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Surface spin waves in Heisenberg ferromagnets with nonuniaxial single-ion anisotropy
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A Green-function formalism is employed to study the effect of nonuniaxial single-ion anisotropy
on surface spin waves in semi-infinite Heisenberg ferromagnets with nearest-neighbor exchange in-

teractions and at low temperatures T && T, . Results are deduced for the dispersion relations of sur-

face spin waves in terms of the exchange and anisotropy parameters, which are assumed different at
the surface compared with those of the bulk. The spin-correlation functions are also calculated as
functions of the layer distances from the surface layer.

I. INTRODUCTION

% = —
—,'g J,,S; S, gPttHo+S, '+&„—, (2)

It is well known that at the surface of an ordered mag-
netic material there may be localized surface spin waves
in addition to the bulk spin waves. In recent years there
has been considerable interest, both theoretical and ex-
perimental, in the properties of surface spin waves and
the applications have included light scattering and spin-
wave resonance (e.g. , see Refs. 1 —3 for reviews). The
purpose of this paper is to extend previous calculations
for Heisenberg magnetic materials with uniaxial anisotro-

py by including the effects of nonuniaxial anisotropy.
In general, nonuniaxial anisotropy can arise in at least

two ways —through nonuniaxial single-ion anisotropy (as
in the ferromagnet CrBr3 and in the antiferromagnet
NiO) or through nonuniaxial anisotropic exchange (as in
some of the rare-earth orthoferrites}. The resulting
modifications to the spin-wave properties have been stud-
ied by light scattering in several bulk systems (e.g., see
Ref. 4}. In the present paper we concentrate on fer-
romagnets with nonuniaxial single-ion anisotropy, but
the results may be extended to ferromagnets with aniso-
tropic exchange and to antiferromagnets. Some com-
ments concerning nonuniaxial anisotropic exchange and
also dipole-dipole anisotropy are given later.

In the case of bulk Heisenberg ferromagnets, the efFects
of nonuniaxial ("easy-plane" ) single-ion anisotropy on the
spin waves have been calculated using Green-function
methods. We write the Hamiltonian representing the
single-ion anisotropy in a material where the total sym-
metry is noncubic as

&„=—QD, (S ) —gF;[(S,") —(Sf) ] . (1)
l l

Here S,. is the spin operator at site i in the ferromagnet,
and D; and F; are anisotropy parameters (at site i) for the
uniaxial and "easy-plane" terms, respectively. In the
present work we retain the site dependence of D; and I';
because these quantities depend on the crystalline electric
fields, which may be different near the surface of a fer-
romagnet compared with the bulk. The total Hamiltoni-
an & is taken as

where J; is the exchange interaction between sites i and

j, Ho is an applied magnetic field along the z direction
(the direction of static magnetization), and gf„is given

by Eq. (1).
In the present paper we confine ourselves to the low-

temperature regime of T &(T,. This allows us to trans-
form the Hamiltonian to boson operators (b; and b;) us-

ing the Holstein-Primakoff representation and, in the
usual linear spin-wave approximation of retaining terms
up to second order in the operators, we obtain

gpttHo+2D;Sri+Sg J) b, b,
J

—Sg J;, b; b, —Sri'~ gF;(b; b,t+b, b, ), (3)
l, J l

where we define ri=(1 —I/2S). We notice that for S=—,
'

we have g =0 and so the single-ion terms correctly vanish
in Eq. (3}. For S)—,

' the single-ion terms are nonzero,
and we see that the F; anisotropy leads to a term in &
proportional to (b; b; +b;b; ). It is this operator term
that makes the calculations for spin waves in nonuniaxial
systems more complicated, and in semiclassica1 terminol-
ogy it makes the spin precession elliptical rather than cir-
cular. The solution of Eq. (3) for the spin waves in an
inJtnite system can be found straightforwardly by Fourier
transforming from site labels to a three-dimensional wave
vector k and then "diagonalizing" the Hamiltonian (e.g. ,
see Ref. 8). We now show how the Green-function calcu-
lation can be done for spin waves in a semi-infinite fer-
romagnet, where the absence of translational symmetry
in the direction perpendicular to the surface complicates
the analysis and leads to the possibility of surface spin
waves. The general formalism is presented in Sec. III, in-
cluding the case where the D and F anisotropy parame-
ters may be different at the surface compared with the
bulk. In Secs. III and IV we give results for the spin-
wave energies and spectral intensities, respectively. Fur-
ther discussion and conclusions are contained in Sec. V.

In some materials there is evidence that the anisotropy
may be nonuniaxial at the surface while being uniaxial in
the bulk, that is, I' is zero everywhere except at the sur-
face. This represents a special case of the more general
results presented here (where there may be diFerent an-
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isotropies in the surface and bulk, and both may be
nonuniaxial). The special case and related references are
discussed in more detail in Sec. V.

II. MATRIX FORMALISM FOR THE
SURFACE GREEN FUNCTIONS

sl'(k~~)=ui(k(~) for n =1
u„(k,i) J}(k,~}—=.,(k„) for ~ &2

and

v (ki) =J:vs(ki) for all n 1

(9)

(10)

We consider a semi-infinite anisotropic ferromagnet oc-
cupying the half-space z ~ 0 and described by the boson
Hamiltonian of Eq. (3). We assume that the magnetic
ions form a simple-cubic structure (where a is the lattice
parameter} with crystallographic axes parallel to the xyz
axes. [Note that the coordination of the nonmagnetic
ions in a compound may generally be such as to make the
overall symmetry (and hence the crystalline fields) non-
cubic, as assumed for Eq. (1)]. Defining the retarded
commutator Green functions (( b; ( t); bj ( t '

) )) and
(( b;(t);bi(t') )) for general site labels and time labels, we
construct in the usual way, the equations of motion for
their frequency Fourier transforms 9;,(co) and 0,', (co), re-
spectively. This gives the following set of coupled finite-
difference equations:

Aco+gpsHO+2D;Sri+Sg J; 0~(co) —Sg J;Q~)(co)

= —(5,) /2n )+2F(Sri' 0,' (a) ), (4)

ficg+gp—sHO+2D;Sri+Sg J; 9')(co)
m

—Sg J,9', (~)=2F;Sri'~zQJ(co) . (5)
m

To solve these equations we utilize the translational
syrnrnetry in the xy plane to define the Fourier trans-
forms

where

(QI+ A )G(kill'Co) d ~G (kll'Co) —AI,

(
—flI+ A )G'(k„,co) =d~RG(k„,rv)

(12)

(13)

where A, = 1/[2nSvs(ki)] and we define the dimensionless

quantities:

Q=iiia)/Svs(ki), d~=2Fq' /vs(k~)) . (14)

The elements of matrices G and G' are the Green func-
tions G„„(k~~,co) and G„'„(k~~,co) defined as in Eq. (6), I is
the unit matrix, and R is equal to the unit matrix with
the (1,1) element replaced by v= Fs/F. The q—uantity A

is a tridiagonal matrix, which can be split into two parts
as

y(k~~ ) = [cos(k„a)+cos(k a ) ]/2 .

Equations (9)—(11) may readily be generalized to accom-
modate other assumptions concerning the exchange in-
teractions (e.g., to include next-nearest-neighbor ex-
change or different lattice structures). For the single-ion
anisotropy parameters, we assume that they may have
the perturbed values Ds and Fs for spins in the surface
layer (n =1), but otherwise they have the corresponding
bulk values D and F, respectively.

The set of coupled equations (4) and (5) can then be
rewritten more compactly in terms of 00 X 00 matrices as

Q&(co)=—g exp[ik~~ (r; —rj )]G„„(k~~,co)=1
kll

(6) A =Ho+5,
where

and a similar expression for 9,' (co). Here ki=(k„,k~ ) is
a two-dimensional wave vector parallel to the surface,
while n and n' are positive integers labeling the lattice
planes (parallel to the surface) that contain sites i and j,
respectively. Hence, n =1 is the surface layer, n =2 the
next layer, and so on. The normalization constant N in
Eq. (6} denotes the number of sites in any lattice plane
parallel to the surface. It is also convenient to introduce
the following summations for the exchange interactions:

u kii +exp(ikii'5i JJ(r, r+5, ),
5l

with

0 ~ ~ ~

—1 d —1 0
0 —1 d —1 0

5 0
0 0

(16)

(17)

(k~~)=y p( k~[ 5$)J'J( +5/)
5~

where 5& is a vector connecting any site i located at r in
layer n to its nearest neighbors j in the same layer n,
while 5z is a vector connecting any site at r in layer n

with its nearest neighbors in layer n +1. If we assume
for simplicity that only nearest-neighbor exchange in-
teractions are important, having the value Js if both
spins are in the surface layer (n = 1) and the bulk value J
otherwise, then

d ~gp&HO+2DSri+S[u&(0) us(kii)

+2Svs(k„)~ /Svs(k, t)

5 j2(Ds D)Sil+S[u~(0) ui(kii) us(0)+u&(k
—Svs(kii) } /Svs(ki) .

(18)

(19)

We choose to make this decomposition of A by analogy
with earlier work' '" on uniaxial ferromagnets because
the inverse of a matrix having the form of Ao is known
analytically.

In the special case of uniaxial anisotropy (i.e.,
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F=Fs =0), Eqs. (12)—(13) give simply G = —
A,(QI

+A) ' and G'=0 for the matrix Green functions. This
result is consistent with earlier Green-function calcula-
tions for uniaxial systems. "' In the case of nonuniaxial
anisotropy, G and G' are coupled and are both nonzero.
After some algebraic manipulation and factorization of
matrices, we find from Eqs. (12)—(13), the formal results
that

III. RESUI.TS FOR SPIN-WAVE FREQUENCIES

We now examine the Green-function results for the
general case where F& and F may be different. The spin-
wave frequencies can be obtained directly from the poles
of G(ki, to) or 6'(ki, co), and corresponding to the term
(I+A& 'A, 'D) ' in Eq. (20) for G(ki, co) there are
poles given by the determinantal condition:

G(ki ai) —
A,(I+ A, ' A, 'D ) det(I+Bi 'A 'D) '=0 (24)

&& A2 'A
i

'( QI+—A )R

G'(k~~, co)= AdF—(I+A2 'A
i

'Dr) 'A 'A (21)

Here A& and A2 are tridiagonal matrices defined as in
Eq. (16) for Ao, but with the diagonal element d replaced
by d, =d+(Q +dF )' and d2 =d —(Q +dF )'~, respec-
tively, and D is an 00 X 00 matrix with only the following
nonzero elements:

We show below that this has solutions (for Q) that corre-
spond to localized (or surface) spin waves. It can be
verified that the other terms in Eq. (20) do not have sur-
face spin-wave solutions.

Expressions for A, ' and A 2
' can be written down by

analogy with earlier work. ' '" This involves introducing
the complex variables xi and x2, which satisfy ~x, ~

& 1

and ~xz ~

& 1, and are defined by

x, +x, ' =d+(Q +dp)'

x +x ' =d —(Q'+d')' ' (25)

Dii =(d+5) v ' —d —Q (v ' —1)—d~(v —1),
Di2=1 —(d+5)v '+Q(v ' —1),
Dz, =d —(d+5)v ' —Q(v ' —1),
D,2=(v ' —1) .

(22)

G(k~(, vi))= —A(I+ Aq '5) 'A~ '(I+ A i
'b. )

XAi '( —QI+A) . (23)

The corresponding expression for the matrix Green func-
tion G'(k~~, to) may be simply obtained from Eq. (21).

The matrix D in Eq. (21) is the transpose of the matrix
D defined above. A case of special interest occurs when
the 'easy-plane' anisotropy coefficient in the surface layer
is the same as in the bulk (i.e., Fs=F), whereupon Eq.
(20) simplifies to

The matrix elements of A ' (a=1,2) are then given by

(A ')"=(x'+' —x ' ')/(x —x ') (ted=1, 2) . (26)

As before, ' " the propagating bulk spin waves corre-
spond to ~x

~
=1, whereas the localization condition for

the existence of surface spin waves is ~x ~
& 1. For the

case of bulk spin waves we can write x& or x2 as
exp(ik, a ), where k, is a real wave vector component per-
pendicular to the surface, and Eq. (25) can be rearranged
to give Q=Q& with

Qz = [[d—2cos(k, a)] —dF2I'~2 . (27)

This is equivalent to the dispersion relation for a spin
wave with three-dimensional wave vector k=(k~~, k, ) in
an infinite anisotropic ferromagnet, as can be seen direct-
ly by diagonalizing Eq. (3).

For surface spin waves in a semi-infinite ferromagnet
we first rewrite Eq. (24) in terms of xi and x2 using (25)
and (26) to obtain the condition

dFxixp
(1+5x i )(1+5x2 )+(1—v) [(1+v)+(1 —v)x ix2] =0 .

1 x)x2

From the solutions for x, and xi that satisfy both this equation and the localization conditions ~x, ~
& 1 and ~x2 ~

& 1, we
can find the surface spin-wave frequencies by using Eq. (25). The solutions for x, and xz are conveniently obtained by
first solving for a new variable y, defined by y =x,x2, which can be shown [using Eq. (28)] to satisfy the following cubic
equation:

[dF(1—v) —5 ]y +[2d~(1 —v) —2d5 —1]y +[2d5+5 +dF(1 —v )]y+1=0 . (29)

Some numerical results to illustrate this procedure are
shown later, but it is helpful first to consider the special
case of F~=F because the results simplify and provide
us with more physical insight. From Eq. (23) the poles
of G ( ki ai ) fol' this case are given by either
det(I+ A, ' b, ) =0 or det(I+ A 2

' 6)=0. Since it is easi-

ly proved using Eqs. (17) and (26) that

det(I+A, 'b, )=1+x,5, (30)

we conclude that either x, = —5 ' or x2= —5 '. This
could also be deduced by putting v=1 in Eq. (28). Sub-
stitution of these values into Eq. (25) gives Q =Qz for the
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surface spin-wave frequencies:

Qg=[(d+5+5 ') —d ]' ' (31) 12

The localization condition lx
& l

& 1 (or lxz l
& 1) corre-

sponding to Eq. (31) becomes l5l & 1 and a surface spin
wave exists only when this inequality is satisfied. The at-
tenuation length L (exponential decay length) is then

1Q

L =a(lnl 1/5l ) (32) 6

If l5l~1 from above we have L~~, so the surface
mode becomes more deeply penetrating and eventually it
becomes degenerate in frequency with a bulk spin wave.

In general, the localization condition can be satisfied ei-

ther by —Dc & 5 & —1 or 1 & 5 & ~, which correspond,
respectively, to an acoustic surface spin-wave branch

coming below the bulk continuum or an optic branch
coming above the bulk continuum. Using Eqs. (9), (10),
and (19), the expression for 5 can be rewritten explicitly
as

~ ~

D &s Js
5=2z}— —1 +4[1—y(k )] —1 —1 .J D II

(33)

Hence the existence condition depends on the ratios D/J,
Ds/D, and Js/J, as well as on the wave vector kl
[through the structure factor y(kl)] and the spin quan-
tum number S (through the zi factor). For example, if
Ds/D & 1 and Js /J & 1 there is an acoustic surface spin
wave for a/l value of kl (provided D and J are both posi-
tive).

Some examples to illustrate these predicted dispersion
relations for the special case of Fz equal to F are present-
ed in Fig. 1, where we plot the spin-wave frequency (in
terms of the dimensionless quantity 0) against l kla l. The
propagation wave vector kl is along the [100] direction
and we consider spins with S =1. The bulk spin waves
appear as a continuum in this kind of plot (with upper
and lower edges corresponding to k, =m/a and k, =0, re-
spectively}. Several surface spin-wave branches are
shown corresponding to different assumed values for the
exchange and anisotropy parameters at the surface com-
pared to their values in bulk. It is seen that for the case
Dz/D & 1 and for Js/J & 1 there is a surface spin-wave
branch below the bulk continuum (an acoustic branch)
for lkla l

&0.3m. and an optic branch for lkla I

& 0.6m. In
the case when Ds/D & 1 there is an acoustic branch for
Jz/J &1 and an optic branch for J&/J&1, and both
these spin-wave branches occur only above a certain
value of lkla l.

The surface spin-wave modes for the general case of
Fs&F are obtained numerically by first solving for y from
Eq. (29) and then looking for solutions for x

&
and xz that

satisfy both lx, l
& 1 and lxz l

& 1. The spin-wave frequen-
cies are then obtained using Eq. (25) and plots of these
against lkla l

are presented in Fig. 2 assuming Fv /F =2
and for propagation vector along [110]. The other an-
isotropy and exchange parameters are taken to be the
same as for Fig. 1. %e notice that the spin-wave modes
show a qualitatively similar behavior to the case of
I'& =F, although their frequencies are altered.

n/2

lk()ol

FIG. 1. A plot of the spin-wave frequencies (in units of SJ)
against lkl|zl in a semi-infinite S =1 Heisenberg ferromagnet
with nonuniaxial anisotropy and for propagation wave vector kII

along [100]. The applied magnetic field is such that
gp&HO/SJ=0. 3 and the anisotropy parameters are chosen to
be D/J=1. 5, F/J=0. 5, and Fs/F=1. The bulk spin-wave

continuum is shown together with surface spin-wave branches
corresponding to A, Ds/D=0. 5, Js/J=0. 5; B, Ds/D=0. 5,
Js/J=2 0~ C~ Ds/D =1.5~ Js/J=0. 5~ D~ Ds!D=1 5

Js/J=2. 0

IV. RESULTS FOR SPECTRAL INTENSITIES

The Green-function results of Sec. II can also be used

to discuss the spectral intensities of the surface spin
waves. %e introduce here the transverse spin-correlation
functions (S; (t)S+(t') ) for spin operators at sites i and

j, which in the linear spin-wave approximation takes the
form 2S(b, (t}b,(t'}).

20

12

8

I

vr/2

l~ II
o

I

FIG. 2. The spin-wave frequencies (in units of SJ) plotted
against lkla l for Fz/F=2 and for propagation wave vector kl
along the [110]direction. The other exchange and anisotropy
parameters are as for Fig. 1.
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N(x, ,x„Q)
(1+x,5)(1+x25)

(34)

Here matrix X is

For simplicity we outline the calculations for the spe-
cial case of Fs =F, where the Green function G(kl, co) is

given by Eq. (23) and can be rewritten as

(5 '+x, ')(5 '+x2 ')N(x„xz,Q)
II'G(k, co) =

(Qs —Q )
(36)

which shows explicitly the poles for 0 at +Qz, where Qz
is the surface spin-wave frequency.

Suppose we now introduce a spectral function
g„(kl,co), defined in terms of the correlation function by

&b„()b„(')&„=I g„(k,, ) p[ — ( —')]d

N= —
A, adj(I+32 '5)A2 '

X adj (I+ A, ' 5 ) A, '
( QI +—A ) (35)

with adj denoting the matrix adjoint. Using Eqs. (34) and
(31) and the definitions of x, and x2, we have

(37)
where the operators refer to layer n and we seek the con-
tribution from surface spin waves with wave vector com-
ponent kII. The spectral function can now be deduced
from the imaginary part of the Green function G(kl, co}
by using the Auctuation-dissipation theorem. With the
aid of Eq. (36) this leads to

g„(k,, )=[ (5 '+, ')(5 '+ ')f(Q)N„„(„,Q)/Q ][5(Q +Q) —5(Q —Q)], (3g)

where

f( Q ) = [exp( QSJ /ks T ) 1]— (39)

can similarly be obtained from the Green function
G'(k~~, co) of Eq. (21). The equal-time correlation func-
tion, when combined with &S„(t)S„(t)&i, , can be used

to show that

When this is substituted into Eq. (37) we can immediately
carry out the integration over co (by using properties of
the 5 function) to obtain the transverse spin-correlation
functions &S„(t)S„+(t)&i, at equal times. Likewise we

can also deduce &S„+(t)S„(t)&i, and, hence, the quantity
II

&(S„")+(S~) &i, which represents a mean-squared am-

plitude of the surface spin-wave precession.
We notice also that the correlation function

I

cies close to the bulk continuum (see open circles in Fig.
3). This is consistent with the attenuation length of Eq.
(32). The lines connecting the points in Fig. 3 are just
guides to the eye and do not have any physical
significance.

V. DISCUSSION AND CONCLUSIONS

We have obtained the dispersion relations for the spin
waves in a semi-infinite Heisenberg ferromagnet with
nearest-neighbor exchange interaction and with nonuni-
axial single-ion anisotropy. This description is confined
to low temperatures T((T,; otherwise the decoupling
schemes used in the equations of motion for the Green
functions will no longer be valid. Although we have car-
ried out the calculations explicitly for the case where the

0.8

&(S„")'—(S„)'&„=S[(5-'+-')(5-'+ -')/Q ]
II

X [2f(Q, )+1]N„'„(x,,x, ),
where the matrix E' is given by

N'=dFadj(I+ Az 'b, }22 'adj(I+ A, 'b, )A i
' .

(40)

(41)

0.6-

+~ 0.4-

I O2.

0. 1

0.0
0

o -=(sl:a=a-c-o o
2 4 6 8 10

The quantity & (S„)—(S~) )i, provides a measure of the

ellipticity of the surface spin-wave precession and reduces
to zero in the absence of the F anisotropy.

Some numerical examples of these thermally averaged
quantities &(S„)+(S~) &i. and &(S„")—(S~) &i, are

plotted in Fig. 3 as functions of the layer index n, for par-
ticular values of

k~~ along [100], and for some exchange
and anisotropy parameters selected to correspond to the
dispersion curves of Fig. l. It is seen that these ampli-
tudes decay more rapidly into the sample when they cor-
respond to surface spin-wave frequencies located away
from the bulk continuum (see the solid circles in Fig. 3)
than when they correspond to surface spin-wave frequen-

0.2-

0.0 '

0

0»
C&~~ O—o0—a Q—Q

—C)
C&—

4 6 8 10
Layer number n

FIG. 3. Mean-squared amplitudes A+=((S„)+(S„))i,
II

and A = ((S„"}~—(S„)')„(seeinset) plotted against the layer

index n for the exchange and anisotropy parameters of Fig. 1

and for difFerent kl along [100]. The temperature is chosen such
that k& T/SJ=0. 1. The open circles correspond to kII=m. /4a,
D&/D=0. 5, and J&/J=2. 0; the solid circles correspond to
kII =0, D~/D =0.5, and J&/J =0.5.
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magnetic ions form a simple-cubic lattice, the results are
easily generalized to other structures (and to other orien-
tations of the surface relative to the crystal axes). In
some cases this would just involve redefining the ex-
change sums u„(ki)and v„(ki)and the structure factor
y(ki) in Eqs. (9)—(11).

We have also obtained explicit results for the
spin-correlation functions (S„(t)S„+(t))i, and

II

(S„+(t)S„+(t))i,of the surface spin waves and these are

important in determining the dynamic response of the
system in various experiinents (e.g. , light scattering or
spin-wave resonance) involving materials with nonuniaxi-
al single-ion anisotropy.

As mentioned before, the results in this paper can also
be generalized to include nonuniaxial anisotropic ex-
change, such as represented by an antisymmetric corn-
bination of the form

JDS, XS, (42)

in the spin Hamiltonian. Here J; is the Dzialoshinski-
Moriya exchange interaction, ' ' which is known to be
important in some materials (e.g. , Fe803, CoCO3, and
several rare-earth orthoferrites). The full Hamiltonian
would still be expressible in boson operators in the saine
form as Eq. (3), but with modified coefficients. The ma-
trix formalism of Sec. II could then be used to solve for
the surface Green functions.

The matrix method would not, however, be appropri-
ate for treating magnetic dipole-dipole anisotropy, which
is nonuniaxial. This is because the dipole-dipole interac-
tions are long range and would not lead to a tridiagonal
matrix as in Sec. II. By contrast, surface spin waves in
magnetic systems with dipole-dipole interactions can be
conveniently treated by macroscopic methods involving
Maxwell's equations (e.g., see Ref. 4 for a review).

In certain materials it is believed that the anisotropy
may be nonuniaxial only at the surface, i.e., the case of
F =0 but F&%0 in our notation. This can occur because
the surface lowers the symmetry and allows additional
terms to occur in the Hamiltonian (e.g., see Refs. 15 and
16 for discussion). An example is provided by single-
crystal I110I Fe films (e.g., see Refs. 17 and 18). When
F=O in the theory of Sec. II, it is easily shown that Eq.
(29) for the surface spin-wave parameter y becomes re-
placed by

{[4F&glvtt(k~~)] —|i I(y +y) —(2d5+1)y —1=0 . (43)

vt/2

FIG. 4. The spin-wave frequencies (in units of SJ) plotted
against ~kio ~

for the case of nonuniaxial anisotropy in the sur-
face layer only (Fs&0, F=0) of a S = 1 Heisenberg ferromag-
net. Two surface spin-wave branches are shown (labeled X and
Y), corresponding to Fs/J=1. 0 and 0.1, respectively. The
propagation wave vector kl is along the [100] direction and the
other parameters are gpgHp/SJ=0. 3 D/J=1. 5 Ds/D=0. 5,
and Js/J=O

This quadratic equation for y can be solved, and the
dispersion relations of the surface spin waves may then be
found as before. Some numerical results to illustrate the
predicted behavior for different values of Fz are shown in

Fig. 4. Most of the experimental studies of nonuniaxial
surface anisotropy to date have been for transition metals
(see Refs. 17—19). It would be of considerable interest to
have further experimental studies carried out for magnet-
ic insulator or magnetic semiconductor materials that
would be better described by the Heisenberg model em-

ployed in this paper. Suitable techniques for studying the
excitations could include inelastic light scattering (Bril-
louin and Raman spectroscopy) and magnetic resonance
(ferromagnetic resonance, spin-wave resonance, etc.).
These methods have already been applied to investigate
surface and bulk spin waves in various magnetic materi-
als (see Refs. 2 and 3).
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