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Solitary-wave propagation in superfluid He films
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It is shown that in superfluid He films, finite-amplitude localized density fluctuations can propa-
gate as pulse-type solitary waves. These excitations are obtained by solving the nonlinear evolution
equation for the superfluid order parameter associated with s microscopic pseudospin model of
hard-core bosons with nearest-neighbor interactions. For a given film thickness both "hot" and
"cold" solitary waves are possible, depending on the initial disturbance. The solitary-wave velocity
is always less than that of the linear third-sound mode in the system. The width and amplitude of
the solitary wave are determined as functions of its velocity and the microscopic parameters of the
model.

I. INTRODUCTION

where m is the mass of a He atom, p is the chemical po-
tential, A~ and a~ are phenomenological parameters
which depend on the Van der Waals interaction binding
the film to the substrate, and B depends on the surface
tension of the film. Considering small-amplitude modes
of the form

p=go+Xksin(k r cot, t)+rikcos—(k r cokt), (1.2—)

Rutledge et al. obtained the following Bogoliubov-like
excitation spectrum on using a linear approximation:

tok=cqk +(k /4m )(A' +48mpo) . (1.3)

Here po= iform is the average superfluid surface density of
the film. The third-sound velocity c3 is given by

3 ARPo™az+Po) (1.4)

Several years ago, Atkins' predicted that when a film

of He is locally excited (say by a heat pulse), surface
waves made up of only the superfiuid component would
be created, since the normal component would remain
pinned to the substrate due to viscosity. This phe-
nomenon of third sound is by now well established exper-
imentally. Third-sound modes appear as oscillations in
the film thickness with a velocity much less than that of
the first and second-sound modes present in bulk helium.

High-precision measurements of third-sound velocity
in thin "He films were carried out by Rutledge, McMil-
lan, Mochel and Washburn. They interpreted their re-
sults using a reformulation of Landau's bulk superfiuid
hydrodynamics in terms of surface parameters appropri-
ate for He films. Using a phenomenological approach,
they derived the following nonlinear evolution for the
superfluid order parameter f:

i fi( t3$/Bt ) = —(R /2m )V g —A tt g/(att +
~ Pi )

—
1 1l

—811V'lgl', (1.1)

f = A sech [(x ut)/b, ], —

where A is arbitrary and the soliton width 6 is

[3(g 2+48m p ) /2 2mc
2 A )

1/2

The soliton velocity u is

u =c3(l —A/3), or A =3(c3—u)/c3 .

(1.6)

(1.8)

For thin films, Rutledge et al. have shown that the
quantity (fi +48mpo) which occurs in Eq. (1.3) must be
positive. Thus for b, in Eq. (1.7) to be real, A must be
positive, i.e., u &c3. Therefore, as u increases the ampli-
tude decreases while the width increases. Now, f )0
corresponds to a depletion of the superAuid density.
These modes are termed "hot" solitons. In the present
case of thin films, this theory predicts that they are
slower than the third-sound modes.

For thicker films, Huberman conjectured that one
might have "cold" solitons (i.e., a crest wave, f (0)
which would move faster than third sound. Subsequent-
ly„Biswas and Warke applied the more systematic
method of reductive perturbation theory to study lomest-
order nonlinear effects in Eq. (1.1). They showed that

Intriguing nonlinear effects such as an incipient shock
behavior (which develops as the wave amplitude
changes) and the propagation of an undistorted pulse
have been observed in experiments on third sound. These
suggest the possibility of a mode with a velocity-
dependent amplitude. Clearly, such observations cannot
be explained by small amplitude modes such as (1.2).
Huberman was the first to recognize this. Starting with
Eq. (1.1) and considering unidirectional propagation
parallel to the substrate, he proceeded in a heuristic
fashion to show that under certain approximations, the
fluctuation f in the superfluid density (po

—f ) satisfies the
Korteweg —de Vries (KdV) equation:

'f+,f f+, "f=0. (1.5)
Bt BX

Here X =(x +c3,t), a, =c3, and a2=(A' +48m po)/
8m c3. Equation (1.5) supports a soliton solution
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below (above) a certain critical thickness, hot (cold) KdV
solitons can exist. But both travel more slowly than the
third-sound mode, contrary to Huberman's conjecture.
Further, at the critical thickness, soliton modes are found
to be absent according to this analysis.

Rutledge et al. have shown experimentally that the
phenomenological parameter B in Eq. (1.1), which is a
measure of surface tension, becomes negligible in the
thin-film limit. Kurihara has solved Eq. (1.1) for B =0 to
obtain a hot solitary wave. For weak nonlinearities, this
wave is shown to reduce to a hot KdV soliton. However,
beyond a certain thickness the KdV soliton becomes un-
stable. Hence for thicker films one must consider BWO
Analytical solutions of Eq. (1.1) have not been found in
this case. Numerically, Kurihara has shown that the
presence of 8 increases the width of the solitary wave.
This is physically to be expected, since a nonvanishing
surface tension makes it energetically unfavorable to
create a narrow width pulse. For B =0, it has been
shown (numerically) that the solitary waves are quite
stable under collisions, suggesting that they could be
(strict) solitons.

The possible existence of solitons in a weakly excited
superfluid film has also been suggested on the basis of
Landau's two-fluid hydrodynamics by Nakajima et al. "
under the assumption of zero temperature and weak non-
linearity. They used a method analogous to the classical
derivation for waves on water in a shallow canal original-
ly given by Korteweg and de Vries, with the difference
that the force of gravity is replaced by the Van der Waals
interaction of the film with the substrate. They showed
that thin films support hot solitons and thick films sup-
port cold solitons. The generalization of this work to
finite temperatures, using Bergman's' (two-fiuid) hydro-
dynamical model, has been carried out by Browne. '

This approach (which considers only lowest-order non-
linearities) shows that thin films support hot KdV soli-
tons which move faster than third sound, while thick
films support cold solitons which are slower than the
third-sound modes. This result contradicts both
Huberman's conjecture for thick films as well as the re-
sults of Biswas and Warke for thin films.

The models used so far for studying the possibility of
solitary-wave propagation are phenomenological in na-
ture. Besides, the classical two-fluid model is not very
suitable for thin films wherein the quantum motion of
He atoms becomes significant. Furthermore, as dis-

cussed above, the results based on different models are in
contradiction with each other. It is therefore desirable to
study this problem using a quantum mechanical formal-
ism based on a microscopic model of interacting He
atoms. This provides a motivation for this paper.

Recently, we have formulated a microscopic theory'
for superfluid He using a pseudospin model, which de-
scribes a system of hard-core bosons with nearest-
neighbor interactions. We have derived a nonlinear
evoultion equation for the superfluid order parameter in
this model, and shown that it leads to a physically realis-
tic description of vortices —a vortex core of finite thick-
ness with a nonsingular vorticity is obtained. We have
also shown that it takes into account depletion effects in a

consistent fashion. ' In the present work, it will be
shown that the model supports pulse-type solitary-wave
solutions for the superfluid density fluctuation. The lay-
out of the paper is as follows: In Sec. II, we review the
pseudospin model and present the evolution equation for
the order parameter derived in earlier work. ' We obtain
the solitary wave solutions for the superfluid density fluc-
tuation in Sec. III and show that their propagation in
both thick films ( —10 cm) and thin films ( —10 cm)
can be described in a unified fashion in this approach.
For a given thickness, a hot or cold solitary wave propa-
gates, depending on the initial disturbance. Both modes
are found to be slower than the linear (third-sound)
mode; the width of each mode increases as its velocity in-
creases. Other conclusions are summarized in Sec. IV.

II. THE MODEL

It is possible to describe a system of interacting hard-
core bosons with nearest-neighbor attractive interactions
by using the pseudospin model proposed by Matsubara
and Matsuda. ' The details are summarized in Ref. 14.
The salient feature of this lattice model is that the hard
core is incorporated by demanding Fermi-like anticom-
mutation relations for the field operators at the same site,
while retaining Bose-like commutation relations for those
at different sites. It can be shown that the field operators
behave like S =

—,
' spin-flip operators and that the system

is effectively described by the following anisotropic
Heisenberg spin Hamiltonian:

$ 2

H = —g (b P, )Sf + —
2

g(SI"SI"+s+St'Sf+s )
4ma

+uo+St'SI'+s
I 51

(2.1)

where 5 runs over the nearest neighbors of the lattice site
I, and

b=D $) 0
ma

(2.2)

D is the dimensionality of the lattice, and —
uo (uo )0) is

the attractive interaction between nearest-neighbor He
atoms separated by lattice spacing a. The evolution equa-
tion for the spin-flip operator SI+ is found by using

BS, '

i fi + [H, S,+ ]=0.
at

(2.3)

ril = (SI ) =
—,'sinOlexp(i(t I ), (2.4)

where Oi and Pl are the polar and azimuthal angles of a
classical spin vector at the site l. We also have

(S;)=-,'cose, =-,'(1 —4~q, ~')'", (2.5)

In our formalism, the superfluid order parameter is
given by the spin coherent state' average (Si ):
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and

p, =
—,
' —(S(') =sin ( —,'0, ),

lq(l'=p({1 —p() .

(2.6)

(2.7)

Finding the diagonal matrix elements of Eq. (2.3) in the
spin-coherent representation [using Eqs. (2.4)—(2.7)] and
going over to the continuum version appropriate for the
description of a fluid, we get'

i A((3q jdt ) = [b [1—(1—4li) l')' ']—p }~i
—(ir(' /2m)(1 4li—)l')'"V'g

—Uoa'g[V'lgl'+2(Vlgl')'(1 —4lgl'} '](1—4lql'} '" (2.8)

The dimensionality D of the system occurs in b. It is in-
teresting to note that the parameters occurring in the
phenomenological equation (1.1) used by Rutledge et al.
in the discussion of He films can be written in terms of
the parameters occurring in the microscopic Hamiltonian
(2.1) as follows. Neglecting certain higher-order non-
linearities such as (Vlril ) r( in Eq. (2.8), expanding the
nonpolynomial terms in powers of lail in both Eq. (2.8)
and Eq. (1.1}, and comparing the two equations we find
that

irt()), sinO=((M —b)sinO+b sinOcosO+(A /2m )0,„
—

—,
' ba [8„,sin 0+ sinO cosO( 8„) ]

—(fi /2m)cosOsinO(P„)

Using Eqs. (2.6) and (2.7), Eq. (3.1) becomes

p, = —(A'/m)[p(1 —p)P, ], .

We seek solutions of (3.2}and (3.3}of the form

(3.2)

(3.3)

3AR A~
4

=b, B =UOQ, and pg+ 3
—p

2Qg Qg
(2.9)

(t(=cot+/(z) and p=p(z), (3.4)

We note also that in Eq. (2.8), using small amplitude solu-
tions as in Eq. (1.2) and linearizing gives'

z =(x vt)ja . —

Equation (3.3) can be readily solved to give

c3 =(2bjm)po(1 —po) . (2.10) Vp= p(1 p)4, +ci— (3.5)

Substituting i)= —,'sinO exp(ig) [see Eq. (2.4)] in Eq.
(2.8) and equating real and imaginary parts yields

where c, is a constant of integration, and

8 =( —(rt/2m)[2 cosO(VO) ~ (VP)+sinOV P], (2.11)
V =m Ua /((t . (3.6)

and

fi =p —b+b cos8

The boundary conditions popo and p, ~0 as lzl~ ~
give c, = Vpo. Thus Eq. (3.5) reduces to

P, = V(p —po)/[p(1 —p)]

+(sinO) '[(fi /2m)cos 8+ —,'Uoa sin 8]V 8

—(a b/2D)(VO) cosO —(A' /2m)(VP) cosO .

(2.12)

We must of course set D =2 in b [see Eq. (2.2)] in order
to describe a He film.

=4 V(sin —,
' 8—po) /sin 8 .

Similarly using {{),=co —(U/a)Q„Eq. (3.2) becomes

—V sin0$, =(E, E2 )sinO+E2sin—8cosO+ —,'8„
—

—,'EzsinO(O, sinO), —
—,'cosO sin8$, ,

where

(3.7)

(3.8)

III. SOLITARY-WAVE SOLUTIONS
and

E, =ma (p fi~)jfi— (3.9a)

O, sinO= —(((t/2m)(g sin 8), (3.1}

In this section, we specialize to unidirectional flows
and show that the fluctuation in the superfluid density
supports solitary-wave solutions. Considering 0= 8(x, t)

and P =(t((x, t), and denoting BO/Bt by O„etc., Eqs. (2.11)
and (2.12) yield

F2=ma b/A (3.9b)

Substituting Eq. (3.7} in Eq. (3.8) and simplifying we get

u [(2po —1)tan( —,'0)sec {—,'0)+8po(csc OcscO]

=(E, E2)sinO+EzsinOcosO+ —,
'8—„

and —
—,
' Ez sin 0{0,sinO), . (3.10)
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Multiplying both sides of Eq. (3.10) by 8, and integrating,
we have

—,'(6(, ) (1—
—,'Ezsin 6()

f (df/dz) [a good approximation for slowly varying
functions f (z)] and retaining all other nonlinearities, we
get

2

= V [(2po —1)tan ( —,'8) —(4po/sin 8)]

+(E, E2—)cos8 —
—,'Ezsin 9—C&, (3.11

where

dz
= g K„f",

n=0
(3.16)

+ [ V'{2po—1)—(3Ei —E2 —Cz }]p'

+2(E(+Ei)p 2E,p— (3.12)

where C2 is the constant of integration. Multiplying both
sides of Eq. (3.11) by —,'sin 8 and setting sin —,

' H=p, we get

—.'p,'[1—2Ezp(1 —p)]

PoV'+{E( Ei —C2)p—

y =4[1—2E&(po(1 —po}] '=4[1—(ma /A') c3]

Equation (3.16) supports pulse-type solitary-wave solu-
tions. These are obtained by choosing the integration
constant C2 and the frequency co in the condensate phase

P [cf. Eq. (3.4)] appropriately —for instance, so as to have

Kp =E
&

=0. Imposing the latter conditions, we find that
we have only to choose

E] 2E2PO

Writing

p=po+ f (z), (3.13)

and

C2= —2V po
—E~(1—2po+2po} .

(3.17)

with the boundary condition f (z)~0 as ~z~ ~ 0(, we ob-
tain for the superfluid density fluctuation f (z) the follow-
ing nonlinear equation:

In terms of the basic physical parameters, this means set-
ting

(o =
((L(

—2b po) /(ri

—,'(df /dz) [—,
' —Ezpo(1 —po) —E2f(1 2po)+E2—f ]

and

C2 = —
( ma z/4 )[2m u po+ b (1 —2po+ 2po) ] .

(3.18)

where

=Ko+K,f+K2f +K3f +K~f, (3.14)
Using these values, the remaining constants K2, E3, and
K4 reduce, respectively, to

and

+2(E(+Ei+ V }po 2E2po ~ (3.15a)

K( =(E( Ez —Cq )+—2(Ez+ Cz —3E, —V )po

+2(3E, +3E2+2V )po 8E2po, —

K2=(E2+C2 —3E, —V )

+2(3E, +3Ei+ V )po
—12Ezpo,

K3 2(E, +Ez ) —8E~po

(3.15b)

(3.15c)

(3.15d)

Ko=(E, E2 —C~)p —+o(E +iC —
z 3Ei —2V )po

K2=(ma/Pi) (c, —u2),

K3 =(2ma b I(i(~)(1—2po)

= (ma /iri) c, (1—2po)/po(1 —po),

K4 = —2ma b!A' = —(ma IA) c 3 Ipo(1 —po) .

(3.19)

We recall that c, is the third-sound velocity obtained
from the linearized microscopic theory [see Eq. (2.10)].

Equation (3.16) yields

K4= —2E2 . (3.15e)
z —+l d +zo,f(Kq+K3f+K f )'i (3.20)

Neglecting nonlinear terms of the forin f (df ldz} and where z =yz and zp is the integration constant. Hence

+tanh[2(Kz)'~ {z—zo)]=2K' (K2+K3f +K4f )' l(2K2+K3f ) . (3.21)

Solving for the density Auctuation f, we obtain

(+ )( —
)

2E2

+{K3—4K~K~ }' cosh[2(K2)' (z —zo)] —K3
(3.22)
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where Kz, K3, and K4 are as in Eqs. (3.19). Note that Eq.
(3.22) represents two possible pulse-type solitary-wave
solutions for the density fiuctuation f (z), provided Kz )0
or v &c3. In this case (K3 —4KzK4) is always positive.
[For Kz &0 it is possible to obtain "nonlinear" periodic
waves, with u ) c3, provided ~c3 —v

~

&(A' /8ma )(1—2po) . These are not of interest to us in
the present context. ]

We summarize our results.
(i) For a pulse solitary wave to exist, we must have

wave width for 8%0 (thick films) was greater than that
for 8 =0. This behavior agrees with that of the analyti-
cal expression we have derived for I .

The question of whether these solitary waves are
(strict) solitons' can be answered either by constructing a
Lax pair for Eq. (2.8) and showing its complete integra-
bility, or by performing a numerical experiment to see if
the solitary wave retains its identity on collision with
another solitary wave.

K2)0, i.e. , —c3 &v &c3 . (3.23) IV. CONCLUDING REMARKS

Thus the solitary wave is always slower than the third-
sound mode.

(ii) For given values of po, V, and Ez (or equivalently,

uo), we can have two possible solitary-wave solutions with
the same width but different amplitudes. They are

p' +—'(z) =po+ f ' —'(z), (3.24)

with f )0 and f' '&0, i.e., cold and hot solitary
waves. Since the amplitudes or maximum fluctuations
(for a given u) are given by

f ' +'=2Kz/[—(K3+ 8EzKz )' + K3], (3.25)

I =a/(2yKz~z )

=A'[I —(ma/A') c ]' /4m(c —
u )' (3.26)

Hence as the velocity v of the solitary wave increases
from v =0, its width increases from the minimum value
(fi/4mc3)[1 —(ma/A') c3]' . Note that c3 &(fi/ma) .
The velocity dependence of the amplitude may be ob-
tained from Eq. (3.25).

(iv) The quantities Kz, K3, and K4 depend on c3. Since

c3 in turn depends on the film thickness, Eq. (3.22)
shows that for a given thickness, it is possible to have the
propagation of a hot or cold solitary wave, depending on
the initial disturbance. [The applied pulse may be a heat-
ing (depleting) pulse or a cooling (thickness-enhancing)
pulse. ]

(v) In our model, Eq. (3.26) shows that the width I in-
creases as c3 decreases. And it is known experimentally
that as the thickness increases, c3 decreases. (This can
also be inferred from the expression c3 =4[(iii /ma )
—uo]po(1 —po)/m: In a phenomenological interpreta-
tion, vo plays the role of the surface tension parameter 8
[see Eq. (2.9)] which is an increasing function of thick-
ness. ) Thus thicker films will support wider solitary
waves. We have noted that in the model of Rutledge
et al. Kurihara found numerically that the solitary-

we have f I ' &f '+ '. This suggests that for a given film

thickness, to create a cold solitary wave we need a cool-
ing pulse which should be typically much stronger than
the heat pulse required to create a hot solitary wave of
the same width and velocity. A hot wave is not merely a
sign-reversed cold wave.

(iii) From Eq. (3.22), the width I is found to be

The suggestion that superfluid He may be a good sys-
tem to study the propagation of nonlinear waves experi-
mentally was first made by Tsuzuki. ' In that work, the
reductive perturbation method for small amplitude solu-
tions was applied to the Gross-Pitaevskii' (GP) equation
for the condensate order parameter to obtain a KdV
equation for the density fluctuation which was shown to
support only hot solitons. As is well known, the GP
model is not a very realistic one since it neglects the im-

portant hard-core interactions between He atoms. Sub-
sequently, the phenomenological model of Ref. 2 for He
films was used to study solitons. Huberman's heuristic
analysis showed that thin films can support hot KdV sol-
itons which have a speed smaller than that of third
sound, whereas thick films support cold solitons which
move faster than third-sound modes. On the other hand,
the more systematic analysis of the same model by Biswas
and Warke predicts that both types of solitons are
slower than third sound. Browne's' results based on the
phenomenological two-fluid model also predict hot and
cold KdV solitons in thin and thick films, respectively.
However, the hot soliton is found to move faster than
third sound, contradicting the conclusions of both Refs. 5

and 7. It has also been suggested' that the two-fluid
model analysis has perhaps neglected "half" of the possi-
ble soliton modes due to the approximations used, and
that one might have both hot and cold solitons for a given
film thickness.

Such contradictory results arise essentially because the
underlying evolution equation for the superfluid order pa-
rameter has not been derived from first principles in any
of the earlier treatments, leading to an inadequate incor-
poration of the inherent nonlinear effects in the system.
The present treatment, on the other hand, is based on an
evolution equation derived from a microscopic Hamil-
tonian that includes hard-core effects and nearest-
neighbor interactions. We find that the evolution equa-
tion for the density fluctuation is not the KdV equation
when all nonlinearities are retained, but two coupled non-
linear equations [Eqs. (2.11) and (2.12)]. Retaining all the
important nonlinear terms in these leads to a pulse-type
solution different from a KdV soliton. Our analysis
shows unambiguously that for a given thickness, it is
indeed possible to have both hot and cold solitary waves

depending on the initial disturbance. We have shown
that the solitary-wave velocity is always less than the
third-sound velocity (which is —10 cm/sec). Equation
(3.26) shows the dependence of the width of the wave on
its velocity and on the third-sound velocity which is ex-
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pressed in terms of the microscopic parameters of the in-
teracting hard-core boson model.

While our formalism (and the evolution equation de-
rived from it) is a general one, we have analyzed in detail
only unidirectional nonlinear waves on films in the fore-
going. The possibility of having two-dimensional non-
linear excitations in a superfluid film has also been stud-
ied within the framework of the model of Ref. 2 by us-
ing reductive perturbation theory for small-amplitude
perturbations in thin films. It would be of interest to car-
ry out an analysis of our model in the case of two-
dimensional wave propagation. If one works at tempera-
tures well below the Kosterlitz-Thouless transition tem-
perature, ' damping effects due to vortices on wave prop-
agation will be negligible. ' ' In spite of the existence of
the various theories of soliton propagation discussed
above, there are at present very few experimental stud-

ies designed to verify theoretical predictions in a sys-
tematic fashion. Factors such as the smallness of the soli-
ton width as compared to the macroscopic size of the
detector could pose practical difficulties. An idea1 experi-
mental setup should have very sensitive detectors capable
of detecting narrow width ( —10 cm) solitary waves.
Our results also show that it may be better to work with
thicker films since they support wider excitations. We
hope that the present work will provide further motiva-
tion for a carefu1 experimental study of the nonlinear
modes in superfluid He.
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