domain walls of holes
are responsible for this effect but this work is in prepara-
tion.

With respect to the frustrated Heisenberg model we
found that spin-wave theory predicts narrow regions in
the J, —J2 —J3 parameter space where the system may
be disordered. In particular one of those regions includes
the line J, =J2/2. We performed exact diagonalization
studies of that line searching for new types of magnetic
order in the ground state. We found that after the point
where the Neel state becomes unstable, the square of or-
der parameters corresponding to twisted and dimer states
presents a maximum. The behavior of these order pa-
rameters with the number of sites is as in the previous
analysis of the J, —J2 model. '

From the results obtained from the J& —J2 model, '

the present analysis and new recent results for the tri-
angular lattice with nnn interactions we conclude that
the uniform chiral state does not seem to be the ground
state of spin models with frustration. At least for the
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J, —J2 —J3 the same conclusion is reached for the stag-

gered chiral state. That of course does not exclude the
possibility that other models may present this type of or-
der. Currently, we are analyzing the presence of chiral
order in the t-J model with holes.

ACKNOWLEDGMENTS

We thank P. Chandra, P. Coleman, D. Frenkel, M.
Gabay, and E. Siggia for useful comments and E. Rastelli
for useful correspondence. This project was supported in

part by the National Science Foundation (NSF) Grants
Nos. PHY87-01755, PHY82-17853, DMR87-21673 and
supplemented by funds from NASA. T. J. is supported
by Centre National de la Recherche Scientifique (CNRS).
The computer simulation were done mainly on the
CRAY-2 at NCSA University of Illinois at Urbana-
Champaign and also on the Culler-7 computer at the
University of California at Santa Cruz. We thank the
National Center for Supercomputing Applications
(NCSA) for their support.

APPENDIX

In this appendix we will describe in detail phase 2 of
Fig. 4 where the phenomenon of "order from disorder"
takes place. To understand this interesting behavior we
investigate the J, —Jz frustrated model (J3=0) beyond
a2= —,'. When J2 is very large and S = 00 the two sublat-

tices decouple and we have two square lattices with anti-
ferromagnetic coupling. Thus each of them will have as a
classical ground state a Neel configuration of spins. It is
important to note that the relative angle between the
spins of two sublattices is arbitrary. When we add a
nearest-neighbor interaction term (J, ) the energy
remains independent of the relative angle: the NN bonds

l

H, = g cos(P; —P;)(S;S)+S";Sf)
(,'ij)

+sin(P; —
P, )(S;S;—SfS,")+SI'S» . (A 1)

For a classical configuration of the spins which is two
Neel sublattices with relative angle 0, we note that the
horizontal bonds are characterized by the same value of
the cosine of the angle 0 between the classical directions
of the spins and furthermore that the vertical bonds are
characterized by the opposite value of the cosine. The
nearest-neighbor term can thus be expanded as

just cancel each other. There is thus a continuum of de-
generate classical ground states. Their energy is lower
than that of the Neel state as soon as az) —,'. %'e now

perform the spin-wave expansion around such a ground
state characterized by a relative angle called 0 between
the directions of the two staggered magnetizations. We
will find that the zero-point Auctuations of the spin waves
lift the degeneracy in 0 and actually there are two states
which are true minima with respect to quantum correc-
tions characterized by 8=0,m. This phenomenon has
been previously emphasized by many authors ' in the
context of the square-lattice XY model and by Oguchi,
Nishimori, and Taguchi in the case of the fcc antifer-
romagnet.

At each site i, there is, in general, an angle P; between
the classical orientation of the spin in the ground state
and a fiducial quantization axis, say Oz. It is very con-
venient to express the Hamiltonian in terms of spin
operators each quantized in the direction of classical
orientation, i.e., at an angle P; with respect to the original
Oz. In terms of local frames, the nearest-neighbor part of
the Hamiltonian is rewritten as

H, = S g c(b;b;+b)~b)) — (b;b;+baht)+ (b;bt+btb, )
h

+Sg —c(b;b;+b, b„)— (b;b)+b;b) }+ (b, b, +b, b, )
U

(A2)

where h (U) means that the sum runs over horizontal (vertical) bonds and c =cos6. The Jz term is the simple antiferro-
magnetic contribution [Eq. (5)] (forgetting the classical energy):

H2=a2S g (b;b;+b jbj b;b&
—b;b& )

—. (A3)

After Fourier transforming this expression, one has to diagonalize the quadratic form
T

S 1+c , 1 —c ~ 1 y t 1 —c,, 1+c
bkbk 2ap+ yk+ yk (bkb —k+bkb —k ) yk+ yk+2a2yi,2 2 2 2 2

(A4)

where yk=cosk„,yk=cosk . The Bogoliubov transformation is now given by

2a2yk+ [(1—c) /2]yk+ [(1+c) /2]yk
tanh20~ =

2a2+ [(1+c)/2]y„"+[(1—c)/2]y„" (A5)

The spin-wave operators are defined as previously by Eq. (12}. The staggered magnetization is still given by Eq. (13) and
the c-dependent part of the ground-state energy comes from the zero-point contribution

Eo(c)=2S g +8k —A k
k

(A6)
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This function can be studied numerically since it is perfectly explicit. The minimum energy is reached for c =+1 i.e.,
0=0,m. There are thus two degenerate states that are selected by quantum fluctuations. They have alternating rows

(or columns) of spins up and down (that we will call "strip" or collinear states). Taking c= 1 we find for the ground-

state energy

d k= —2S(S+2)+2Sf [(2a~+cosk ) —(2azyl, +cosk„)]' ' .
XJi (2n )

(A7)

Following a similar procedure we have found that
along the line J3=Jz/2 the classical degeneracy [Eq.
(15)] is lifted by quantum corrections. On the other hand,
on this line the staggered magnetization diverges leading
to the conclusion that there is no long-range order. It is
not clear how the two phenomena can coexist. Note,
however, that the spin-wave approximation even in the
absence of long-range order still gives reliable informa-

tion on the energy: this is the case of the spin- —,
' chain.

Here we can also see [Fig. 5(b)] that the energy of the
true ground state is still close to the spin-wave prediction
even beyond the point Jz/J, ) —,'. We therefore think

that the qualitative phenomenon of "order from disor-
der" happens beyond that point. It may be related with
short-range correlations rather than long-range ones.
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