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Using the peak in dynamic resistance versus current to indicate the intrinsic critical current I,
the magnetic-field dependence of I,, in two-dimensional Josephson junction arrays has been inferred
from differential resistance measurements at finite voltages. This peak is particularly clear when a
magnetic-field-induced vortex superlattice is strongly commensurate with the underlying lattice. At
weakly commensurate fields, dV /dI rises sharply at approximately 10% of the zero-field I, in
qualitative agreement with the prediction of Lobb et al. [Phys. Rev. B 27, 150 (1983)] for the pin-
ning of isolated vortices. New exact calculations of the critical current are presented for the cases
of f =% and % (f is the average number of flux quanta per cell of the array), which agree well with
our experimental measurements. Implications of these exact results for the effect of boundary con-
ditions in computer simulations on small arrays are also noted.

I. INTRODUCTION

In defining the critical current of a superconductor,
one must distinguish between the intrinsic critical current
I.,, which is the maximum supercurrent for which a
metastable state exists, and the (lower) current I, at
which resistance becomes observable because of thermal-
ly activated processes. Although Iz has practical impor-
tance, it has neither fundamental significance nor a
unique value, because it depends on the sensitivity of the
experiment that defines it. It is the intrinsic I, which
enters into fundamental analyses, including the theoreti-
cal determination of the onset of resistance. The relation
between I, and I.; was worked out long ago for single
heavily damped Josephson junctions (by Ambegaokar
and Halperin)! and for one-dimensional filaments (by
Langer and Ambegaokar, and McCumber and Halpe-
rin).? However, this relationship is much less well under-
stood in two-dimensional arrays of Josephson junctions
or other weak links, because of the important and com-
plicating role played by flux quanta in the description of
an extended system. This type of system is currently at-
tracting much attention as a model system for naturally
occurring granular superconductors, particularly the
high-temperature superconductors. In this paper we ad-
dress the issues of critical currents and resistance in such
arrays from both experimental and theoretical points of
view.

Two-dimensional (2D) arrays of Josephson junctions in
zero magnetic field undergo a Kosterlitz-Thouless (KT)
transition® to an ordered state below a transition temper-
ature 7,. When a magnetic field is applied, vortices of
current appear in the array. At magnetic fields where the
average number f of flux quanta per unit cell of the array
is the ratio p /q of two integers, the lowest-energy state is
a spatially periodic one, in which the vortices arrange
themselves in an ordered g Xg superlattice that is com-
mensurate with the underlying array of junctions.® The
transition temperature, T,(f), and the critical current,
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Io(f), for a square array have been shown*® to be
periodic for integer changes in f and symmetric about
S =13. Both have their largest values when the vortex su-
perlattice is strongly coupled to the underlying square ar-
ray, which occurs when f is the ratio of small integers,
namely when f =0, {, 1, 1, 2, 3, and 1. We will define
these fields as “‘strongly commensurate” fields.

In recent work in this laboratory, the rf response of ar-
rays® and the effects of pinning’ have been investigated
experimentally. The analysis of these data depend cru-
cially on knowledge of the Josephson coupling energy E;
of the junctions of the array, or, equivalently, their intrin-
sic critical currents i., because the energy barriers to
vortex motion and the characteristic frequency of the
overdamped junctions are both proportional to this criti-
cal current. In this paper® we present experimental mea-
surements of the dynamic resistance at finite voltage as a
function of both dc bias current and perpendicular mag-
netic field (or f) at a temperature far enough below T.(f)
that the effects of thermally induced vortices, domains,
and other defects are not important,”!® and yet not so
low that the flux LI, per cell has become comparable to
®,. "2 We discuss how intrinsic unfluctuated critical
currents both for single junctions and for the array may be
extracted from these data by using the analogy with
thermal activation of an overdamped particle in a period-
ic potential. These experimentally determined critical
currents will be compared with a new exact analytical
calculation of the ground-state critical current for the
fully-frustrated case, f =1, and a precise numerical cal-
culation for f =1. Finally, we will comment on implica-
tions of these exact results for the choice of the type of
current feed in simulations of this system using the rela-
tively small arrays that are computationally convenient.

II. SAMPLE FABRICATION
AND MEASUREMENT TECHNIQUES

Our two-dimensional arrays consist of 1000X 1000
Nb-Cu-Nb proximity-effect junctions. Sample fabrication
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is begun by depositing a superconductor—normal-metal
bilayer onto a sapphire substrate which has been previ-
ously patterned with photoresist to define the dimensions
of the array and the measuring leads.!* The sapphire
substrate is cleaned with an rf argon plasma to promote
adhesion prior to thermally evaporating 0.35 um of
high-purity copper to form the normal-metal layer. The
sample is then moved to a magnetron sputtering machine
and mounted on a 60°F water-cooled substrate holder.
The sample is rf-Ar ion etched to remove any oxide that
may have formed on the surface of the copper. About 50
nm of copper is removed and then 0.2 um of niobium is
sputtered immediately (within 1 sec) to ensure that a
clean interface is formed. Cross-shaped niobium islands
are formed by patterning photoresist islands on the bi-
layer and then reactive ion etching with SF, to remove
the unwanted niobium between the islands. The islands
have a lattice constant a of 10um and the proximity-effect
weak links, consisting of the underlying copper between
the islands, are defined by the width (4um) of the arms of
the cross and the separation (2um) between their tips.
Two single junctions with the same geometry as the junc-
tions in the array are concurrently made adjacent to the
array on the same substrate. Because the array is square,
it has the same normal-state resistance as the single junc-
tions (R, ~2 m{}), determined primarily by the copper.

The samples were mounted in a temperature-
controlled, u-metal shielded, “He cryostat. A four-point
measurement circuit with a lockin amplifier at 45.5 Hz
and a battery-powered dc current source was used. A
1:100 transformer was used at the lockin input to im-
prove the impedance match from the low-resistance ar-
ray. A perpendicular magnetic field was applied to the
array using a long copper solenoid. Separate pairs of su-
perconducting bus bars were used to current bias the ar-
ray and to measure the voltage across it. The dynamic
resistance, dV /dI, was measured versus dc current for
different magnetic fields and versus field for fixed dc
currents. The rms amplitude of the ac current through
the sample was always at least 100 times smaller than the
measured critical current. All the data in this paper are
from an array with 7,=3.5K and measured at T =2.09
K to avoid the effects of thermally excited vortices found
near the KT transition temperature. The data were ini-
tially plotted on an analog XY recorder and then digi-
tized for computer analysis.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 shows the dynamic resistance versus current
at several values of f for our 1000X 1000 array. In the
curve for f =0, a prominent peak appears at about 7 mA,
which we will now argue can be used to identify the
unfluctuated critical current I 4. For a start, it is plausi-
ble on simple physical grounds that a peak in differential
resistance should occur (i.e., that the resistive voltage
should rise most rapidly) when I =1, since in the ab-
sence of thermal fluctuations, the voltage would be zero
below 1.4, and rise suddenly to a finite value above I,,.
For single overdamped!* junctions, this identification of
i,o with the position of the peak follows rigorously from
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FIG. 1. Dynamic resistance vs current for a 1000 by 1000 ar-
ray at T =2.09 K for three commensurate perpendicular mag-
netic fields: (a) £ =0, (b) f =1, and (¢c) f =1. The rms lockin
current was 30 uA. The data were taken on an XY recorder and
then manually digitized for computer analysis.

the work of Ambegaokar and Halperin' (AH), from
which it has been shown'’ that a peak in dv /di versus i
occurs at a current which is within a few percent of i,
the critical current in the absence of fluctuations, so long
as fluctuation effects are small enough that the peak value
of dv /di is at least 1.5 times larger than the high-current
limiting value of dv /di. Thus, for single junctions the po-
sition of this peak is a very good measure of the
unfluctuated critical current.

In 2D arrays, there are many more degrees of freedom
than in single junctions. Insofar as an applied field im-
poses a strongly commensurate vortex superlattice which
moves rigidly, there is a strong analogy with the AH sin-
gle junction analysis. However, the rounding of the
current-voltage curves at finite temperature arises also
from more complicated two-dimensional fluctuations,
such as thermally-activated vortex-pair unbinding, indivi-
dual vortex motion, and other excitations that lead to
nonrigid motion of the vortex superlattice. In the ab-
sence of a quantitative theory for this 2D case, we simply
assume that the measured current where the dynamic
resistance of the array is a maximum gives a good esti-
mate of the intrinsic critical current I.,(7T) of the array.
This is probably a good assumption at the measured tem-
peratures, where T'<<T,. and the number of vortex-pair
excitations is small. In zero field, this I, should be relat-
ed to the single junction critical current, i, simply by
I.,=Mi,,, where M =1000 is the number of junctions in
parallel across the width of the array perpendicular to the
current. This conclusion is supported by the fact that
i,o=1,9/M agrees within 10% with the i y’s for the two
single junctions on the same substrate, measured in the
same way. Further justification for using the peak to
determine the unfluctuated array critical current follows
from noting that the temperature dependence of the in-
ferred array critical current follows the exponential tem-
perature dependence expected for the intrinsic critical
current of a single weakly coupled SNS junction. '®

It is important to note that the array current I
defined experimentally as the lowest current giving mea-
sureable voltage would give a much poorer estimate of
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the unfluctuated critical current I, because the relation
between this /., and the intrinsic I, is strongly depen-
dent on the voltage criterion used and on the ratio of the
relevant energy barrier to the temperature.

The dynamic resistance versus current was found to
vary greatly for different magnetic fields. Figure 1 shows
dV /dI versus I for two commensurate magnetic fields,
f =1 and 1, at the same temperature as the f =0 curve.
The dV /dI versus I curves for f=2 and 1 (not shown)
are nearly identical to the f =1 and f =0 curves, respec-
tively, thereby establishing the symmetry about f =1 and
the periodicity for integer changes in f. For these strong-
ly commensurate magnetic fields, weaker local peaks in
dV /dI occur at currents lower than that for the peak in
zero field (f =0). By analogy with the single junction and
f =0 cases, we associate these peaks with the intrinsic
unfluctuated critical currents for these f values, I .y f).
For other commensurate fields, where the vortex super-
lattice is less strongly coupled to the array, such as f =1,
%, etc., we observe similar structure in the dynamic resis-
tance at low currents, but the peaks are even less pro-
nounced and have become only rounded features, making
it very difficult to make a quantitative inference of i,,.
This structure will be discussed below in more detail.

To obtain information about the dynamic resistance at
fields other than the “strongly commensurate” fields, the
magnetoresistance (dV /dI versus f) was measured at
temperatures well below T,(f) for various fixed bias
currents; three such curves are shown in Fig. 2. Curve (a)
shows the behavior at a current only slightly above the
current at which the dynamic resistance first becomes
measurable. Relative minima in the magnetoresistance
are observed for f =0, £, +, 1,1, 2,3, 2 and I, each cor-
responding to a field where the vortex superlattice is
strongly commensurate with the junction array. The
symmetry around f =1 is again apparent. As the bias
current is increased from ~1I.;, the relative minima
evolve into relative maxima, beginning with the least
strongly commensurate fields which have the lowest
values of I ,(f). This is shown in curve (b) of Fig. 2 [tak-
en at twice the current as curve (a)], in which weak rela-
tive maxima appear near all the commensurate fields ex-
cept for f =0, 1, and 1, which are the most strongly com-
mensurate fields. These subtle relative maxima in the
magnetoresistance occur near the same currents and
fields where the peaks are found in the dV /dI versus I
curves. Curve (c), taken at still higher current, 2.79 mA,
shows the dramatic reversal of the dip at f =1 into a
maximum, which occurs for I ~1 . f=1). This struc-
ture is best revealed when the data are plotted in three di-
mensions as in Fig. 3, which shows dV /dI as a function
of both magnetic field and bias current.

Figure 3 consists of experimental data, digitized from
dV/dI versus f curves (including those in Fig. 2) at
small increments of dc current. The dV /dI versus I
curves can be reproduced from this data, as can be seen
by comparing the nearest edge of the 3D plot (f =0) with
curve (a) in Fig. 1. The symmetry about f =1 is again
apparent from this graph; similar structure is observed
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FIG. 2. Magnetoresistance at T=2.09 K for three different
dc bias currents: (a) 0.92 mA, (b) 1.84 mA, and (c) 2.79 mA.
Note that the left and right vertical scales differ by a factor of 5.
Minima in the dynamic resistance coincide with magnetic fields
where the vortex superlattice is commensurate with the array of
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between all integer f. [At substantially higher fields (not
shown), though, a reduction in the array critical current
is observed, due to field penetration into the single junc-
tions.!” The critical current is approximately zero at a
field of f =9, which accurately corresponds to one quan-
tum of flux threading each junction. This, however, is
not a substantial effect for the small fields, 0< f <1,
shown in Fig. 3.]

A number of important features are apparent in this
plot, all of which can be explained qualitatively by con-
sidering the array of junctions to generate a periodic 2D
“egg-carton” potential, in which, given thermal activa-

FIG. 3. Experimental data showing the detailed dependence
of the dynamic resistance on both dc bias current and perpen-
dicular magnetic field. The data were taken from dV/dI vs f
curves at fixed bias currents, digitized and then interpolated to
retrieve points at convenient intervals along the f and current
axes.



6168

tion, '® field-induced vortices can move in response to a
Lorentz force proportional to the dc bias current. At
“strongly commensurate” fields, the vortex superlattice is
strongly coupled to the array and not easily depinned. In
Fig. 3 it is seen that the peaks in the dynamic resistance
indicating critical current values are associated with the
commensurate fields, and that the heights of the peaks
get smaller for the less “strongly commensurate” fields,
starting from f =0 and 1, to f =1, and then to f =1,
etc. We identify the current at these peaks, like those
shown in Fig. 1, with the depinning current of the vortex
superlattices from the periodic 2D potential.!” This
identification is reasonable because thermally activated
motion of vortices in a periodic potential due to a
Lorentz force is qualitatively similar, as shown explicitly
by Rzchowski et al.,” to the thermally activated behav-
ior for a single junction as described by AH. More sim-
ply, it is plausible on physical grounds that the underly-
ing critical current should be found at the current at
which the resistive voltage increases most steeply, as
mentioned earlier for f =0. If we choose the positions of
the peaks as estimates for the array critical current for
these magnetic fields, and compare with the zero field
case, we find

Io(f=1)=0.421 o f =0)
and
Iof=1)=0.34(f =0) .

As we shall see, these critical currents are in reasonable
agreement with theoretical critical currents discussed in
Sec. IV of this paper.

The curves in Fig. 2 can now be explained. The
Lorentz force, due to the dc current, has the effect of tilt-
ing the 2D “‘egg-carton” potential. The energy barriers
to motion of the vortex superlattice differ for the different
commensurate fields, depending on the coupling strength
between the vortex superlattice and the array. For fields
S near the “strongly commensurate” fields f, it has been
suggested*’ that unpaired, field-induced vortices or some
other form of defects dominate the dynamic resistance as
they are thermally activated and driven by the Lorentz
force. Since the number of these defect vortices is pro-
portional to |f —f.|, the resistance rises approximately
linearly on either side of the minimum at f,. The small
maxima in the magnetoresistance at commensurate fields
f.» particularly in the higher current plots (b) and (c), sig-
nify that the bias current is very close to the depinning
current, I 4 f.), for those particular commensurate fields,
i.e., the energy barriers to vortex motion have been re-
duced to near zero by the current.

At very high currents all the barriers to vortex motion
are reduced to zero and the array is in a flux-flow regime
where all the field-induced vortices are depinned and
flowing down the tilted 2D potential. This regime can be
seen in Fig. 3 for fixed currents between the f =1 and
f =0 critical currents, where the dynamic resistance is
rising nearly linearly as a function of field between f =0
and f =1 as would be expected in the flux-flow regime of
a type-II superconductor. The slope of this line, ~2.3R,,
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is in good agreement with the value of 2R, obtained by
considering the viscous drag on each vortex.” Between
f =1 and f =1 the dynamic resistance decreases linearly
because now vortices of the opposite sign dominate, and
their number is decreasing as f =1 is approached. At
currents far above the zero-field critical current, the be-
havior of the array is dominated by the normal shunt
resistance of the copper in the junctions, so the dynamic
resistance is essentially independent of both current and
magnetic field.

The next interesting feature is that the dynamic resis-
tance is not appreciable for any value of f when the dc
current

I<0.1Io(f =0)=~0.7 mA .

We believe this feature is related to the pinning energy of
individual vortices in the array as calculated by Lobb
et al.,”® Eg=0.2E,. As verified by simulations, "2 the
current required to depin a solitary vortex in the absence
of thermal activation is 0.1i., per junction, which is in
agreement with our observed total array current of
0.11,4(f =0). The fact that we observe this same
minimum depinning current for all fields, and not just for
small field near f =0, suggests that the depinning current
for field-induced defects is ~O0. li, per junction near oth-
er f, values as well. The differential resistance peak asso-
ciated with the depinning of these defects is very small
because the dissipation due to the motion of a small num-
ber of defects, < |f — f.|R,, is very small, thus forcing us
to use a resistive onset criterion in this case. At much
lower temperatures this zero-dissipation plateau region
becomes larger due to self-induced field effects in the ar-
ray. !

Theoretical estimates for the critical currents of an ar-
ray in commensurate magnetic fields have been obtained
by a number of different methods. Teitel and Jaya-
prakash* used Monte Carlo simulations with a twisted-
phase method to induce a dc current in order to deter-
mine the zero-temperature ground-state critical current
for various fields. Shih and Stroud® used a molecular-field
approximation with the twisted-phase method and found
similar critical currents. From their published data we
find their critical current estimates for f =1 and f =1 to
be

I.(f=1)/I.(f =0)=0.41%0.01
and
I.(f=3)/I.(f=0)=0.26£0.01 .

We have made exact critical current calculations for both
of these fields by calculating the current dependence of
the gauge invariant phase difference across each junction.
This method is discussed in detail for f =1, and sketched
for f=1, in Sec. IV of this paper. From these calcula-
tions we find analytically

Lo(f =1)/I4f =0)=v2—1=0.41421

(as was found numerically by Halsey)?? and



42 CRITICAL CURRENTS IN FRUSTRATED TWO-DIMENSIONAL . ..

Lol f =) /1o f =0)=0.26789 .

The results of the simulations mentioned above are in ex-
cellent agreement with these exactly calculated values.
For convenience of comparison, the measured, exactly
calculated, and simulated critical current ratios are col-
lected in Table I.

The estimated critical current ratio for f =1 from our
experimental measurements (~0.42) is also in excellent
agreement with the exact critical current, but for f =1
the peak in the dynamic resistance appears at a current
(~0.34) that exceeds the theoretical value. The position
of the rounded peaks in Fig. 3 for other less strongly
commensurate fields also appear to overestimate I.y(f)
compared to the simulated values for T =0.%> A possi-
ble reason for this discrepancy is that the peaks are more
rounded for the less strongly commensurate fields, prob-
ably due to more thermal activation over their lower en-
ergy barriers. In the AH model, for smaller values of
vy =Eg/kT =*i_,/ekT the peak in dv /di is suppressed in
magnitude and shifts toward currents higher than i,
Despite their difference in detail, thermal excitations in
arrays may cause an analogous change in the position of
this peak, thus yielding an overestimate of I ,(f) for the
less strongly commensurate fields. Nonuniformities in
the array may also contribute to the rounding of these
peaks because at the less strongly commensurate fields
the vortices interact more weakly due to the larger super-
lattice cell size, and thus they may be more susceptible to
variations in junction coupling energies and other nonun-
iformities.

IV. ANALYTIC SOLUTIONS FOR f =1 and f =1

We have made an exact calculation of the critical
current for the f =1 ground state using periodicity and
other symmetry arguments to restrict the number of in-
dependent gauge-invariant phase differences across the
junctions in an infinite array. In our solution, we assume
that, as for the zero-current ground state, the current-
carrying ground state is made up of vortex superlattice
cells of size 2 X2 junctions, and that the phase differences
deform continuously in response to a net imposed current
until the intrinsic critical current is reached, above which
no static solutions exist. This ground-state configuration
is shown in Fig. 4, where the gauge-invariant phase
differences across the four non-equivalent junctions are
denoted by a, B, ', and y. For zero net current, all of
these phases are equal to m/4. A net current applied
from left to right will break the symmetry of the ground
state, so that ¢ and y will have different values. If there

TABLE 1. Comparison between measured, exactly calculat-
ed, and numerically simulated (Refs. 4 and 5) critical currents.

f Ic(f)/lc(o)‘meas If(f)/IC(O)|CX8Cl Ic(f)/Ir(O)lslm
0 1 1 1

1 0.42+0.02 0414214 0.41+0.01

1 0.340.02 0.267 89 0.260.01
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FIG. 4. Ground state 2 X2 superlattice unit cell for f=%,
showing the positions of the gauge-invariant phases, «,f3',5,7,
used to accommodate a net dc bias current in the horizontal
direction. By symmetry, 8’ must equal 8 when there is net
current in the vertical direction. The shaded arrows represent
ground-state supercurrents across the junctions and have equal
magnitude i.oV'2 for zero dc bias. The lines between the ver-
tices correspond to the junctions between the superconducting
islands.

is no net current in the vertical direction, symmetry re-
quires that S=/".

With these assumptions we can write down the follow-
ing constraining equations. For f =1, fluxoid quantiza-
tion requires that

a+y+2B=m (mod 2m) . (1)

Current conservation at each node in the array is satisfied
if

sina +siny =2sinf3 . (2)
Finally, the average net current per junction in the hor-

izontal direction, normalized to the single junction criti-
cal current, is

i/i = +(sina—siny) . (3)

Solving these equations for the net current as a function
of the total gauge-invariant phase difference across the
2 X2 cell parallel to the current, p=a—7y, we find

i sing _ sin(¢/2)
ig (6+2cosp)/?  [1+secXp/2)]'?

4)

The maximum current per junction that can be carried in
this state is

i f=H=(vV2—1i,,

as can be found by differentiating this expression; this
occurs for

@=2sin" 1(2—v2)172=99.88" .

It is interesting to note that Eq. (4) describes a current-
phase relation I (@) that is similar to the single-junction
current-phase relation i =i sing except that now ¢
denotes the total gauge-invariant phase across the 2X2
vortex superlattice unit cell, and the maximum super-
current is only (V'2—1)i,, per junction, or twice that (i.e.,
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2io(f =5)=0.82843i,) per 2X2 cell. This current-
phase relation for the 2X2 cell is compared with that for
a single junction in Fig. 5.

The gauge-invariant phases and hence the currents for
each of the junctions can be worked out from this solu-
tion, with the following results. 23

sina=[1+secX(@/2)] ' [1+sin(¢/2)], (5a)
sinB=[1+secX(p/2)]"'?, (5b)
siny =[1+secX(@/2)] [ 1—sin(¢/2)] . (5¢)

The sign ambiguity of the square root is resolved by im-
posing a requirement of continuity.

We have carried out similar (but more intricate) calcu-
lations for the f =1 ground state. Here one must deter-
mine five independent gauge-invariant phase differences
within the 3X3 cell, compared to three in the 2X2 cell
for f =1. Although we were not able to find an analytic
expression for the maximum supercurrent per junction, it
was found numerically to be i (f =1)=(0.26789)i.
Referred to the 3 X3 superlattice cell, the maximum su-
percurrent is three times this (i.e., 3io(f =1)=0.803 67
i), and occurs at a gauge-invariant phase difference of
about 105.23°. The current-phase relation for the f =1
(3X3) superlattice unit cell was calculated numerically
and is also plotted in Fig. 5.

Comparing the three exact solutions in Fig. 5, for
f=0, 1, and %, we note that the maximum supercurrent
per superlattice cell drops only from 1 to 0.828 to 0.804,

10F T T T T 1
>
o e —
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FIG. 5. Comparison of current-phase relation for a single
junction, for a 2X2 superlattice cell for f =1, and for a 3X3

cell for f=1. The normalized supercurrent per g Xgq cell is

defined as q+i (f)/i,,. The maximum values (0.828 and 0.804) of

the curves for f=1 and ! correspond to 0.414 and 0.268 per

junction as explained in the text. The gauge-invariant phase
difference @ occurs across a single junction for f =0, but is dis-
tributed over two or three junctions in series in the 2X2 or 3X3
cells, respectively. Only half of a complete cycle is shown, to al-
low detailed features to be more clearly seen.
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and that this maximum occurs at a gauge-invariant phase
difference per superlattice cell that increases only from 90°
to 100° to 105°. Thus, the effect of the superlattice on the
macroscopic response of the array is a sort of renormal-
ization, in which each g Xgq superlattice cell can be ap-
proximately replaced by a 1X1 cell in an array with g-
fold larger lattice interval, but rather similar maximum
supercurrent per g Xgq unit cell, g-i,o(f =p/q), and an
approximately sinuoidal current-phase relationship.

These exact solutions have implications for computer
simulations since they show that the total supercurrent
due to the dc bias and the field-induced vortices is not the
same for adjacent junctions. If uniform currents are im-
posed at the boundaries in simulations, the gauge-
invariant phase differences across junctions near these
edges are distorted from their optimal current-carrying
state, resulting in a reduced critical current. For exam-
ple, with uniform current injection, the zero-temperature
critical current per junction for the f =1 ground state
was found to be i.o( f =1)=0.35i,,.>*?° This is substan-
tially lower than the exact calculated value (V2—1)
=~0.414 for an infinite array. As an alternative to uni-
form current injection, Free et al.?® used currents at the
boundaries which were determined from the exact calcu-
lations for the periodic f =1 state, described above in
Eq. (5). With periodic boundaries perpendicular to the
current and this current injection method, the array
behaved as though it were part of an infinite array; the
supercurrents in the array were not distorted near the
current injection nodes, and the correct ground-state crit-
ical current (V'2—1) was reproduced.

The experimental arrays discussed above were very
large, 1000 by 1000 junctions, had free boundaries on the
edges parallel to the current and used superconducting
bus bars to inject the current. Arrays fed by normal-
metal electrodes configured to inject the current approxi-
mately uniformly were also measured and found to
display essentially the same dynamic resistance behavior
as the arrays with bus bars. We conclude that the experi-
mental arrays are so large that their measured properties
are essentially independent of their boundary conditions
including the method of current injection, since the few
affected rows of junctions at the edge of the array con-
tribute a voltage that is less than one percent of that
given by a feature involving the bulk of the array. Ac-
cordingly, their measured properties resemble those of an
infinite array. On the other hand, since simulations are
limited to much smaller arrays, the boundary conditions
are more important.

V. CONCLUSION

Systematic measurements of the dynamic resistance of
a 2D square array of Josephson junctions have shown it
to be a complicated function of both bias current and per-
pendicular magnetic field. We have consistently ex-
plained the major features of this dynamic resistance
within a model of the motion of strongly commensurate
vortex superlattices in the 2D egg-carton pinning poten-
tial of the junction array. This model enabled us to make
experimental estimates of the intrinsic critical current of
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the array in commensurate magnetic fields, which we find
to be in quite good agreement with exact theoretical
values. The results of the exact calculations for f=1
and 1 superlattice states suggest the conceptual useful-
ness of a renormalized array picture. This work comple-
ments previous investigations of the resistive dissipation
in Josephson junction arrays in zero field near the
Kosterlitz-Thouless transition temperature and near the
phase transition temperatures for the commensurate
magnetic fields. Taken as a whole, these investigations
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present a fairly complete and unified picture of the dc
properties of 2D Josephson junction arrays over a wide
range of temperature, current, and magnetic field.

ACKNOWLEDGMENTS

This research was supported in part by National Sci-
ence Foundation Grant No. DMR-89-20490 and DMR-
89-12927, Office of Naval Research Grant No. N00014-
89-J-1565, and Joint Services Electronics Program Grant
No. N00014-89-J-1023.

*Present address: Department of Physics, University of Mary-
land, College Park, Maryland 20742.

ly. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364
(1969).

2J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967);
D. E. McCumber and B. 1. Halperin, Phys. Rev. B 1, 1054
(1970).

3J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973);
D. J. Resnick, J. C. Garland, J. T. Boyd, S. Shoemaker, and
R. S. Newrock, Phys. Rev. Lett. 47, 1542 (1981); David W.
Abraham, C. J. Lobb, M. Tinkham, and T. M. Klapwijk,
Phys. Rev. B 26, 5268 (1982).

4S. Teitel and C. Jayaprakash, Phys. Rev. Lett. 51, 1999 (1983).

SW. Y. Shih and D. Stroud, Phys. Rev. B 28, 6575 (1983); 32,
158 (1985).

6S. P. Benz, M. S. Rzchowski, M. Tinkham, and C. J. Lobb,
Phys. Rev. Lett. 64, 693 (1990).

M. S. Rzchowski, S. P. Benz, M. Tinkham, and C. J. Lobb,
Phys. Rev. B 42, 2041 (1990).

8A preliminary account of this work was given by S. P. Benz,
M. S. Rzchowski, M. Tinkham, C. J. Lobb, and G. O. Zim-
merman, Bull. Am. Phys. Soc. 34, 845 (1989).

9The magnetoresistance and I-¥ characteristics of overdamped
arrays have previously been measured only very close to
T.(f =0): M. Tinkham, D. W. Abraham, and C. J. Lobb,
Phys. Rev. B 28, 6578 (1983); R. K. Brown and J. C. Gar-
land, ibid. 33, 7827 (1986); K. N. Springer and D. J. Van Har-
lingen, ibid. 36, 7273 (1987); D. J. Resnick, R. K. Brown, D.
A Rudman, J. C. Garland, and R. S. Newrock, in Proceedings
of the 17th International Conference on Low Temperature
Physics (North-Holland, Amsterdam, 1984), p. 739; D.
Kimhi, F. Leyvraz, and D. Ariosa, Phys. Rev. B 29, 1487
(1984); J. M. Gordon, A. M. Goldman, M. Bushan, and R. H.
Cantor, Jpn. J. Appl. Phys. 26, 1425 (1987).

10Arrays of underdamped junctions exhibit hysteretic I-V
curves and behave much differently than overdamped arrays,
although the field modulation of the subgap resistance, R y(f)
behaves similarly to the magnetoresistance in overdamped ar-
rays: Richard F. Voss and Richard A. Webb, Phys. Rev. B
25, 3446 (1982); R. A. Webb, R. F. Voss, G. Grinstein, and P.
M. Horn, Phys. Rev. Lett. 51, 690 (1983); H. S. J. van der
Zant, C. J. Muller, H. A Rijken, B. J. van Wees, and J. E.
Mooij, Physica B 152, 56 (1988).

!This is analogous to self-induced fields affecting the magnetic
field modulation of the critical current in a dc SQUID: M.
Tinkham, Introduction to Superconductivity (McGraw-Hill,
New York, 1975; reprinted by Krieger, Florida, 1985), p.
215-216.

12At these temperatures the penetration depth for a perpendicu-
lar magnetic field is smaller than the array size. However, in
the highly resistive regime of our measurements, the currents
flow uniformly, and this is not an important effect.

I3M. G. Forrester, Hu Jong Lee, M. Tinkham, and C. J. Lobb,
Phys. Rev. B 37, 5966 (1988).

14An overdamped junction has B, =2ei.R*C /%< 1, where C is
the capacitance of the junction. Our single junctions have
negligible capacitance so that 8. << 1.

15C. M. Falco, W. H. Parker, S. E. Trullinger, and P. K. Hans-
ma, Phys. Rev. B 10, 1865 (1974).

16p, G. DeGennes, Rev. Mod. Phys. 36, 225 (1964).

1"M. Tinkham, Introduction to Superconductivity (McGraw-
Hill, New York, 1975; reprinted by Krieger, Florida, 1985), p.
199.

18AC response measurements at various temperatures by Ch.
Leeman, Ph. Lerch, G.-A. Racine, and P. Martinoli, Phys.
Rev. Lett. 56, 1291 (1986), have shown effects of thermal ac-
tivation on pinning.

190ur model assumes that the array is uniform and that the en-
tire superlattice depins and moves across the array. For ar-
rays with nonidentical junctions or some other form of disor-
der, the motion may be more complex, including effects such
as vortex lattice shear. At higher temperatures close to the
T.(f) the motion of domains or other defects will contribute
to dissipation and may destroy the superlattice.

20C. J. Lobb, David W. Abraham, and M. Tinkham, Phys. Rev.
B 27, 150 (1983).

213, P. Straley, Phys. Rev. B 38, 11225 (1988); K. H. Lee, J. S.
Chung, and D. Stroud, in Workshop on Relaxation and Relat-
ed Phenomena in Complex Systems, Torino, Italy, 1989, edit-
ed by A. Campbell and C. Giovannella (Plenum, New York,
1989).

22T, C. Halsey, Phys. Rev. B 31, 5728 (1985). In this paper, re-
sults for I, equivalent to ours were found numerically by
considering the stability of ‘“‘staircase states.”

23The fact that a, B, and y depend only on ¢/2, implies that
their periodicity in ¢ is over 4, while (4) shows that the aver-
age net current per junction is periodic over 27. This
difference reflects an internal period doubling in the case of ac
drive as found in the “fractional giant Shapiro steps” at f =%
reported by Benz et al. (Ref. 6) and simulated by Free et al.
(Ref. 25).

24K, K. Mon and S. Teitel, Phys. Rev. Lett. 62, 673 (1989); J. S.
Chung, K. H. Lee, and D. Stroud, Phys. Rev. B 40, 6570
(1989).

253, U. Free, S. P. Benz, M. S. Rzchowski, M. Tinkham, C. J.
Lobb, and M. Octavio, Phys. Rev. B 41, 7267 (1990).



