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We develop and apply a theory for the structure of an isolated vortex parallel to the layers in a
Josephson-coupled layer model of a high-T, copper oxide superconductor. This model takes into
account the discreteness of the copper oxide planes, which is expected to become important below
the crossover temperature where the coherence length £.(T) becomes less than the lattice constant
¢. We apply the layer model to the motion of a vortex parallel to the planes and calculate the
viscous drag coefficient. This result is contrasted with that of the anisotropic Bardeen-Stephen

model.

I. INTRODUCTION

The high-T, copper oxide superconductors are well
known to have anisotropic magnetic properties. In a
compound like YBa,Cu;0;_5 the magnetic properties are
very similar (although not exactly the same) in the a and
b directions, parallel to the CuO, layers, but quite
different in the ¢ direction perpendicular to the layers. It
has been customary to describe the high-T, copper oxide
materials within the framework of anisotropic Ginzburg-
Landau theory, in which an effective-mass tensor is em-
ployed.! % In a reference frame aligned with the princi-
pal axes, this mass tensor is diagonal, and the diagonal
elements m; (i=1,2,3=a,b,c) are normalized”® such
that m ;m,m;=1. The penetration depths A, =1V m,
describe the decay of components of the supercurrent
pointing along the principal directions, and the corre-
sponding coherence lengths &, =&/1/ m; characterize the
spatial variation of the order parameter along these direc-
tions. The Ginzburg-Landau parameter k=A/§ is
defined in terms of the scalars A=(A;A,A;)!”* and
E=(£,6,E4)!%. We note that for a copper oxide high-T,
material, the smallest length scale in the anisotropic
Ginzburg-Landau description is &,.

We briefly touch on how the parameters £, of the an-
isotropic Ginzburg-Landau theory are measured. The
coherence lengths &,, §,, and &, are usually inferred from
measurements of the upper critical fields B,,; at tempera-
tures near T, with B, =¢/27EL &, By =¢o/2mEE,,
and B,  =¢,/27E,E, being the critical fields along the a,
b, and c axes, respectively. The Ginzburg-Landau theory
is expected to be valid only in a certain temperature
range close to T,. The temperature must be close enough
to T, for the theory to be valid, where &,(7) is much
larger than the corresponding lattice parameter. On the
other hand, the temperature cannot be too close to T,
since otherwise critical thermodynamic fluctuations arise.

Measured temperature derivatives of B, at T=T,
commonly have been used in conjunction with the
Werthamer-Helfand-Hohenberg  dirty-limit  formula’®
B_,(0)=0. 693|6BC2/8T|TCTC to obtain values for the
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upper critical fields extrapolated to zero temperature
B,,;(0). In turn, the coherence lengths extrapolated to
zero temperature §&;(0) have been obtained from
B,,,(0)=¢y/2mE, (0)E.(0), B, (0)=6¢/27E,(0)§,.(0),
and B, (0)=¢,/27E,(0)§,(0). Using this procedure,
the authors of R Ref. 10, fgr example, found
£,(0)=£,(0)=16 A and £.(0)=3 A for single crystals of
YBa,Cu;0,_;.

For isotropic superconductors, a simple model for the
viscous drag coefficient, which generally is in good agree-
ment with experiments, is due to Bardeen and Stephen
(BS).!" In their model, the dissipation occurs inside and
in the immediate vicinity of the vortex core, approximat-
ed as a normal core of radius £. Anisotropy can be incor-
porated into the BS calculation by use of the same
effective-mass tensor as used in the Ginzburg-Landau
theory.!? The smallest length scale in this theory is
£.(T), and a calculation of the viscous drag coefficient
that results in an expression involving £, is not expected
to be valid for temperatures below the crossover tempera-
ture> 131 where £,(T) <c, the lattice parameter in the ¢
direction. In particular, at low temperature, the aniso-
tropic BS theory cannot be expected to give the correct
expression for the viscous drag coefficient for a vortex
parallel to the CuO, layers, moving parallel to these lay-
ers.

Viscous flux motion in anisotropic type-II supercon-
ductors has been considered, e.g., in Refs. 15 and 16. Us-
ing a simple microscopic theory for energy dissipation,
these authors have discussed a phenomenological theory
of vortex motion and flux flow resistivity.

In this paper we calculate the viscous drag coefficient 5
for a vortex in a microscopically layered high-T. super-
conductor, the vortex being parallel to the a axis, and
moving in the b direction under the influence of an ap-
plied driving current in the ¢ direction (see Fig. 1). For
this geometry, according to the anisotropic BS theory,
the flux flow resistivity should vary approximately as
pr=p.(B/B.,), where p, is the normal-state resistivity
along the ¢ direction. By equating the Lorentz force per
unit length of vortex to the viscous drag force per unit
length, the anisotropic BS model in the dirty limit gives,
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FIG. 1. Geometry for the calculation of the viscous drag
coefficient. The vortex (bold arrow) is parallel to the a axis and
moves with velocity v (arrow) in the b direction under the
influence of an applied driving current in the c¢ direction.
Shown in the sketch are two superconducting layers.

for this vortex orientation, current direction and direc-
tion of motion,'? n=¢3/2mw&,E.c?p.. This expression is
expected to be valid for temperatures close to T, and for
low magnetic field. In the BS model, the dissipation that
contributes to the viscous drag is concentrated in the vi-
cinity of the vortex core. We see that the above expres-
sion involves the cross-sectional dimensions (§,§.) of the
vortex core region. We anticipate that if the vortex core
region has altered behavior at low temperature due to the
atomic scale discreteness of the superconductor’s struc-
ture, then the corresponding expression for the viscous
drag coefficient is also altered.

This paper proceeds as follows. We first review (a) the
core structure of a straight vortex threading through the
insulating barrier of a Josephson junction and (b) the cal-
culation of the viscous drag coefficient when such a vor-
tex moves through the insulating region. Next, we devel-
op the theory for the vortex structure in a Josephson-
coupled layer model of a high-T,. superconductor. This
model takes into account the discreteness of the copper
oxide planes, which is expected to be important when
£.(T) is less than the lattice parameter c. We then apply
this description to compute the viscous drag coefficient 7.

II. VORTEX STRUCTURE IN A JOSEPHSON
JUNCTION AND VISCOUS DRAG COEFFICIENT

We briefly review some of the characteristics of an iso-
lated, singly quantized magnetic vortex in the insulating
region of a single Josephson junction and then indicate
how the viscous drag on such a vortex, moving parallel to
the plane of the junction, can be calculated. We use the
geometry of Fig. 2, with the insulating barrier, of thick-
ness d;, in the x-y plane. For the sake of simplicity we
take the superconductors to be isotropic and of the same
material. Then the basic relations governing the magnet-
ic and electric fields in the junction are'’~2°

0Ay _ 2ed

Ax fic ¥’

Qg—)}i:-%bx, @.1)
2ed;

a_A‘L:i'_E .

at #

Here Ay is the gauge-invariant phase difference across
the junction and the magnetic thickness d =2A+d;, as-
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FIG. 2. Sketch of the supercurrent distribution about a vor-
tex in the insulating barrier of a single Josephson junction. The
various penetration depths are indicated, and typically A, >>A.
The London penetration depth A gives the length scale over
which the magnetic field enters the superconductors and, corre-
spondingly, the scale over which the supercurrents decay in the
superconductors. The Josephson penetration depth A; gives the
length scale over which the gauge-invariant phase difference
varies and, therefore, over which the Josephson tunneling
current varies.

suming that the superconductors have thicknesses much
larger than the London penetration depth A. The
penetration depth A gives the scale over which the mag-
netic field enters the superconductors and, correspond-
ingly, the scale over which the supercurrents decay in the
superconductors.

Along with (2.1) we have the Josephson tunneling
current relation J,=J,sinAy, where J; is a
temperature-dependent amplitude (the maximum Joseph-
son current density). Equation (2.1), together with the
Josephson current relation and Maxwell’s equation in-
cluding the displacement current, yields the two-
dimensional (2D) sine-Gordon equation

2 2 2
Fdy ( FAy 1 oAy _ 1 Gony (2.2)
ax? p? ¢ At A}

where ¢°=c?/47dC, C is the junction capacitance per
area, and Aj =#c?/8medJ,. Equation (2.2) is a nonlinear
wave equation for the gauge-invariant phase difference
which does not contain any dissipative terms. For the
calculation of the viscous drag coefficient below, we as-
sume that these terms can be ignored to leading order. A
mathematical justification for this procedure is provided
by the perturbation treatment of Ref. 21. In Eq. (2.2) the
quantity ¢ gives the speed of electromagnetic radiation in
the barrier, and A; is the Josephson penetration depth.
We recall that w; =¢/A; is the angular frequency of lon-
gitudinal plasma waves in the insulating barrier. The
Josephson penetration depth gives the length scale over
which the gauge-invariant phase difference varies and,
therefore, over which the Josephson tunneling current
varies. The supercurrent distribution about a vortex in
the insulating region of a single Josephson junction is
sketched in Fig. 2. The various penetration depths are
indicated in Fig. 2 and we note that typically A, >>A.

The sine-Gordon equation (2.2) has been well studied
and is known to possess many special properties. The
single soliton solution of (2.2) is identified physically with
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a fluxon, or isolated magnetic vortex, in the junction (e.g.,
Ref. 17). If we consider a one-dimensional Josephson
junction with external field in the x direction only, then
the single soliton solution, in the nonrelativistic limit, is
given by Ay(y,t)=¢(y —vt), where

#(y)=4tan" [exp(—y /A;)], (2.3

and v <<¢ is the fluxon velocity. The kink (or “shelf”’)
solution (2.3) goes from 27 to zero as y goes from — o to
. The kink solution (2.3) and the corresponding
Josephson current density

J,(p,2=0)=2J, tanh(y /A, )sech(y /A;) (2.4)

are plotted as a function of distance y /A; in Fig. 3. (In
Fig. 3 the phase difference and Josephson current have
been normalized by dividing by 27 and J;, respectively.)
The magnetic field corresponding to the fluxon solution
(2.3) is given by

b, (y,z=0)=bgysech(y /A;) , (2.5)

where by=#c /ed ;. We see that for a single Josephson
junction there is only one length scale, A;, characterizing
the spatial variation of J,(y,z=0) and b,(y,z=0). The
peak value of J,(y,z=0) occurs at y~0.88A;, and for
large values of y both J,(y,z=0) and b,(y,z=0) vary as
exp(—y/A;).

The rate of dissipation of energy per unit length as a
vortex moves through the insulating region of a one-
dimensional junction is

2
where R'=pd; is the contact resistivity. Expression (2.6)
follows from considering the Ohmic currents produced in
the junction barrier by the induced electric field as the

vortex moves. We can find a phenomenological viscous
drag coefficient 7 by equating (2.6) to qv2. By using the

1

2
2 dy ,
RI y

Ay y,t) a(zyt ) (2.6)
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FIG. 3. Single soliton (fluxon) solution [Eq. (2.3)] of the 1D
sine-Gordon equation for the normalized gauge-invariant phase
difference ¢ /27 (dashed) and the resulting normalized Joseph-
son tunneling current density J, /J, (solid), plotted as functions
of y. The maximum Josephson current occurs at
y=—A;In(tan7/8)=0.88A7,.
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fluxon solution (2.3) in (2.6) we then obtain
= 2¢(2) 2.7)
17 7T2C ZA.JR v ’

The result (2.7) was first obtained by Lebwohl and
Stephen,”? who also calculated the viscous drag
coefficient for N fluxons moving uniformly in a one-
dimensional junction.

III. JOSEPHSON-COUPLED LAYER MODEL FOR
ANISOTROPIC HIGH-T, SUPERCONDUCTORS

In Ref. 23 a model for anisotropic high-temperature
copper oxide superconductors was developed from the
point of view of an array of Josephson-coupled supercon-
ducting blocks. When the blocks are fused in the @ and b
directions, but weakly coupled in the c direction, a layer
model results which is similar to that of Lawrence and
Doniach.?* The Lawrence and Doniach model has been
extended, e.g., in Refs. 5, 25, and 26. Bulaevskii et al.
also considered Josephson-coupled layered superconduct-
ing structures.”’ 3! We wish to consider in addition the
vortex structure close to the core region.

The layer model we use is an infinite stack of parallel
superconducting layers [see Fig. 4] separated by insulat-
ing layers centered on the planes z=z,, where z,=ns
(n=0,%1,%+2,...). The length s is the sum of the super-
conductor layer thickness d, and the junction barrier
thickness d;,. We assume that only a single vortex is
present in the model. It is located in the n =0 layer and
is parallel to the x axis, so that b(y,z)=Xb(y,z).

The relation between the magnetic field of the vortex
and the gauge-invariant phase difference Ay ,(y) of the
superconducting wave function across layers n and n +1
can be found by integrating the vector potential

ds

T %

:/n+1
VN z,+ s d 00

~

N~

FIG. 4. Geometry of the Josephson-coupled layer model.
The insulating layers of thickness d, alternate with supercon-
ducting layers (crosshatched) of thickness d;. The middle of the
insulating layers are in the planes z,=ns (n=0,%t1,%2,...),
where s =d, +d,. The rectangular contour C parallel to the y-z
plane with a pair of opposite sides in superconducting layers n
and n +1 is used to compute the magnetic flux in Eq. (3.2).
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(i=1,2,3=x,y,2)
around a rectangular contour C, as shown in Fig. 4. This
contour is parallel to the y-z plane, with a pair of opposite
sides in the n and n +1 superconducting layers. Here j
is the supercurrent density, we set Ay, =V, Vn+i
—(2m/¢y) ["*'a-dl, and the flux quantum ¢y=hc /2e.
The penetration depth A appearing in Eq. (3.1) is that of
individual superconducting layers and is assumed to be
isotropic. The Josephson tunneling current density is
given by the relation J,=J,sinAy,(y). We have the
magnetic flux within the semi-infinite contour as

o=s [ “dy'b(y',2)= [ adl.
y

By using the expression (3.1) in (3.2), performing the
integrations, and then differentiating with respect to y we
have

(3.2)

_ ¢o B 4rAld;
b(y,z)= 27 3y Ay, (y)— - ay./(y, z)
47}

+

[.]y Y, n+1) jy(y?zn)] . 3.3)
By taking into account the relation sJ, =d, j, between the
current densities and converting the difference in super-
current densities in adjacent layers occurring in (3.3) to a
partial derivative with respect to z, we have

b 3 47r7kzd F)
21s ay n(y) cs a J (y’Z)
477)»% d
EJy(y,z)=b(y,z), (3.4)

where Al=(s/d,)A?. By linearizing the Josephson
current relation to J (y,z)zJoAy,,(y), we obtain
aJ,
ay
with Ag =c¢o/8msJy+A2d, /s. Using Ampere’s law

J=(c /47)V Xb, we obtain from (3.5) an anisotropic Lon-
don equation

12

)+—)» (y,z) b(y,z), (3.5)

2p
b 0%
ay? 9z?

For a single vortex centered on the origin, we know by

the London model’ that the solution of Eq. (3.6) at large
distances is given by

b(y,z) . (3.6)

%
b(”Z)"zvxbx

c

Ko(p), pi=y’+z?,

(3.7)
y=y/A., Z=z/Ay ,

where K, is a modified Bessel function of the second kind
of order p. This result obtains in the large-x limit, which
is the case for the known high-T, superconductors. An
improved solution to Eq. (3.4) can be obtained by extend-
ing the use of the variational model for a vortex core in a
type-II superconductor.’> By minimizing the free energy
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with respect to a core-radius parameter, it is found that,
to an excellent approximation when s <<A,,

b -
b(y,z)= 2N, Ky (R), (3.8)
where
R=(x}+y*+zH)'% y=y/A,.,
(3.9)
Z=z /A'b XOES/Z)‘b .
An alternative derivation of the result (3.8) for the

magnetic field and the gauge-invariant phase difference is
given in Sec. IV. In that section we derive an analog of
the sine-Gordon equation, which we call the sine-Bessel
equation, and discuss the picture of the vortex core struc-
ture that emerges from it.

Figure 5 provides a sketch of the supercurrent distribu-
tion around a single vortex located in the barrier region
of the central Josephson junction. For the component of
the supercurrent density pointing in the b direction, the
length scale for exponential decay along the z (¢) axis is
set by the penetration depth A,. Similarly, for the com-
ponent pointing in the c direction, the length scale for de-
cay along the y (b) axis is set by A.. The streamlines of
the supercurrent, which also represent contours of con-
stant magnetic field, are elliptical except for the zigzags
due to the intervening insulating layers.

For the central junction (at z =0), by using Eq. (3.8),
Ampere’s law, and the Josephson relation J, =J sinAy,,
we have the gauge-invariant phase difference as

zA
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FIG. 5. Sketch of the supercurrent distribution around a sin-
gle vortex in the barrier region of the central Josephson junction
in an infinite layer model of an anisotropic high-T, supercon-
ductor. The vortex is parallel to the x axis (a direction). The
London penetration depths A, and A, give the scale for the de-
cay of the supercurrent in the y (b) and z (¢) directions, respec-
tively. The streamlines of the supercurrent, which also
represent contours of constant magnetic field, would be ellipses
in the absence of the intervening insulating layers.
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| /AR [(x5+5 ) 2Ty

(5‘.(2)_*_}72)1/2

Ayo(y)=sin (3.10)

For very small values of ¥ in (3.10), we can use the
asymptotic from K ,(x)~1/x, for x near zero, to write
the phase difference as

Ay y)=m—2tan" Ny /%,), |yl<<1. (3.11)

For junctions with n70, the phase difference found by
linearizing the Josephson relation and using Ampere’s
law is

Ay, (== (3.12)

— S r ()X
KB E (0.

These expressions for the gauge-invariant phase
difference will be applied in the calculation of the viscous
drag coefficient in Sec. V.
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FIG. 6. (a) Normalized phase difference Ay,/27 (dashed) of
Eq. (3.11) and the resulting normalized Josephson current densi-
ty J,/J, (solid) in the core region of the central junction are
plotted as a function of distance y/A.. In this figure, X, has
been set to 1/200. The maximum of the Josephson current den-
sity occurs at yp., =XoA.=(s/2A,)A., where Ay,=w/2. (b)
Normalized Josephson current density J, /J, =sinAy, is plotted
as a function of y/A. for distances in the central junction
exceeding the core size y.../A.. By Eq. (3.10), for distances
large compared to the core size, the Josephson current density
decreases exponentially over the scale of A,.
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In Eqgs. (3.8)-(3.12), X, serves as a dimensionless vortex
core radius. Equations (3.10) and (3.11) give the distance
at which the Josephson current reaches its maximum (J;)
in the central junction as y,,, =Xo Or Y., =(s/2A,)A,.
We note that for temperatures below the crossover tem-
perature the core does not correspond to a region of
suppressed order parameter, but is rather the region in
which the magnitude of the Josephson current varies
from zero to its maximum value (J)) (see Fig. 6). That is,
for £, <s/2 the continuum description for b and Ay,
loses its validity, and the vortex, which fits between
neighboring superconducting layers, behaves as a Joseph-
son vortex rather than an Abrikosov vortex. In the z
direction the core radius is Z=X, or z=s/2. The contin-
uum description for b or Ay, ceases to be valid at dis-
tances in the z direction comparable to the layer spacing.
If s were less than &, then we would have to consider
suppression of the amplitude of the order parameter, but
we are interested in the opposite case s > £, here. Assis
on the order of 10 A for a high-T, superconductor, this
distance is clearly much less than the penetration depths
A, and A,. Typically, X,=s /24, is of the order of the re-
ciprocal of the Ginzburg-Landau parameter «, or approx-
imately 10~ 2 in a high-T, superconductor.

For the central junction (n =0), the normalized phase
difference Ay /2w (dashed) of Eq. (3.11) and the resulting
normalized Josephson current density J, /J,, (solid) in the
core region are plotted as a function of distance y /A, in
Fig. 6(a). In this figure, X, has been set to 1/200. This
small but representative value of X, means that the tran-
sition region for the phase difference and Josephson
current is very small on the length scale of the penetra-
tion depth A.. The maximum of the Josephson current
density occurs at y ., =XoA. = (s /2X,)A,.

In Fig. 6(b) the normalized Josephson current density
J,/Jo=sinAy, is plotted as a function of y /A_ for dis-
tances in the central junction exceeding the core size
Ymax/Ac- For distances large compared to the core size,
J,/J, drops off very rapidly. Indeed, from Eq. (3.10), we
have that the Josephson current density decreases ex-
ponentially over the scale of A.

For the Josephson-coupled layer model, we see that
there are two length scales required to characterize the
spatial variation of J,(y,z=0) and b (y,z=0). The peak
value of J,(y,z=0) occurs at y =sA./2A,, while for large
values of y, both J,(y,z=0) and b (y,z=0) are dominated
by the exponential exp(—y /A.). The existence of two
length scales to characterize J, and b is in contrast to the
single Josephson junction reviewed in Sec. II.

IV. SINE-BESSEL EQUATION
AND VORTEX CORE STRUCTURE

In analogy to the sine-Gordon equation for a single
Josephson junction, there is a differential equation
governing the gauge-invariant phase difference for the
Josephson-coupled layer model. Because of the form of
this equation, which combines aspects of the Bessel equa-
tion and the static sine-Gordon equation, we have termed
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it the sine-Bessel equation. The derivation and approxi-
mate solution of this equation are the subject of this sec-
tion. The approximate solution of the sine-Bessel equa-
tion is made possible by the anisotropy of the supercon-
ductor together with the very small size of the stacking
periodicity s compared to the penetration depth A, .

We recall that Eq. (3.4), found by calculating the mag-
netic flux through a rectangular contour across adjacent
superconducting layers, is an exact relation between the
gauge-invariant phase difference, the supercurrent, and
the magnetic field of the vortex. We also recall that the
linear equations (3.5) and (3.6) are approximate equa-
tions. Here we refrain from linearizing (3.4) in order to
investigate the vortex core region. Using the Josephson
relation for J,, we can write Eq. (3.4) in the form

b(p.2) 4l cdg N A, Ay (%)
,2)=— cosAy,,
Y c |87/, s [0

dAy,(»)
X yy+
dy c

47Al aJ,
—(y,2z) . (4.1)
az

By the inequality A2 >>A2d, /s we can neglect the term
with cosAy, on the right-hand side of Eq. (4.1). This ap-
proximation is well justified for high-T, superconductors,
since, for example, in YBa,Cu;0;_;°*** we have
Ac:h,=5.5:1. The resulting equation together with the
Josephson relation provides us with the two basic first-
order differential equations

b 9d 417)»%, d
- + —_ = .
2ms By Ay, (y) asz(y,z) b(y,z) , (4.2a)
¢ db
=Jysi =—-S22(y,2) . 2b
J,(y,z)=Jy sinAy,(p) = ay(y,z) (4.2b)

Motivated by Eq. (3.6), we look for b in the form
b=b(p), where p is defined in Eq. (3.7). That is, we as-
sume that the contours of constant b are ellipses. We are
most interested in the central junction where z=0, g=y,
and set b =b(2msA./¢,). In this case Eq. (4.2) gives

_ dA 5

Bip=——r0 196 (4.32)
P pap

9 _ —sinAy, . (4.3b)

¥

The coupled equations (4.3) are the focus of this sec-
tion. By eliminating the scaled magnetic field b from
(4.3), we obtain an equation referred to as the sine-Bessel
equation:

2
¥ 1

J . 1
) x—a;sm(b—

1+—
x2

sing=0 , (4.4)

where ¢=Ay, and x =p. We anticipate a static kink
solution for ¢ from (4.4) in analogy with the single junc-
tion case. For the sine-Bessel equation (4.4) we have the
boundary conditions ¢=27 at x=—oc and ¢=0 at
x = . Because of the presence of the vortex there, we
should also have ¢ =7 at x =0. By the fluxoid quantiza-
tion relation
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J [owy.2dy dz=2mh,i, [ “xbx)dx =4, @5

and Eq. (4.3b), there results the normalization condition
) O°° x2singdx =2s /A, , (4.6)

on the solution of the sine-Bessel equation. We remark
that the term of unity in the coefficient of the last term of
(4.4) prevents this equation from being scale invariant in
the independent variable x. In addition, this term
prevents a straightforward first integration of the sine-
Bessel equation. We argue below that this term is
insignificant for small x. For small ¢ the linearized ver-
sion of Eq. (4.4) holds, giving a Bessel equation whose
solution is ¢=(s /A, )K(x), where the constant is set by
the normalization condition (4.6). This result gives that
b=~(s /Ay )Ky(x) for small ¢, i.e., outside the core region.
On the other hand, when dealing with the behavior of the
phase difference for small x, it appears simplest to deal
directly with the first-order equation (4.3a). By the nor-
malization condition the value of b in the core region is
controlled by a ratio of lengths of order 2s /A,. This ra-
tio is the value at which the logarithmic divergence of
(3.7) will be cut offt. We may then estimate b(0)
as  b(0)=(¢o/2mA,A)In(A, /s) so that b(0)=(s/
}\'b )ln(kb /s)<<1.

For small x, we let ¢(x)=m—al(x) [so that a(0)=0]
and substitute into (4.3a), neglecting b. The simple equa-
tion da/dx +(sina)/x =0 may be integrated to yield
a=2tan" '(x /X,), where X is a constant of integration.
This result for a gives, when inserted into Eq. (4.3b), the
expression b(x)=—%,In(x?+x3). We find X, by
matching this form of b to its form for larger values of x,
i.e., b=(s/Ay)In(1/x). This gives X,=s/2A, <<1. This
small value of X, indicates that the approximations used
are self-consistent. In particular, the value of b in the
core is negligible compared to the right-hand side of Eq.
(4.3a). We recall that since we are considering the cen-
tral junction, x =p=y. By employing the variable
R?*=p*+x3} of Eq. (3.9, we obtain the expressions
(3.10)-(3.12) as stated in Sec. III.

V. CALCULATION OF VISCOUS DRAG
COEFFICIENT

We consider the motion of a single vortex experiencing
a viscous drag force per unit length, —nv, where v is the
vortex velocity, assumed to be constant. The flux flow
viscosity is to be calculated by equating the energy dissi-
pation rate per unit length to nv>. For an applied current
I, flowing in the z direction, the dissipation rate per unit
area across junction » is
—IZK=JZV=R’JZZ=%V2, (5.1)
where R'=R A =p, s is the contact resistivity in the ¢
direction. The voltage across the nth junction is given by

- # 0Ay,(y,1) #4 O0Ay,(y)
2e ot "¢ dy ’

where the gauge-invariant phase difference Ay ,(y,t) is

(5.2)
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taken to be of the traveling-wave form Ay,(y,t)
=Ay,(y —vt). Using (5.1) and (5.2), we have the expres-
sion

_ 1

77n_ Rl

#

2e

oAy, (y)
dy

wa

—

dy , (5.3a)

as the contribution from the nth junction. The total
viscous drag coefficient can be found by summing over all
junctions:

= 3 M, -

n=—ow

(5.3b)

For the central junction (n =0) we use Eq. (3.11) to ob-
tain
2

27

}\'CXO

_ 1
7o R’

#

2e

(5.4)

Since it can be shown that the maximum of Ay, de-
creases with n approximately as 1/2|n|, we can well ap-
proximate 71, for |n|>1 by using the asymptotic form of
(3.12) valid for small R, where the greatest contribution
to 7 occurs. We have

Ay, (y)= I for R <<1 . (5.5)
By using the form (5.5) we obtain
dAy ?
=] n d
n:z—w fgw ay i’
n#0
s P171 ¢ 1
T
=|—| —=— ———, (5.6)
}"b }\’c 2 Xangl (1+4n2)3/2

where the approximate numerical value of the sum on the
right-hand side of (5.6) is 0.11308. By the use of (5.3b),
(5.4), and (5.6), we obtain for the viscous drag coefficient

¢2
0

’
pesie?

12
my

7n=0.3543 (5.7

m

c

where the approximate value of the infinite sum of (5.6)
and a factor with 7 have been included in the numerical
coefficient, s is the layer periodicity length, and c is the
speed of light. The result (5.7) is to be compared to the
anisotropic BS model, which in the dirty limit gives'?
n=¢3/2mE E.c?p,. Therefore, we see that the vortex
core area <§,&. in the anisotropic BS expression has
been replaced by an area of order sy, ~s’A./A,
~s%(m,/m;)'"?, due to the superconductor discreteness.
Equation (5.7) thus yields the flux flow resistivity

1/2

m. B

(¢o/s%)

py=2.822 Pe > (5.8)

my

for flux density B <<B,,,, current in the c direction, and
vortex motion in the b direction.
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VI. SUMMARY

In this paper we reviewed the core structure of a
straight vortex threading through the insulating barrier
of a Josephson junction and the calculation of the viscous
drag coefficient when such a vortex moves through the
insulating region. Next, we developed the theory for the
vortex structure in a Josephson-coupled layer model of a
high-T, superconductor. This model consists of super-
conducting layers of thickness d; alternating with insulat-
ing layers of thickness d;, giving a stacking periodicity of
s=d,+d,. This model takes into account the discrete-
ness of the copper oxide planes in a high-7, material,
which is expected to be important when £.(T), the coher-
ence length in the ¢ direction, is less than the lattice pa-
rameter ¢. Our layer model involves a parameter
Xo=s/2A,, of the order of the inverse of the Ginzburg-
Landau parameter k, or approximately 10~ 2 in a high-T,
superconductor. This parameter serves as a dimension-
less vortex core radius. We noted that for temperatures
below the crossover temperature the core does not corre-
spond to a region of suppressed order parameter, but is
rather the region in which the magnitude of the Joseph-
son current varies from zero to its maximum value. That
is, for £. <5 /2 the continuum description for the magnet-
ic field of the vortex and the gauge-invariant phase
difference loses it validity, and the vortex, which fits be-
tween neighboring superconducting layers, behaves as a
Josephson vortex rather than an Abrikosov vortex. For
the central junction the maximum value of the Josephson
current occurs at y ... =XoA.. In contrast to the case of a
single Josephson junction, this second length is required
in addition to A, to describe the spatial variation of the
magnetic field and Josephson current. We then applied
the theory for the vortex structure to compute the
viscous drag coefficient 7.

We calculated the viscous drag coefficient 7 for a vor-
tex in a microscopically layered high-T, superconductor,
the vortex being parallel to the a axis, and moving in the
b direction under the influence of an applied driving
current in the ¢ direction and compared the result to the
anisotropic BS model.!> In the BS model the dissipation
that contributes to the viscous drag is concentrated in the
vicinity of the vortex core. The anisotropic BS result for
the viscous drag coefficient contains a cross-sectional area
of the vortex core region proportional to £,£.. In con-
trast, our result (5.7) contains an area proportional to
SV max ~S2(m,/my)'/%, owing to the discreteness of the
high-T, superconductor. So, as anticipated, if the vortex
core region has altered behavior at low temperature due
to the atomic scale discreteness of the superconductor’s
structure, then the corresponding expression for the
viscous drag coefficient is also altered.
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