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Minimal renormalization without e expansion: Critical behavior above and below T,
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We present a field-theoretic renormalization-group treatment of the critical behavior of the q
model within the minimal-subtraction scheme at fixed dimension d (4. We show that correlation
functions above and below T, can be calculated within this renormalization scheme without using
the a=4 —d expansion. This is demonstrated for the specific heat, for the order parameter, and for
the superfluid density (stiffness constant). Various asymptotic amplitudes and correction amplitudes
are determined, and some of their universal ratios are calculated in three dimensions. Our result for
a, /a~ eliminates a previous error of the e expansion regarding the sign of this ratio for d =3 and

S

lf =2.

I. INTRODUCTION

Because of its simplicity and elegance, the minimal-
subtraction scheme' is the most popular renormalization
procedure in the field-theoretic treatment of critical phe-
nomena. In numerous applications this scheme has been
used in combination with an e expansion around the
upper or lower borderline dimension. Recently we have
shown that the restriction to the e expansion is unneces-
sary and that the minimal subtraction scheme can be
used at fixed dimension d (4 provided that Symanzik's
nonvanishing-mass shift is properly taken into account.

Our recent work was focused on the simplest case, i.e.,
on multiplicatively renormalizable quantities of the y
model above T, . Thus, we did not explicitly treat the
specific heat which is the most favorable candidate for a
quantitive comparison between theory and experiment.
The concept of calculating a minimally renormalized
specific heat in three dimensions above and below T,
without using the e expansion was introduced previously
by one of us and was subsequently extended to the
superfluid density. In this paper we shall demonstrate in
detail the validity of this concept and shall give further
applications above and below T, .

A particular advantage of the minimal-subtraction
scheme is due to a natural and simple decomposition of
renormalized correlation functions into exponential parts
and amplitude functions. The exponential parts are
determined entirely from pure pole terms -(4—d)
These pole terms are identical above and below T, and
remain unchanged even at finite k, co, and l. (wave num-
ber, frequency, and system size). Thus, the exponential
parts can be easily employed in extensions of the theory
from T& T, to T (T, as well as in applications to criti-
cal dynamics, 7 to finite k, co, and L, " and to surface
critical phenomena. ' ' In our earlier work ' we have
calculated these exponential parts (exponent functions
and P function) to very good accuracy by means of the
Borel resummation method' within the minimal-
subtraction scheme.

Recently we have shown' that for the nonexponential
parts (amplitude functions) the higher-order computa-
tions and Borel summations appear to be considerably

less important, at least above T, . The resummed higher-
order corrections to low-order expressions of amplitude
functions turned out to be quite small" within the
minimal-renormalization scheme in three dimensions. A
corresponding property is not known to be valid for other
renormalization schemes, e.g. , for that used in the d =3
theory of Bagnuls and Bervillier' ' which implies
different decompositions between exponential and nonex-
ponential parts.

Therefore, within our minimal-subtraction approach at
d =3, it appears to be justified to extend the theory even
to those cases where higher-order computations and
Borel resummations are not (or not yet) possible, i.e.,
where the amplitude functions are known only to low or-
der of perturbation theory. This includes the important
case n ) 1 (n is the number of components of the order
parameter) below T, which was not treated by Bagnuls
and Bervillier. ' We argue that, within the minimal-
renormalization approach, this case does not necessarily
require new Borel resummations because the accurately
known ' exponential parts dominate the critical behavior
whereas the amplitude functions constitute only smooth-
ly varying prefactors which we expect to be well approxi-
mated by low-order calculations provided that the full di-
mensional dependence of the leading diagrams is ap-
propriately taken into account. ' This expectation is not
only based on our accurate results above T, (Ref. 15) but
also on the good agreement between our previous theory
below T, (Refs. 5, 6, 8, 18, and 19) and the accurate data
for the specific heat and superfluid density of He.
We also mention the good agreement between the
thermal conductivity data and the amplitude function
of this quantity calculated within the minimal-
renormalization scheme in low order of perturbation
theory.

In Sec. II the specific heat of the n-vector model is
treated above T, at fixed dimension d &4 within the
minimal-renorrnalization scheme. The theory is extended
to T (T, in Sec. III for the examples of the order param-
eter, the specific heat, and the superfluid density (stiffness
constant). Asymptotic amplitudes and correction ampli-
tudes of these quantities are given in Sec. IV. Corre-
sponding universal amplitude ratios for the universality
classes n =2 and 3 in d = 3 are calculated in Sec. V.
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II. SPECIFIC HEAT ABOVE T, AT FIXED d (4
We consider the statistical distribution

-exp (H—p+H+) with the usual Landau-Ginzburg-
Wilson functional '

H =f d «h)roy&o+ 2)(Vq)0) +uoqro] ~

1'0 =1'0 +apt t =(T T )/T

(2.1)

(2.2)

for an n-component order-parameter field (po(x). The
spatial variations of ()()0(x) are confined to wave numbers
less than a finite cutoff A. The leading critical behavior
of the bare (physical) specific heat C per unit volume (di-
vided by Boltzmann's constant ks} near T, is described
by

u =)u 'Z„(u, e) 'Z (u, e) Adup,

r =at =Z„(u,e) 'apt,

(2.11)

(2.12)

l =P„(u (l), e)du (l)
(2.13)

with u (1)=u. The fiow parameter I will be chosen as

l =()Mg) (2.14)

For a convenient choice of the geometrical factor Ad in
(2.11) see Refs. 3 and 5 and Eq. (3.13). tu

' is an arbitrary
reference length.

and the effective coupling u(l) determined by the fiow
equation

a2
C=C&+T V '

2
ln Dpoexp —H+aT2

(2.3) A. Representation of 6 via BC /Bt

0—C~+ —a oC

C = "x q xy 0

(2.4)

(2.5)

In (2.3) and (2.4) the term Ci) )0 represents a "back-
ground" contribution which comes from the background
free energy Ho. In this section we confine ourselves to
T & T, . We shall use the notation of Ref. 3 and study C
in terms of the vertex function

Among the various correlation functions the specific
heat is known ' to require a special discussion because
of an additive ultraviolet divergence as rejected by the
extra 1/e factor in (2.10). A possible way of circumvent-
ing this complication is to study the derivative BC/()t or
()I 0' )/Bro which is multiplicatively renormalizable.
The t dependence of C can then be obtained, up to a finite
additive background part, by integration after the treat-
ment of ()C/Bt via renormalized field theory. Thus, we
consider

I (2 0)(r, —r„,u, ,d) = —
—,'C, . (2.6)

I 02 "(g,up, d) =I'' ' '(ro —ro„uo, d) (2.7)

By expressing ro —ro, as a function of the correlation
length g above T, we define

a I (2, 0)(g u d) —I (3,0)(g d)
0

g2+ej (3,0)(u p d)

(2.15)

(2.16)

pe (2, 0)( P d) (2.8)
This vertex function has the usual form of a power series
in u P0/ aend is multiplicatively renormalized as

—= —
—,'C (g, up, d) . (2.9)

Working with I o' ' rather than I"' ' ' circumvents the
problem of the nonperturbative nature of ro, (uo). 3'4's'
At fixed g& ~, up & ao, d &4 the function I 0

' ' remains
finite in the limit A~ ~. Throughout this paper we take
this limit and use the prescriptions of dimensionless regu-
larization. ' The dimensional function f ' ' '(up@, d)
has the form

(2.17)

(2.18)

f ' ' )(up+, d)=Z, (u, e) f' '(l, u (l), d)exp 3g„
dl'

1

(2.19)

I ' ' '(g, u, l2, d)=Z, 1 ' ' '(g p'Z„Z A 'u, d)

—g2+ef (3,0)(pg u d)
' (3 o)The dimensionless function f ' ' ' can be represented as3

j (2, 0)(z d) y a(2, 0)(d)1 z

~ m=o

'm

(2.10}

Our reasoning will be based on the fact that the function
f' '(l, u, d) is finite for fixed d &4 in the range
O~u ~u* and can be calculated without an e expan-
sion. Furthermore, we shall make use of the function

with coefficients a' '(d) that are finite for d &4. This
series differs in structure from those of ordinary vertex
functions by the extra pole 1/e. Thus, at given order
up, the strength of the leading pole -e ' (ultraviolet
divergence for e~0) exceeds that of the infrared diver-
gence -z (for g~ ~, up fixed), therefore the previous
analysis does not apply directly. In the following we
shall show that this property does not invalidate our con-
clusion regarding the applicability of the minimal-
subtraction scheme at fixed d (4 without an e expansion.

In this analysis we shall need the renormalized parame-
ters

Bro
P(uog, d)=

2
(2.20)

=Z„(u,e)P (ljg, u, d) (2.21)

=Z„(u,e)P(l, u (l), d)exp J g„(u(l'))
dl'

l

(2.22)

whose renormalized counterpart P( l, u, d) is also finite in
d ~4 and calculable without an e expansion. In order to
express 1 0

' ' in terms off ' ' ' and P, we rewrite (2.15) as



6144 R. SCHLOMS AND V. DOHM

, I ' '(g, u, d) =2) 'P(u~g, d}I ' ' '(g, u, d) .
Qp

(2.23)

Substitution of (2.18)—(2.22) into the right-hand side (rhs)
of (2.23) and using (2.14) in the form

cently been calculated for n = 1, 2, 3, to very good accu-
racy. '

Unlike the critical contribution, the noncritical term
(first term) on the rhs of Eq. (2.28) is not meaningfully
calculable within a dimensionally regularized theory be-
cause this term depends significantly on the finite cutoff.
This term should be combined with C~ to yield the total
noncritical contribution

(2.24)
0

Ctt" =Ctt + ,'a —oC ~(p, ', u o, d ) (2.29)

leads to

, I ' ' '(g, u, d) =gp, 'G(u(l), u, d}
Qp

(2.25)

[for the definition of C+(g, uo, d) see (2.9)]. It is Cs",
rather than Ctt and —,'aoC„(p ', uo, d) separately, which
should be considered as the appropriate background pa-
rameter in a comparison with the specific heat of real sys-
tems.

with the dimensionless function

G(u', u, d)=2Z„(u, e) P(l, u', d)f' ' '(l, u', d)

„2(,(u" }—e
Xexp „du" . (2.26)

B. Representation of 0 via additive renormalization

The more conventional treatment of I 0
' ' starts from

a multiplicative and additive renormalization '

1 ' ' '(g u p, , d}=Z 1 ' ' '(g p'Z„Z A 'u d)

We may integrate (2.25) from a noncritical value g '=p,
up to g '=pl to arrive at

C=Ctt —aol'o ' '(g, uo, d),
where

I (t,o)(g, uo, d)=l (z, oi(lt |,uo, d)

+p 'f G(u (1'),u, d )
dl'

1

(2.27)

(2.28)

with 1 =(pg) . The last term contains the critical tem-
perature dependence and provides the desired representa-
tion of the critical contribution to C in terms of the func-
tions f' ' '(l, u, d) and P(l, u, d}; thus, this contribution
can be calculated within the minimally renormalized
theory at fixed d &4 without using the e expansion, as
anticipated previously. By means of the Borel resumma-
tion, the functions P(l, u, 3) and f' ' '(l, u, 3) have re-

I

—
—,'p 'A&A (u, e), (2.30)

I " '(g, u, p, ,d) = ,'p, 'AgF—+ (—pg,u, d) . (2.31)

The dimensionless function F+
renormalization-group equation (RGE)

satisfies the

(pti„+P„t}„+2(„e)F+(pg, u,—d) =48 (u)

with the d-independent function

48 (u) = [2g„—e] A (u, e)+P„(u,e)
t}A (u, e)

(2.32)

(2.33)

Integration of the RGE (2.32) leads to

where A (u, s') absorbs just the leading poles of I '

mentioned after (2.10}. In the following we wish to derive
the relationship between this additive renormalization
and the representation of Sec. II A. For this purpose it is
convenient to rewrite I ' ' 'as

dl" dl' I dl"'
F+(it(, u, d)= F+(l,u(l), d)) —4f 8(u(1')) exp f (2g„—e) „,exp (2g„e)—

1

(2.34)

The solution A (u, e) of (2.33) in terms of 8 (u) reads
l

with

K+(u, d)=F+(l, u, d) —A (u, e) . (2.37)

From (2.26)—(2.28), (2.36), and (2.37) the following rela-
tionship between F+(l, u, d), P(l, u, d) and f' ' '(l, u, d)
can be derived (we drop the arguments of these func-
tions):

(2.35)

with A (0,e ) = 48 (0)/e = 2—n /e. Substituti—ng Eqs.
(2.35) and (2.34) into (2.30) and using (2.9) we arrive at
the following representation of the correlation function
(2.5):

8A 'Pf' ' '=(e 2(„)F +48 —13„dF /Bu . —(2.38)

We conclude that the function F+(l, u, d) is finite for
d (4 and calculable at fixed d without using the e expan-
sion. We note that a distinction between F+ and the
pure pole term A (u, e) in (2.37) becomes particularly use-
ful in the extension of the specific heat to finite wave

C (g, uo, d)=p 'A~Z„(u, e) K+(u(1),d)

»(t) 2$„( )u
Xexpf, du'

» „ tt
(2.36)

8(u') „2(„(u")e—
A (u, e)=4f, exp f „du" du'

0 P„(u 6) &u „ tl, E
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numbers k (Ref. 11) and to finite frequencies to. In these
theories it is only F+ that becomes explicitly k and ~
dependent whereas A(u(I), e) and the exponent func-
tions g„(u (I)) and g+(u (I)) remain unaltered and need
not be calculated again. The latter quantities carry the
dominant critical k and co dependence through the flow
parameter I(g, k, oi). Such a distinction between ampli-
tude functions (like F+) and RG functions (like A, g„,
and g~) is not made in the d =3 renormalization scheme
with renormalization conditions. ' '

The function F+ (pg, u, d) is identical with F+ [u, r Ip ]
defined in Eq. (4.6) of Ref. 5 if r =r(g, u, d) is substituted
into the latter. This relationship between r and g reads
above T, (Ref. 3}

r =at =g Q(l, u(1), d)exp f g, (u(I'))
dl'

I
(2.39)

with I =(pg) '. The amplitude functions Q(l, u, 3) and
F+ (1,u, 3 } have been recently calculated to very good ac-
curacy by means of Borel resummation in three dimen-
sions. '

We note that the representation (2.36) is slightly disad-
vantageous in that it does not exhibit the additive form of
the noncritical contribution C (p, uo, d) to the total
specific heat

C=Ct't"+ ,'p 'Ada [—F+(pg,u, d) F+(l, u, d—)], (2.40)

where Cs" is given by (2.29). The representation (2.40),
with F+(pg, u, d) given by Eq. (2.34), has the advantage
of producing more directly the dependence of the leading
amplitudes A+ and A on the critical exponent a, as
given in (4.22} in Sec. IV B.

Finally, we note that Eq. (2.36) implies

C (p ', uo, d)=Z„p 'AdK+(u, d) . (2.41)

Obviously we can make the identification

C =C

if we identify

+0 CB

and

y~22 a 2 /4

Substitution of (2.36) into (2.44) leads to the form

C =Z (u, y, e)XoC

with the multiplicatively renormalized specific heat

C =[1+y(1)F+(l, u (1),d})]expf 4y (I')B(u(1') }
I

where I =(pg} ' and

Z (u, y, e) '=1+y A (u, e),

=-.'p '(XP. ) 'Ada'.

The effective coupling

dl'
y(1) =y exp f (2g„e)—l'

I

X 1 —4y f B(u(l'))

dl" dl'
X exp 2 „—e

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

As mentioned in Sec. IIA, the cutoff dependence of
C~(p ', uo, d} is non-negligible if p '-O(go): therefore,
the renormalized expression on the rhs of (2.41) should
not be considered as a computational prescription for
determning C (p, uo, d). This point will be taken up
elsewhere in the discussion of a new amplitude ratio sug-
gested by Bagnuls and Bervillier.

H = fd"x[ ', rogPo+ '(Vyo) +uo——po

+ 2Xo no+yotriof'o] . (2.42)

C. Representation of C via multiplicative renormalization

0
An alternative formulation of C can be given in terms

of the probability distribution -exp —H with the extend-
ed functional'

is the solution of the flow equation

I =y( I ) [2$„(u ( I ) )—e+ 4y( I)'B( u ( I ) )]
d y(1)

(2.54}

(2.55)

C/ =1— g a' '(d)
m=0

(2.56)

with the initial condition y(1) =y . The introduction of
y(l) is particularly useful for the extension of the theory
to critical dynamics ' ' and to finite k, co, and I.,
where the main k-e-I. dependence enters through the
flow parameter l.

The formal origin of the multiplicative-renormalization
factor Z ' can be seen after substituting (2.44), (2.47),
(2.48), (2.6)—(2.8), and (2.10) into (2.4). This yields

m

uoP

Then we have

with

=Xo+ yoXoCq ( g u o d )

"o="o 2'YoXo .] 2

C = d x /Box Plo0 Mo (2.43)

(2.44)

(2.45)

which can be interpreted as a double series in powers of
Q Q and poyo. The poles associated with the latter cou-
pling can be absorbed in the usual way by means of a
purely multiplicative renormalization in (2.49) and (2.52).

Like the representation (2.36), the representations
(2.49)—(2.51) do not explicitly exhibit the additive form of
the two noncritical contributions (2.29). In analogy to
(2.29) one should treat the entire noncritical part
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Cii'=Z ( u, y, E)go[1+@F+(l, u, d)] (2.57) with
thefiow

paramete l determinedby

as an adjustable parameter, rather than gp separately, be-

cause the non-negligible cutoff dependence of C has not
been taken into account in the minimally renormalized
quantities of the expression (2.57). Equivalently, it would
suffice to adjust Z go as has been done previously. '

l =(p( ) (3.5)

The function Q (1,u, d) is defined in (4.21) of Ref. 3 and is
accurately known' for d =3 and n =1,2, 3. Equation
(3.4) indeed implies ( -go ( t) —with v=(2 —g„')
The requirement (iii) is satisfied by the simple choice

III. MINIMAL RENORMALIZATION
BELOW T, AT FIXED d &4

w(l, u, d)=-,' (3.6)

rp ro((, uo, d), rp( ~, pu, d)=rp (3.1)

defined above T„see (4.2) of Ref 3. W.e use this function
to define g =g (ro, uo, A=~, d))0 for rp(rp, and
A'=0 implicitly by

rp=ro(g, up d) Wp(g up d) . (3.2)

The function 8'p is to be constructed such that
(ro, up, A= ~,d) is expandable, at fixed ro and dPdt

(Ref. 3), in integer powers of up. This property will then
ensure that the bare vertex functions, if considered as
funtions of g rather than of ro ro„ha—ve a power series
expansion in up as well, and their renormalized counter-
parts are (presumably) Borel resummable. More
specifically we require that (i) Wp has no poles for d &4
and is expandable in integer powers of up, (ii)

—
go ( t) —for —t ~0, and (iii) the ratio

(g/g ) —(gp/(p ) has the mean-field value 2 to lowest
order in up. The requireinent (ii) is met if Wp is multipli-
catively renormalized by Z„

Wp(g, p'Z„Z Aq 'u, d)=Z„(u, e)p w(p(, u, d)

(3.3}

with w(pg, u, d) being dimensionless and finite for d &4,
Similar as above T, [see (4.21 —(4.23) of Ref. 3]

Eqs (3.1)—(3.3) lead to

In this section we shall present the extension of our
theory to the case T &T, at fixed d &4. First the bare
vertex functions are considered as a function of
rp —rp, &0 and up in the limit A~ao (with the prescrip-
tions of dimensional regularization' }. These functions
are finite for d (4 (provided that a finite ordering field A'

is present in order to avoid Goldstone divergencies for
n & 2). Similar to above T„one encounters the problem
that these vertex functions are not expandable in integer
powers of up at fixed d &4. Therefore, an appropriate
quantity ( is needed which absorbs the nonanalytic up
dependence arising from rp„ in analogy to the correlation
length g(rp ro„up—, d) above T, . A common definition
of g both for n =1 and n & 2 is not straightforward be-
cause of the Goldstone modes for n ~2. We go back to
the function

Q (l, u, d)=1+2[1—Q(l, u, d)]=1 +O(u i) . (3.8)

In the remainder of this section we confine ourselves to
the examples of the order parameter, the specific heat,
and, in view of th application to He, to the superfluid
density. For these examples we set A=0. As a general
remark we note that in all amplitude functions of these
quantities the effects due to a finite cutoff will be neglect-
ed.

A. Order parameter

We start from the thermodynamic potential (negative
Helmholtz free energy divided by ktt T) '

I =I ((happ), ro rp, u, d}

which determines the order parameter (pp) )0 via the
equation of state (4~+0)

, I'((yp), rp —ro„uo, d) =0 .
Bg f'p /

After substitution of (3.2) or (3.4) into (3.9) we obtain

&Vo) =&so)(k- uo d)

(3.9)

A more convenient quantity is (qro) which can be writ-
ten as

(tpp) =g: +'f (up+, d)

=z &g)'

which is in accord also with the requirement (i). Equa-
tions (3.4)—(3.6) may be considered as an implicit
definition of g as a function of ro —rp„

(rp rp„up, d). This definition is applicable both
to the case n = 1 and n & 2. Like g above T„g does not
need an explicit renormalization. After substitution of
(3.2) or (3.4) into the bare vertex functions they become
expandable in integer powers of up+ /e, in analogy to
the case T & T, . Owing to the minimal subtraction
scheme, the corresponding renormalized quantities are
introduced with the same Z factors (pure pole terms) as
above T, . The relationship between the reduced temper-
ature t = r /a & 0 and g reads, according to (3.4)—(3.6),

dl'
2r =—g Q (l, u (I },d }expf g„(u(l')), (3.7)l'

with

l'—w(l, u (I ),d )]exp

(3.4)

=Z (:+'f„(pg, u, d) .

By integrating the RGE for (yo) one obtains

f (pf, u, d)=f (l, u (I ),d }expf dl'

(3.10)

(3.1 1)
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with l =(p( ) . The amplitude function f„(l,u, d) is

finite for d ~ 4, u )0, and can be calculated at fixed d
without using an e expansion. A one-loop calculation
yields (for general n)

ed previously. As expected on general grounds and
proven by Lawrie, F and f ' ' ' are also free of Gold-
stone singularities. From a calculation up to one-loop or-
der we have (for general n)

f„(l,u, d)= Aq(8u) '+O(u) (3.12) F (l, u, d)=(2u) ' —4+O(u) (3.22)

without an O(1) term which is canceled due to the con-
venient choice ' of the geometrical factor

I (3—d/2)
2d —2~d/2(d 2)

(3.13}

B. Speci6c heat belo~ T,

We expect that a Sorel resummation of the higher-order
terms of (3.12) will yield only a small correction to the
leading term Az/Su, owing to the choice (3.13), as sug-

gested by the Borel resummation results for various am-

plitude functions above T, . '

without a d dependence of the O(1) term, due to the
choice of the geometric factor (3.13) in the definition of u

(2.11).

C. Superfluid density

In superfluid He the complex order parameter (n =2)
is not directly measurable. Instead, we consider the
superfluid density p, . In defining p, we shall need the
transverse susceptibility

j'r(k)= Jd k e'""(d'or(x)qvoz(0))

The analysis of the vertex function below T,
=Z yr(k}, (3.23)

I ~—'o ~(g —,uo, d)= —
—,'C (3.14)

is parallel to that of I 0' ' in Sec. II. This function has
an expansion of the form

where d'or(x) denotes the transverse part of the fluctua-
tions of the two-component order parameter

I'0(x)=[(mo&+tpoL(x) tpoT(x)]

oo

I ' '(g, u, d)= — + g a' '(d)
QO 'E =p

uoP By integrating the RGE for yz (k) and from dimensional
arguments we obtain

C =C, —a21.9,"(g,u„d}, (3.16)

I ","(g,u„d) = I ","(p,-', u„d)

+p, 'f G (u (I'), u, d ), , (3.17)
dl'

1

(3.15)

with the same poles (at e=0) as those of I o
' ' above T,

Instead of (2.26)—(2.28), we obtain

i [Xr(k) ] ft(PC
Bk k=0

(3.24)

=fr(l, u(l ),d)exp I dl'

1

(3.25)

with a dimensionless function fz. From Refs. 29—31 we

adopt the definition of the superfluid density

where G (u', u, d) is given by (2.26) with Pf' ' ' replaced
by P f' ' '. Correspondingly, Eqs. (2.36)—(2.38), (2.49),
and (2.50) are replaced by formally identical equations
with F+, f' ' ', P, and I replaced by F, f' ' ', P, andI, respectively. P is defined by

p, =(m~/fi)'kii T(yo)', [j'r(k) ']
ak' k=0

which, according to (3.10), leads to

p. (m4/h) kttTg f~(l u(l —) d)fz(1 —u(l —) d)

(3.26)

—2(Bro/g: )„=P (uoP, d)

=Z„(u,e)P (pg, u, d),

and is obtained from (3.1)—(3.8) as

In one-loop order we find

fr( l, u, d) =}+Su /d +O(u 2) .

(3.27)

(3.28)

P (l, u, d)=1+2[1 P(l, u, d)] ———2(„(u); (3.19)

compare Sec. 4 of Ref. 3. The dimensionless function

F (pg, u, d)= —4A 'p'I ' '(g, u, p, d)

is defined in analogy to (2.31) and is identical with

F [u, r/p, ]=F (pg, u, d)

(3.20)

(3.21}

of Ref. 5, with r(g, u, d) determined by (3.7). Both
f' ' '(l, u, d) and F (l, u, d) are finite for d &4 and are
calculable at fixed d without an e expansion, as anticipat-

This holds also for general n (where p, corresponds to a
stiffness constant). The function G (u) —=G (1,u, 3) of Ref.
6 is related to f and fz according to

G(l, u, d)=f (l, u, d)fr(l, u, d)Aq '

=(Su) '+d '+O(u) . (3.30)

The results presented in Secs. II and III of this paper
are applicable to the entire range of validity of the g
model including the nonasymptotic region well away from
criticality (except for cutoff effects). For corresponding
analyses see, e.g. , Ref. 8 and references therein. In the
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following sections we shall confine ourselves to the vicini-
ty of the asymptotic critical region.

IV. ASYMPTOTIC AMPLITUDES
AND CORRECTION AMPLITUDES

A. Correlahon length above T

The asymptotic form of the correlation length above
T, reads

(=got "(1+a(t + . ) .

The renormalization-group description of the critical
behavior is usually focused on the asymptotic power laws
and power-law corrections. ' In this section we shall
give the expressions of the amplitudes appearing in these
power laws in our framework of the minimally renormal-
ized theory at fixed d &4. %e shall use the asymptotic
(l ~0) form of the effective coupling

From (2.39) we find the exponents

v=(2 —g„*) ', b, =arv

and the amplitudes

„u g„' —g„(u')
go=p, ' 'a " Q'exp f" "

", du'
u P„(u', e)

V

(4.7)

(4.8)

u(l)=u'+a„l +O(l ) .

From the integral representation

(4.1} a( = ——[g'„' —((i(lnQ)'*]a„(pro)

where we have used the notation

(4.9)

u (1) dg
I =exp (4.2)

Q
Q =M

(4.10)
of the flow equation (2.13) we obtain the Wegner ex-
ponent

(4.3)

and the correction amplitude

for f(u)=g„(u) or f(u)=Q(l, u, d). Similar abbrevia-
tions wi11 be used later.

B. Specific heat

The asymptotic form of the specific heat reads

a„=(u —u')exp f
W

du' . (4.4)
P„(u', e)

with

(4.11)

a„=u —u +O((u —u") ) . (4.5)

Note that no assumption has been made concerning the
magnitude of u —u* and that, in general, a„has a non-
linear u dependence according to (4.4). The conventional
linearization around the fixed point yields

(e —2g„*)a=-
(2 —g,*) (4.12)

For a(0, continuity of the finite specific heat at T, re-
quires B+=B . From (2.26)—(2.28), (2.34), (2.40), (2.49),
and (2.50) we obtain the representations (for a (0)

, f u' f' '(l, u', d)P(l, u', d) u' 4r "
P„(u', e) u P„(u",e)

(4.13)

„2(„(u")—e
=C~"—

—,'p, 'Ada F+( l, u, d)+4 f", exp f " „du" du'
u Pu(u, E) u u(u, E

(4.14)

1 dl'
(u }' ~)Xoexp f 4y(l')'B(u(l'))

Q I'
(4.15)

In the following we use the notation P+ f'+3 o' ——pf'3 o',

fo =—ko Q+ =Q* and
=2(b+)'(go ) "vP+f+

=(b )'(g-+) "Q*f*
(4.17)

(4.18)

f* =f' ' '(l, u*,d}, f* =f' '(l, u*,d) . (4 16) With

From (4.8) and from (A2) and (A3) of the Appendix we
find the leading amplitudes

b+ =Q+, b —=-,'Q',
V ~+

(4.19)
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In (4.18) we have used

Q+ =2vP~ (4.20) ps

2
m4 —1ka'rAr (4.32)

8A„'P+f+ = F—++48',
v

we obtain A+—in the form

(4.21)

as follows from (4.24) of Ref. 3. Substituting (2.38) at the
fixed point,

where gr has the asymptotic representation

g, =g.'lrl "(1-+a„ltl '+-
with a = —a ands,

Co=Co(G'A3} '

(4.33)

(4.34)
A*=(bg) (go ) Ad —,'(4v8'+aF~ ) . (4.22)

a,*=—a„(@go ) (a/(o)E ~

with

E+ =g'„' —a)(lng+ }'"

(4.23)

+(1—a/6) '[2b, ~g'+v '(ln(f'+' 'P+ ))'*] .

(4.24)

Equations (4.17)—(4.24) are valid for both a )0 and a (0.

C. Order parameter and super8uid density

The correction amplitudes turn out to be proportional to
a and can be expressed as (see the Appendix}

The expressions for the various amplitudes given in this
section depend on the nonuniversal parameters of the re-
normalized theory. Thus, these parameters can be deter-
mined from the measured amplitudes of a specific system.
Applications of this point will be given elsewhere.

V. UNIVERSAL AMPLITUDE RATIOS
IN THREE DIMENSIONS

In the previous field —theoretic approach at d =3 of
Ref. 17 only the case n =1 has been treated below T, .
Here we shall apply our d =3 field theory to also calcu-
late a few of the universal amplitude ratios of the univer-
sality classes n =2 and 3. A more complete presentation
including the case n = 1 will be given elsewhere.

(q, )=A ltl('(1+a ltl'+

we find from Sec. III A

(4.25)

For the asymptotic representation of the order parame-
ter

A. Leading amplitude ratios

We consider the ratios A +/A, go/go, and

T
( A

—)(/3(T
0

From (4.22) and (4.34) we obtain

(5.1)

2P=(d —2 —g*)/(2 —g;) =v(d —2+q),

—Z ( /2 —v/2( —
)
—P/v e ( /2

M (p p o g exp

(4.26)

g + b+ 4vB'+aF+
b 4vB *+aF* (5.2)

and

aM =a„(pro ) [Pcs '(g„'*—co(lng )'*)

—
—,((g'*co ' —(lnf }")] .

(4.28)

see also Eq. (4.33) of Ref. 5, and

b+
CoCo= 4

R =(2mb) (4v8'. +aF' )' G'

(5.3)

(5.4)

The asymptotic result for the superfluid density reads (see
Sec. III C)

From the Borel resummation in three dimensions above

T, we have'

P, ——A, lrf"-""(I+a, lrl'+.

with

(4.29)
F+ = —n 2n (n +2—)u *(1+b~u ~ ),
P' =1—2(n +2)u *(1+bpu '),

(5.5}

(5.6)

and

A )s

2
m4

k T (g ) AdG' (4.30)

where

bF =7.59,

bF =10.3,

bp=0. 606 for n =2,
bp=0. 682 for n =3 .

(5.7)

(5.8)

(4.31}

ap =a„(@go ) [(d —2)vcr '(g' —co(lng )"}

+(lnG)" ] .

For B*we take5

+O(+ 42)
2

(5.9)

In three dimensions the relation between p, and an ap-
propriately defined transverse correlation length '

gr is
where the correction is expected to be of O(~). Accord
ing to (3.20) and (3.30) we have (for general n }
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F" =(2u'} ' —4+O(u*),
G*=(8u*) '+ —', +O(u'),

(5.10)

(5.11)
a,+/a, = b+

b
[1 E— (v —a/co)

where we expect that higher-order corrections, after
Borel resummation, are comparable in magnitude with
the (small) corrections found above T, ." We approxi-
mate Q* [see (3.8)] and Q'* by

X(ln(P f" '/P+ f'+' '))"
E—* co(ln( Q+ /Q ) )'*]

(5.19)

Q* =1+0(u* ), Q'* =0+0(u*) (5.12)

which is consistent with the approximations (5.10), and
(5.11). The fixed-point values are

u'=0. 0362 for n =2, u'=0. 0328 for n =3 . (5.13)

a, /a = E"—[—g'„'+co(lnQ )'"—(co/v)(lnG)'*]
S

(5.20)

If we substitute the critical exponents '

a= —0.013, v=0. 671 for n =2

and

a= —0. 13, v=0. 710 for n =3

(5.14)

(5.15)

In evaluating these quantities we use the following rela-
tions:

(lnQ )"=Q" /Q+

=[(lnP+ )'*+v)'„*](1+6,) ', (lnQ )' =0

and collect the results of (5.5)—(5.15), we finally obtain the
values for A + /A, (0/go, and R

&
listed in Table I.

We note that the deviation of A+/A from 1 is of
0 (a) and is therefore sensitive to the uncertainties relat-
ed to estimates of a. Within our theory it is natural to
define

(In(f+' 'P~ ))'"=4',
(p f(3,0) /p f (3,0) ))~o

with

4+ = [(a—h)F+ —2vg'„*F+ +4B'"][aF++4vB*]

(5.21)

(5.22)

(5.23)

P=a '(1 (b+—/b ) A+/A ) (5.16) (5.24)

F4(l F Q

4vB'+aF'
(5.17)

P =a '(1 —A+/A )=P(1+O(a)} . (5.18)

which is the asymptotic value of Eq. (4.26} of Ref. 5.
This quantity is insensitive to the value of a and is closely
related to

The various fixed-point values can be obtained from our
Borel resummation results ' and from (3.22) and (3.30).

If we take the critical exponents (5.14) and (5.15) and
co=0.8, 0.79 for n =2, 3, respectively, we obtain the am-
plitude ratio a,+/a, =0.79, 0.84. We do not consider
these values as quantitatively reliable because of the un-
certainty related to the one-loop result for F'*. In two-
loop order we have found

F (l, u, 3)=(2u) ' —4+8(10—n)u+O(u ), (5.25)

see, e.g. , Ref. 36. From the values given above we obtain
P=4.2 for n =2 and P =4.4 for n =3, in good agree-
ment with the calculation of P by Chase and Kaufman
and by Bervillier. The slight difference with our previ-
ously quoted ' value of A+/A (n =2) is mainly due
to a slightly different value of a (= —0.01) employed
previously.

B. Correction amplitude ratios

We consider the universal ratios of the correction am-
plitudes a, , a, , and a in three dimensions. From

(4.9), (4.23), (4.24), and (4.31) we obtain

which yields considerably larger values of F". Using
these values we obtain a,+/a, as given in Table I for
n =2, 3. The presently available experimental estimates
of a,+/a, for n =2 are not inconsistent with our result
but they also have an uncertainty of a factor of about 2.
We note that our expression (5.19) for a,+/a, does not
depend sensitively on the value of a, therefore the a vari-
ation of D, /D,'—:a,+/a, in Table IV of Ref. 22 is not
reproduced by (5.19).

By contrast, our result (5.20) shows the amplitude ratio
a, /a to be proportional to a. This confirms a conjec-

S

ture by Singsaas and Ahlers which was based on an ar-
gument related to the a~0 limit of Eq. (4.11). This was

TABLE I. Universal ratios of leading and correction amplitudes calculated from the d =3 field

theory within the minimal-subtraction scheme.

n =2
n =3

1.05
1.58

P

4.2
4.4

0.50
0.56

0.78
0.73

a,+ /a,

1.6
1.4

a, /a
S

—0.045
—0.69
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not apparent from previous e expansion results which

gave

a, /a =
—,'(1—

—,'e)+O(e ) for n =2 (5.26)

and

a, /a =
—,'(1—,",', e)+—O(e ) for n =3, (5.27)

(a, /a )'"~'=4a (0 . (5.28)

thus —,
' and —~, respectively, in three dimensions. The e

expansion result disagrees qualitatively with the experi-
mental result for n =2

a,+/a = —0.072 for n =2 (5.35)

in good agreement with the experimental value —0.070
obtained from Table IV of Ref. 22 (for a slightly different
a = —0.016).

loop expression (5.25).
Finally, as a test of the results given above, we consider

the universal ratio a, /a which is also proportional to
S

a. It has the advantage of being independent of E
which is the main source of the theoretical inaccuracy.
For a= —0.013, v=0. 671, and co=0.8 we find, from

(4.23) and (4.31), the theoretical value

Part of the failure of (5.26) and (5.27) can be traced back
to the e expansion result

a= —,', e+O(e ) for n =2,
a= —,', e+O(e ) for n =3,

(5.29)

(5.30)

which yields the wrong sign of a at a=1. Although the
O(e } corrections to (5.29) and (5.30) would yield a
significant improvement, this O(e ) correction term is
not adequately taken into account in the strict e expan-
sion results (5.26) and (5.27). Our d =3 theory avoids the
e expansion and yields, as a general result, the correct
structure of the amplitude ratios (5.2)—(5.4) and (5.19) and
(5.20) in terms of a, v, co, and b, . This implies a negative

a, /a for n 2 and eliminates a qualitative discrepancy
S

between the previous theoretical estimate ' and experi-
mental observation of a, /a

S

Because of the smallness and the uncertainty of the
value of a for n =2, d =3 the result (5.20) suggests to
write (5.20) as

APPENDIX

R~(l):—f+' '(l, u (l),d )P (+l, u (l),d ) .

(A2)

(A3)

Equations (A2) and (A3) follow from (2.26)—(2.29) and
(4.13). We shall calculate (Al) in the form

In this appendix we sketch the derivation of the ex-
pressions (4.23) and (4.24) for the correction amplitudes
of the specific heat. For simplicity we assume a (0 in the
following but the results also remain valid for a&0.
From the asymptotic representation (4.11) we have

0
8 ln(C —8 )

(A 1)

We shall determine a,* by comparing (Al) with the loga-
rithmic derivative of our theoretical expression

dl" dl'
C —8+= 2a p—'f R+(1') exp f (2g„e)—

a, /a =aR,
S

(5.31)

for

R,'" ' =4.0,4.3,4.0, (5.32)

and to compare the experimental and theoretical results
for the universal quantity R, . Our theory predicts R,
to be rather insensitive to the precise value of a. This
prediction agrees with the experimental values of
R, =D,'/(aD ) obt—ained from Table IV of Ref. 22 where
three difFerent estimates of a were used:

Bin(C —8+} Blnl+ Bin(C —8+)
8 }nits Blniti Blnl

where, according to (2.39) and (3.7),

8 lnl~ =[2—g„(u )+P„(u,e}B lnQ+(l, u, d)]

with u —= u (1+ ). From (A2) we obtain

8 ln(C 8+)—
=R+(1+ )/I+(lg ),

8 lnl+

(A4)

(A6)

a= —0.007, —0.016, —0.025, (5.33)

respectively, for He (n =2, d =3). From (5.20) we ob-
tain for these values of a [and corresponding values of
v = (2—a }/3]

I+(1)=f R+(1') exp f (2g„—e) „,. (A7)
0 l

We expand I+ (1) around 1 =0,

R '""'=3 4 3 4 3 5 (5.34)
I+ (1)=I+ +I'+' [u (1)—u ' ]+ . (A8)

in good agreement with the experimental result (5.32). In
(5.34) we have used the two-loop expression for F'*. If
the one-loop result for F'* had been used R,'""'would be
by a factor of 2 larger, thus, the agreement between (5.34)
and (5.32) is somewhat fortuitous. In Table I the ratio
a, /a is given for the choice of a and v according to

S

(5.14) and (5.15} and with E" calculated from the two-

with

I+ =—I+(0),
I+ =—[BI+(I)/Bu (1)]i

and

u(l+) —u*=a„(@go ) "gati +. . .

(A9)

(A10)

(A 1 1)
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From

1BI (1)/dl =R (I)—[2(„(u(I))—e]I (I) (A12)
I+ =(R+* 2g—'„*I+ )(co—a/v) (A14)

we obtain

I~+ = —(a/v)R+ (A13)
Together with a corresponding expansion of (A5) these
results lead to (4.23) and (4.24).
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