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We show that the states of an anyon system on a torus are not completely determined by the posi-
tions of the anyons. There are q states for each fixed anyon configuration if the statistics of the
anyons is given by L9=pm/q. We explicitly construct the lattice Hamiltonian for the anyon system
on the torus. The Hamiltonian is sho~n, both analytically and numerically, to respect the transla-
tion symmetries and the rotation symmetries. The flux of the anyon system is found to be quantized
in units of 2m. /q, without any shift. We also write down the effective Hamiltonian for the holons
{with 8= m. /2) in the chiral spin state.

I. INTRODUCTION

Recent studies on high-T, superconductors' arouse
considerable interest on anyon systems. It has been
shown that the charged quasiparticles in some time-
reversal symmetry and parity-breaking spin-liquid states
may have fractional statistics, and a charged anyon sys-
tem is probably a superconductor at low temperatures.

Because of the topological character of anyons, it is
necessary to give special attention to the boundary condi-
tions. Recent numerical work has focused on systems
with geometries such as a cylinder and a sphere. ' In
this paper we will consider the case of toroidal boundary
conditions. In the course of our discussion an interesting
topological structure, due to the nontrivial connectivity
of the torus, will be made apparent.

There is a naive argument indicating that one can only
put nq+ 1 anyons on a torus if the anyons have a statis-
tics H=mp/q. The argument goes as follows. Let us put
N anyons on a torus. Consider the problem of the Nth
anyon moving in the background of other N —1 anyons.
Because each anyon behaves like a 28 flux tube to anoth-
er anyon, the Nth anyon sees 28(N 1) flux. Due—to the
Dirac quantization condition, the wave function of the
Nth anyon can be consistently defined on the torus only
when the flux is quantized, i.e.,

28(N —1)=2~Xinteger .

Equation (1.1) implies that N 1 must be a mu—ltiple of q.
In particular, the above argument suggests that one can
only consistently put an odd number of semions
(0=m. /2) on a torus.

On the other hand, we also know that a doped chiral
spin state on a torus with an even number of sites only al-
lows an even number of holons (assuming there is no spi-
non). Since the holons are semions, we have a consistent
microscopic theory that contains an even number of
semions on a torus. This example suggests that the above
argument is incorrect.

In this paper, we resolve this puzzle by showing a
correct way to put anyons on a torus. We explicitly con-
struct a Hamiltonian describing an anyon system on the
torus. Our Hamiltonian respects the translation symme-

try and 180' rotation symmetry (or 90' rotation symmetry
if the lattice is a square). The consistency of the Hamil-
tonian is checked numerically. We also derive the
effective Hamiltonian for the holons in the chiral spin
state.

Numerical calculations on a cylinder have suggested
that there is an asymmetry in the dependence of the
ground-state energy on the magnetic flux going through
the cylinder. In this paper we find that on a torus there is
no such asymmetry. Thus we conclude that the possible
asymmetry may result from a particular choice of the
boundary conditions and the definition of the magnetic
flux in the anyon Hamiltonian. Recent numerical calcu-
lations on the sphere did not yield any asymmetry either.

The paper is organized as follows. In Sec. II we discuss
the structure of the Hilbert space of anyons on a torus.
We argue that there must be (at least) q states for each
fixed anyon configuration if the statistics of the anyons is
given by 8= my /q. In Sec. III we study an explicit anyon
model on a torus. We show explicitly that each anyon
configuration contains q states. In Sec. IV we construct
the explicit anyon hopping Hamiltonian on the torus and
demonstrate the consistency of the Hamiltonian. In Sec.
V the anyon hopping Hamiltonian is shown explicitly to
respect translation and rotation symmetry. The opera-
tors generating the translation and 90' rotation are con-
structed. In Sec. VI we numerically test the anyon hop-
ping Hamiltonian to further demonstrate the consistency
of the Hamiltonian. In Sec. VII we discuss some issues
associated with anyons on a torus with nonzero magnetic
field and write down the effective Hamiltonian for the
holons (or spinons) in the chiral spin state. In Sec. VIII
we discuss the flux quantization of the anyon system on a
torus concluding the paper.

II. HILBERT SPACE OF ANYONS ON A TORUS

The crucial step to resolve the above-described puzzle
is to realize that the ground state of a Hamiltonian on a
torus must be degenerate if the Hamiltonian supports
anyonic excitations. ' In general we may assume that
the Hamiltonian has a finite energy gap. The energy gap
for the anyon quasiparticle is 5 and for the anyon
quasihole is b, &. (6 and Ah are measured relative to a
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"zero" chemical potential. ) When the chemical potential
p satisfies —Az &p & 6 the system contains no anyons.
Even in this case we will show that the ground states
must be (at least) q-fold degenerate (assuming H=np/q).
When ju) b, (or p& —Az) there is a finite density of
quasiparticles (or quasiholes). In this case we can show
that there are q states for each fixed anyon configuration.

To understand these results let us first assume the
anyon density to be zero and consider the following tun-
neling process. A pair of an anyon and an antianyon is
created at a certain time. The anyon propagates in x
direction all the way around the torus and then annihi-
lates with the antianyon (Fig. 1). Such a tunneling pro-
cess induces a transition between ground states. The
transition can be represented by a unitary operator T, :

FIG. l. A tunneling process of a pair of anyon and antianyon
hopping all the way around the torus.

/eo) =Til+0~ ~ (2.1)

If we let the antianyon go all the way around the torus in
the x direction we will obtain a different transition opera-
tor T, . However, T, must be equal to T&

' because the
two tunneling processes must cancel each other. Similar-
ly, we can obtain another transition operator T2 by let-
ting the anyon propagate in the y direction.

Now let us consider a sequence for four tunneling pro-
cesses described by T, , T2, T, ', and T2

' (Fig. 2). No-
tice that the four tunneling paths can be deformed into
two linked loops (Fig. 3) that give rise to a pure phase
e ' as implied by the fractional statistics of the anyons.
Therefore we have

(2 2)

A

FIG. 2. The tunneling paths of the four tunneling processes
Tl, T2, T~ ', and T, ' are presented in space-time.

The ground states form a representation of the algebra
(2.2). Because the algebra (2.2) has only one q-
dirnensional irreducible representation, the ground states
must be (at least) q-fold degenerate. Haldane has noticed
that a similar degeneracy occurs in the theory of the frac-
tional quantum Hall effect on a torus. An analogous con-
struction is also found in topological field theory. ' '"

Now let us consider X anyons on a torus. The above
argument also implies that the state of the system is not
uniquely determined by the positions of the anyons. For
each position configuration I (x;,y; ) I there must be q
different states that can be labeled by a:

~I(x, ,y, )I;a), a=1, . . . , q, (2.3)

where x; and y; are integers describing the position of the
ith anyon. To understand this result let us notice that, as
illustrated in Fig. 4, moving an anyon all the way around
the torus is equivalent to the anyon-antianyon tunneling
discussed above. Therefore moving an anyon around the
torus in the x (y) direction produces the transition opera-
tors T, (T2). The operator Ti and T2 act on the states
labeled by a with fixed anyon positions. T, and T2 satis-
fy the algebra (2.2). Therefore the states for each fixed
anyon configuration I (x;,y, ) ) must form a representation
of (2.2) and span a q-dimensional Hilbert space.

Strictly speaking, the above arguments are based on
the following assumptions. (i) If the anyon tunneling
paths are restricted to a finite region, the ground states
cannot be changed and the induced transition operator T

I

I

I
I

I

I

I
I

I

I

A

FIG. 3. The tunneling paths in Fig. 2 can be deformed into
two linked loops.

FIG. 4. Moving an anyon all the way around the torus is
equivalent to the anyon-antianyon tunneling process described
in Fig. 1.
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is the identity operator multiplied by a phase factor. We
call such tunneling processes local fluctuations. The
ground states cannot be changed by local fluctuations.
The phase factor is determined by the fractional statistics
in the usual way. (ii) Two anyon tunneling paths induce
the same transition operator (with the same phase factor)
if the two tunneling paths can be continuously deformed
into each other. Those assumptions are automatically
satisfied by anyon systems.

From the above discussion we see that the Hilbert
space of an anyon system on a torus is not given by the
positions of the anyons. The Hilbert space is spanned by
the states given in Eq. (2.3). The lattice hopping Hamil-
tonian should act on those states. Notice that the states
in Eq. (2.3) are defined to be invariant under permuta-
tions between anyons, e.g. ,

l[(&~ y~) (x2 y2)j;a&=l[(x2 y2) (x&,y&)j;a), (24)

and two anyons can never occupy the same site:
(x;,y; )A(xj,y~ ).

The results in this section can be summarized as fol-
lows. In crder for a Hamiltonian to describe the anyon
system, the Hamiltonian must satisfy the following condi-
tions.

(a) An anyon hopping around a plaquette induces no
phases. This is equivalent to saying that there is no exter-
nal magnetic field.

(b) An anyon going around another anyon induces a
phase e +—' . The plus-minus sign depends on the orienta-
tion of the loop.

(c) Interchanging two anyons induces a phase e +—' .
(d) The anyon Hamiltonian acts on the Hilbert space

given by (2.4). Moving an anyon around the torus in the
x and y directions induces operators T, and T2 that must
satisfy the algebra (2.2).

(b) and (c) are local requirements due to the fractional
statistics. Actually (c) implies (b). (d) is a global require-
ment for the torus geometry. In Sec. IV we will see that
the conditions (a)—(d) determine the anyon hopping
Hamiltonian completely. In the next section we will

study an anyon model on a torus and construct explicitly
the Hilbert space of the anyon system on it.

III. ANYONS ON A TORUS
AND THE CHERN-SIMONS GAUGE THEORY

In Sec. II we discussed some crucial general properties
of the Hilbert space of a system of anyons. In particular
we argued that the location of the anyons themselves is
not suScient to label the states, since, on general
grounds, one expects the states to exhibit a degeneracy
determined entirely by the topology of space. In this sec-
tion we make these ideas more concrete by considering a
model that captures the general features of the problem
at hand. The model is simply a system of "free" anyons
on a square lattice with the topology of a torus. These
anyons are free insofar as the Hamiltonian will only con-
tain a nearest-neighbor hopping term. However, these
anyons will be assumed to have hard cores. This last re-
quirexnent is essential to the whole construction. As a
matter of fact, only in the presence of hard cores it is pos-

The second quantized Hamiltonian is simply given by

H= g & (x)8(y)+H. c. , (3.3)
(x,y)

where (x,y ) are nearest-neighboring sites on the square
lattice. Consider now a set of fermion creation and an-
nihilation operators c (x) and c(x) on the same square
lattice. Let A (x) be a set of boson operators defined on

the links of the lattice I (x,x+ ej ) j (with j= 1,2)

representing statistical gauge fields that satisfy the equal-
time commutation relations

[A (x), Ak(y)]=i28ejk5„„, (3.4)

where E'jk is the Levi-Civita tensor. The dynamics of the
system is governed by the Hamiltonian

Hf = pc (x)exp[iA (x)]c(x+e )+H. c. (3.5)

and the physical states [ ~g) j are required to satisfy a lo-

cal constraint between the fermion density p(x) and the
local magnetic flux 8 (x) of the statistical gauge fields

p(x) — 8(x) if) =0 .
20

(3.6)

This constraint implies that a fluxoid of strength 20 is at-
tached to each particle at the level of the lattice scale.
The local statistical flux 8(x) is given by the usual formu-
la

8(x)=b, , A2(x) —b,2A, (x), (3.7)

where b is the finite difference operator on direction j.
The flux thus defined effectively exists only on the dual
lattice. This formulation has the additional advantage
that the particles are not allowed to get "inside" the flux.
The Hamiltonian of Eq. (3.6), together with the con-

sible to meaningfully define fractional statistics in two di-
mensions. In other words, we will demand that the world
lines of the anyons should never intersect with each oth-
er. This is also a natural requirement given that the
anyon states should be representations of the braid group.
No braids are possible if the world lines are allowed to in-
tersect. Anyons on a lattice have been discussed recently
by several groups.

In a recent paper, one of us showed that the problem
of a gas of N, anyons with hard cores on a square lattice
is equivalent to a gas of Nf =N, fermions, on the square
lattice, coupled to a Chem-Simons gauge field defined on
the links of that lattice. To be more precise, let o (x) and
&(x) be a set of anyon creation and annihilation operators
defined on the sites [x j of the square lattice, which satis-

fy the generalized equal-time commutation relations

8 (x)a(y)=5„„e'—it(y)& (x) . (3.l)

The angle 0 indicates that we are dealing with fractional
statistics. The choice of sign is such that for 8=0 we
have fermions. The hard-core condition implies that,
when acting on physical states, these operators obey

8 (x)8 (x) =&(x)&(x)=0 .
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straint Eq. (3.5) and the commutation relations Eq. (3.4},
follow from canonical quantization, in the gauge Ao=o,
of the Lagrangian density X,

L =c t(x )(iBO+ Ao+p)c(x) —%(c,c, A) —/cs . (3.8)

Here % is the Hamiltonian per site, p the chemical po-
tential, x =(x, t) and Xcs is the Chem-Simons Lagrang-
ian density, which, in terms of the vector potentia1 A„
and the field strength tensor F„suitably defined on a lat-
tice, has the form

(3.9)

The equivalence between the anyon Hamiltonian, Eq.
(3.3), and the Chem-Simons gauge theory coupled to fer-
mions, Eq. (3.5}and Eq. (3.6), is established by solving the
constraint of Eq. (3.6}, which relates the local fiux to the
1ocal density. This can be accomplished by fixing a
gauge, such as the Coulomb gauge V A(x) =0, as was
done in Ref. 6. The statistical vector potential A(x),
which is the solution of the constraint in this gauge, is an
explicit function only of the local particle density. Thus
it may appear that there are no gauge degrees of freedom
left. This, however, is not the case in general. Whether
or not there are any gauge degrees of freedom left de-
pends on the boundary conditions, i.e., on the topology of
the configurations of gauge fields. We are now going to
solve the constraint equation Eq. (3.5) on lattice with the
topology of a torus. Let LI and L2 be the linear dimen-
sions of the lattice along directions 1 and 2, respectively.

It is impossible to eliminate all gauge degrees of free-
dom by solving Eq. (3.5) no matter what gauge is chosen
unless large gauge transformations, which wrap around
the torus along directions 1 or 2, are included. Consider
the circulation of the statistical vector potential on a non-
contractible closed loop wrapping around the torus along
one of its large circles C (j=1,2). Any local time-
independent gauge transformation shifts the spacial com-
ponents of the vector potential AA by the gradient of a
smooth function A of the coordinates Ak(x, t)
~A„(x,t)+hkA(x). Thus, the circulation I, with

r~ = f @ dx A(x), is unchanged, since A is a smooth and
J

single-valued function of x. Notice that this is the case
even in the absence of fermions. Thus, the circulations
I ., or nonintegrable phases, are global degrees of freedom
of the gauge field. A consistent treatment of this problem
must take into account their dynamics.

There is a simple way to take care of both global and
loca1 gauge degrees of freedom. The local gauge degrees
of freedom are nonlocal functions of the local particle
density p(x, t) given by the solution of the local con-
straint equation in some particular gauge. The global de-
grees of freedom are the nonintegrable phases I . To
make any further progress it is necessary to fix the gauge.
At the level of the functional integral, we first observe
that the component Ao of the statistical gauge field can
always be integrated out giving rise to the loca1 con-
straint Eq. (3.4) at all times. We next write the spatial
components of the statistical vector potential A. in the
form

AJ(x)=A (x)+A (x), (3.10)

where A - is a particular solution of the constraint equa-
tion, and A. generate the nonintegrable phases and are
solutions to the homogeneous constraint equation (i.e.,
without fermions). We can completely determine all of
these fields by choosing a particular gauge. The fields A .

can be represented in terms of "Dirac strings, " a path y
beginning at an arbitrary (but fixed) plaquette and ending
at the plaquette "southwest" of the anyon. A; on a link
is given by 28 times the number of times that the Dirac
strings cross that link. A; are given by

(3.11)

(3.12)

These expressions can now be substituted back into the
Lagrangian Eqs. (3.8}and (3.9). The formalism of canoni-
cal quantization yields the Hamiltonian of Eq. (3.5) with
the operators A given by Eq. (3.10). Notice that these
operators contain information about both local and glo-
bal degrees of freedom. The contribution of the global
degrees of freedom was chosen to be nonzero only on the
boundaries. By carrying out the canonical formalism to
completion, it is easy to check that the nonintegrable
phases obey the commutation relations

[r,,r, ]=i28. (3.13)

It is easy now to check that the operators exp(iI, ) satisfy
the algebra

exp(il, )exp(iI 2)=e ' exp(iI 2)exp(il, ) . (3.14)

Thus, the operators exp(iI', ) can be identified with the
operators T, of Sec. II. These operators will given an ex-
tra phase whenever the strings attached to two anyons
cross as the anyons move around each other. Further-
more, since I

&
and I 2 do not commute, the eigenstates of

the Hamiltonian are only functions of either variable but
not of both at the same time. Also, both I, and I 2 enter
only through the exponential operators T . Thos we can
always choose, say, I

&
to be an angle with a range

[0,2m]. Hence (1/28)I 2 is an angular-momentum-like
operator whose spectrum is the set of integers. In all
cases of physical interest, the statistical angle t9 can only
take the restricted set of values 8=m(p/q). The algebra
of the operators T then implies that only distinct quan-
tum numbers are the integers modulo q. Thus, the Hil-
bert space is decomposed into classes each labeled by a
quantum number a with a=1, . . . , q as anticipated in
Sec. II. In particular, the ground states form the q-
dimensional irreducible representation of algebra (3.14).

ir, iI 2This happens because both e ' and e ' commute with
the Hamiltonian. One of us has stressed in a recent pa-
per that such topological degeneracies occur quite gen-
erally in spin-liquid states and other topologically or-
dered states.

In this section we have used the Chem-Simons gauge
theory coupled to fermions to yield a second quantized
Hamiltonian for anyons coupled to global degrees of free-
dom. The eigenstates of this Hamiltonian are thus given



6114 X. G. WEN, E. DAGOTTO, AND E. FRADKIN 42

in terms of both the coordinates of the anyons and an ex-
tra label that represents the degeneracy required by the
global degrees of freedom I . In the next section we will

discuss a first quantized version of this problem in the
space of states with a fixed total number of particles equal
to N.

IV. AN EXPLICIT ANYON HOPPING
HAMILTONIAN ON A TORUS

In the following we will construct an explicit anyon
hopping Hamiltonian based on the conditions (a)—(d).
Let us first discuss how to construct a Hamiltonian satis-
fying (a), (b), and (c). We attach a string to each anyon in
the way described in Fig. 5. The phases of the anyon
hopping amplitude are given according to the following
rules. When an anyon hops across a string from left to
right (from right to left), the amplitude obtains a phase
e' (e ' ). When the string of the hopping anyon crosses
an anyon from left to right (from right to left), the hop-
ping amplitude obtains a phase e ' (e' ). We will call
the strength of such a string e' . The hopping amplitude
has zero phases otherwise. According to these rules one
can easily check that an anyon hopping around a loop
can induce a nonzero phase only when the loop encloses
some other anyons. If the loop encloses only one anyon,
the induced phase is e'; one e' comes from anyon 1

crossing string 2 and another e' comes from string 1

crossing anyon 2 (Fig. 6). One can also easily check that
interchanging two anyons induces a phase e' according
to these rules. Thus conditions (a)—(c) are satisfied.

In order to write down the anyon hopping Harniltoni-
an on a torus, let us first regard the torus as a continuous
space. Condition (d) implies that the anyons must satisfy
a non-Abelian boundary condition that can be imposed as
follows. First we choose a loop in the x direction and a
loop in the y direction (Fig. 7) that we will call the
"boundary. " As an anyon hops across the boundary in
the x direction (y direction), it induces a matrix T2 (T~ )

acting on the states (2.3). T~ and Tz are q Xq matrices
that act on the a indices [see (2.3)]. T, and T2 also satis-
fy the algebra (2.2). On a compactified space, like the
torus the strings of the anyons, should end somewhere.
A consistent assignment of the strings attached to the
anyons is given in Fig. 8. The solid lines represent the
strings of strength e' . The bold solid lines represent
strings of double strength, i.e., e ' . To check that such
an assignment is really consistent, let us first consider
anyon 1 hopping around the turning point 3 of the string
of anyon 2 (Fig. 9). As anyon l is hopping around the
point 3, it crosses the e ' string once and the e' string
once inducing a phase e ' e ' . The string of anyon 1

also crossed anyon 2 once (Fig. 9), which induces a phase
e ' . Notice that anyon 1 crosses the non-Abelian cut
twice inducing two matrices, T2 and T2 '. The total
phase of anyon 1 hopping around A is given by

2i8 —i8 —i8y
2 2

Therefore there is no singularity at point A, and 3 is
equivalent to any other point on the torus. The situation
becomes more clear in the lattice version described

FIG. 5. Each anyon is attached to a string in the —
y direc-

tion.

FIG. 6. A phase factor e' is induced as anyon 1 goes
around anyon 2. One e' comes from anyon 1 crossing string 2;
another e' comes from string 1 crossing anyon 2.

FIG. 7. An anyon hopping across the "boundary" in the x
direction (y direction) induces a non-Abelian phase (matrix) T2

(Tl ).

FIG. 8. The strings on the torus. The solid lines represent
the strings of strength e' . The heavy solid lines represent
strings of double strength, i.e., e ' .
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&A

FIG. 9. An anyon hopping around the point A induces no
phase.

FIG. 10. An anyon hopping around the point 0 also induces

no phase if the total number of the anyons is a multiple of q.

below, where A is at the center of a plaquette providing a
natural regularization to the problem.

Now let us consider an anyon hopping around point 0
(Fig. 10) where the two "boundaries" met. The anyon
crosses the e' strings of the rest of the N —1 anyons (as-
suming there are N anyons on the torus), which induces a
phase e 'N " . The anyon also crossed the non-
Abelian cuts in the x direction and y direction twice.
This induces a phase T2 'T, 'T2T~ ~ The total phase of
the anyon hopping around point 0 is given by

this large solenoid of flux 28N cuts again the surface of
the torus leaving the system. For this final cut to be
unobservable it must be satisfied that

28N =2mn

(where n is an integer) or equivalently N = nq if 8=m/q is
used.

Guided by the picture we obtained on the continuous
torus, we find that the lattice Hamiltonian satisfying
(a)—(d) is given by (on a lattice of size L XL)

e 2 1 2 l=e—i(N —1)2BT—
& T

—
& T T —i2NB

H = t g—H(x,y;r),
(x,y), s

(4.1)

Therefore there is no singularity at point 0 if and only if
e ' B=e ' ~'N '=1, i.e., X is a multiple of q. Thus
we have shown that one can consistently put N anyons on
a continuous torus if N is a multiple of q. Another simple
way to arrive to this condition is as follows. We know
that an anyon carries a flux 28. Then, X anyons on a
torus are equivalent to N solenoids of flux 28 each com-

ing from infinity and penetrating into the torus. Imagine
now that the solenoids merge inside the torus and that

where H(x, y;r) moves an anyon from (x,y) to
(x+r„,y+r~) and r(+1,0), (0,+1) are vectors con-
necting nearest-neighbor sites of the lattice. H(x, y;r)
formally satisfies the following.

(i) H(x, y;r)~[(x, ,y;)];a)=0, if ( xy)W( ;x, y)Vi or if
(x+r„,y+r )=(x, ,y, ), for somei

(ii) If (x,y ) = (x;,y; ),

H(x;,y;;r)~I(x;,y;)I;a) =h &(x, ,y;;[(x„y;)I;r)~{(x&,y&), . . . , (x; +r„y, +r ), . . . , (xz,yz)I;P), (4.2)

where h &
is given by

(1) r=x,

h p=5 ttf [1—V(x, L)] +P'( ,x—L)T, pf„, — (4.3a)

f, =exp +i8 g P'(x, —x, +1)8(y, —y,
—

—,') exp i8 g P'(x—; —x;)8(y, —y; —
—,')

l Alp lWlp

(4.3b)

(2) r= —x,

h p=6 gf [1—P'(x, —1)]+8'(x; —1)T, iaaf
(4.4a)

f „=exp i8 g P'(x—, —x;)8(y, —y, —
—,') exp i8 g 8'(x; —x; —1)8(y; —y; —

—,')
l Alp l Alp

(4.4b)
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(3) 5.=y,

h ii
=5 ~[1—V(y; L—) ] +V(y, L—) T2 &g

g =exp i8 g [8(x, —x, + —,')+8(x, —x,. ——,')]
lWlo

(4.5a)

(4.5b)

L

4L
F

4L

L

(4.6a)

g y
=Ry (4.6b)

In Eqs. (4.3)—(4.6},T, and T2 are q Xq matrices satis-
fying the algebra (2.2), 8(x) satisfies

6 5 4

;)i:X;
2 3

0 9;
5

1

I

I

7 8

1, x)0
8(x)= '0 (4.7) FIG. 11. Anyons and their strings on a periodic lattice.

and 9'(x) is a periodic 5 function

1, x =OmodL
0, xWOm doL

' (4.8)

Let us explain in simple words the Hamiltonian defined
in Eqs. (4. 1)—(4.6).

(1) When (x;,y; ) lies in the interior of the lattice, the
0 0

terms containing T, and T2 in (4.3a) —(4.6a) can be ig-
nored, and h &

is diagonal. The hopping Hamiltonian
reduces to the expression we would have used in an open
manifold. The rules discussed at the beginning of this
section are satisfied through the phase factor f+„. The
first exponentials in (4.3b) and (4.4b) come from the ioth
anyon (which is the hopping anyon) crossing the strings
of other anyons. The second exponentials in (4.3b) and
(4.4b) come from the string of the ioth anyon crossing
other anyons. On the lattice the strings are attached to
the anyons in the way described in Fig. 11.

(2) The hopping of an anyon around the torus along a
given path is described by the operator

1

T, = g h((x, ,y, ), I(x„y, )];x}
x =L

Io

(4.9)

if the hopping is in the x direction. For the hopping in
the y direction we have

1

T2= g h((x;,y; ), [(x;,y;)I;y)
y- =L

0

—e T2 (4.10)

g, and y2 in Eqs. (4.9) and (4. 10) are two phases that may
depend on the hopping path. When restricted to the q-
dimensional subspace of a fixed anyon position, T, and
T2 given by (4.9) and (4.10) satisfies the algebra (2.2).
Therefore (d) is satisfied by the Hamiltonian (4.1).

(3) It is very easy to check that our Hamiltonian
satisfies the condition (a) except for a row of plaquettes

lying between the row 1 and the row L. In what follows
we will demonstrate that (a} is satisfied even for those pla-
quettes. Consider the plaquette (1256) and (2345) in Fig.
11. An anyon hopping from 5 to 6 induces a phase e
because the anyon hops across the string of anyon A.
Similarly, an anyon hopping from 2 to 3 induces a phase
e ' because the string of the hopping anyon crosses the
anyon A. To compensate the phases on the horizontal
links, we introduce nontrivial phases g+ on the vertical+y
links between the row 1 and the rom L. The hopping am-
plitude from 2 to 5 contains one more factor e' com-
pared to the hopping amplitude from 1 to 6. Similarly
the hopping from 3 to 4 contains one more factor e'
compared to the hopping from 2 to 5. These results can
be directly derived from the expressions of g+ [(4.5b)

and (4.6b)]. The phase factor g+ corresponds to the e'
strings discussed before. Therefore as an anyon hops
around the plaquette, say (1256), it obtains a "phase":

(
' 25T )(

—t'8)( ' l6T —1
)

25 16

Therefore (a) is satisfied for the plaquette (1256). In gen-
eral, the vertical link on the right-hand side of a crossed
plaquette contains one more factor e' compared to the
vertical link on the left-hand side of the plaquette, while
the two vertical links on the two sides of an uncrossed
plaquette have the same phase. The end of each e'
string produces two neighboring crossed plaquettes as
demonstrated in Fig. 11, thus producing a horizontal
string of strength e'

(4) A real nontrivial test for our Hamiltonian is to
check whether condition (a) is satisfied by the plaquette
{7890)or not, which naively seems to be a singular point
in our Hamiltonian. The phase on the link (89) is given
by y»= 8N, [see (4.5b)], where N, is the number of fixed
anyons in column l. By "fixed anyons" we mean the oth-
er X —1 anyons except the ioth anyon. The ioth anyon is
hopping around the plaquette (7890). The phase on link
(70} is given by g&7O

=28No+ 8NI [see (4.5b)], where

%0=X—1 —XL is the number of fixed anyons in column
1 to L —1, and XL is the number of fixed anyons in
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column L .The phase on the link (90) is y9O 8Ni be-

cause the ioth anyon crosses the strings of the anyons on
the column L, and the phase on the link (78) is

Lp7g
—L9NL because the string of the io th anyon crosses

the anyons in column I.. The total "phase" of the anyon
hopping around (7890) is given by

h'&(x) under such a translation:

h ti(x) h"p'(x)=5 ttf„'"[1—8'(x; + 1 L—)]

+8'(x, + 1 L—)T, tif'„",

f f(ll —f
(S.la)

(5.1b)

(
~f 70T —i

)( 0'90T —i
)( %89T )( +78T )

—i28(N —l)T —1T—iT T — (28K—
(4 11)

Equation (5.1b} exists because f only depends on

(x,. —x, ). Making a "gauge" transformation

Condition (a) is satisfied if e ' =1. From (4.11) we see
that an anyon system can be consistently defined on a
torus (with translation symmetries} when and only when
the number of anyons is a multiple of q (remember
8=p~/q) [Th.e quantization condition (4.11) is modified
in the presence of magnetic field. See Sec. VII.]

We also checked that conditions (a)—(d) are satisfied
for many other anyon hoppings. To further demonstrate
the consistency of our Hamiltonian, we will show that the
anyon system described by Eq. (4.1) is translational in-
variant.

U. SYMMETRIES OF THE
ANYON HOPPING HAMILTONIAN

In the discussions above we see that the cuts (bound-
ary) and the strings of the anyons are all unobservable
and hence unphysical. Then, we expect the "physics" de-
scribed by the Hamiltonian (4.1) to respect the transla-
tion symmetries.

Let us first consider the translation in the x direction
t„: (x;,y, )~(x;+l,y;). For w=x, h &(x) changes to

I

/t(x;, y;)j;a& (U„) tilI(x;, y;)I;P&,

U„=(T,}

where S=+,8'(x, L),—we transform h "&(x) to

h'tI(x)=(U, '(x, + l,y, )h"'(x)U„(x, ,y, )) ti .

(5.2)

One can easily check that h' tI(x) is equal to h ti(x) in

(4.3a). Therefore Q~„~~H(x,y;x) is invariant [up to a

gauge transformation (5.2)] under the translation t„.
Similarly one can show Q~„~H(x,y; —x), is invariant
under translations in x direction.

For v.=y, we must be careful about the transformation
of the 8 function in g . Equation (4.5b) is valid only

when x, and y, lie within the range [1,L ]. For x; and y,
outside the range [1,L], g is defined by periodic exten-

sion. Notice that x, +1 may be larger than L if x, =L.
In this case we should replace (x;+1) by 1 instead of
(L+1}. Keeping this subtlety in mind, we find that
h ~ti( y ) transforms to

h &(y)~h "&(y)=5 &[1 P'(y;——L )]+9'(y; L)Tz~pg„'"—,
T

g-„~g-„'"=exp i 8 g [e(x; —x;+—,
' )+e(x; —x; —

—,
' )][1 8'(x, —L)][1—V(x—, L)]-

ihip
(S.3a)

X exp i 8 g I2[1 8'(x; L—)]P'(x; L—)+8'(x;—L)P'( ; xL)—I—
l@ip

Notice that

=exp i8 g [e(x; —x;+—,')+e(x, —x; —
—,'}] exp i8 g 2—[V(x; L)—8'(x; —L)]-

lWlp lWlp

(5.3b)

exp i 8 g 2[&'(x, —L)—8'(x, L)j—=expt —2i8[(N——1)$'(x, L)—Nt ]I-
IWlp

=exp[2i 8P'(x; L)]exp(+2i 8Nt ), — (5.4)

where we have used the fact that e ' =1. Under the gauge transformation (5.2), h "ti(y) changes to

h "&(y) h "&(y)=& &[I—&(y; —L )]+8'(y; —L )T, tig-"',

gy - =Ny 2 x 2 x
(1) (2) — (1)

—NL —V(x, —L) NL+8'(x, —L)
(1)T—1y- '0 T T '0

gy 2 1

=exp i8 g [e(x; —x;+ —,')+e(x; —x; ——,')]
l Alp

(s.sa)

(5.5b)
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Comparing Eqs. (5.5b) and (4.5b) we see that the translation (x;,y;)~(x;+ l,y;) plus the gauge transformation (5.2)
leaves Q~„~H(x,y;y) invariant. One can also show that Q~„~H(x,y; —y), and hence the total Hamiltonian (4.1), are
invariant under the translation in the I direction [up to the gauge transformation (5.2}].

Now let us consider a translation in the y direction t: (x, ,y, )~(x;,y;+ 1). For r=y, h p(y) changes to

h p(y)~h "p(y)=5 p[1 —8'(y, +1 L—)]+8'(y, +1 L—)Tz pg"',

g-~g"'=exp i8 g [e(x; —x, + —,')+e(x, —x, —
—,')]

l Alp

(5.6b)

under the y translation. Again we need a gauge transformation to change (5.6) to (4.5). The proper gauge transforma-
tion is given by

I [(x y )1'~ ) ~( U» ) pl I (x y, ) I '&)

U» =(T2) 'exp t 8+'P'(y, L)[—e(x,. —x.+-')+e(x.—x.—' )] ',
lWJ

where eV&=g;8'(y; L). U—nder U, h "p(y) in (5.6) is transformed to h' p(y}:
h'"(y)~h' '=U» '(x;,y; +1)h"'(y)U»(x;, y; )

=U» '(x;,y; +1)U (x;,y; )h'"(y)
r

=exp i8 g [9'(y; L)—S'(—y; +1 L)][8—(x; —x;+—,')+e(x; —x; —
—,')]

l@lp

(5.7)

[V(y, —L j —9'(y, +1—L)]
X T ' ' h'"(y}

=h(y) . (5.8)

Therefore g~, »~H(x, y;y ) is invariant under the translation by y plus the gauge transformation U». For r=x, we have

h p(x)~h "p(x)=5 pf-'„"[1 8'( ;
—x—L)]+5"(x; —L)T) pf-„",

r

f ~f"' =exp i 8 g [5»(x; —x; + 1 )e(y, —y; —
—,
'

)
l /lp

—S'(x, —x, )e(y; —
y;

—
—,
' )][1—8'(y; L)][1—&(y—; —L )] (5.9a)

Xexp i8 g [9'(x, —x, +l)[1—V(y, —L)]P'(y, L) 8'(x; —x—
, )[1——8'(y; L)]P'(y,. L)]- —

l Alp

=f exp i8 g [8'(x, —x, +1)+P'(x, —x; }][V(y; L) —9'(y; L—)]-
l Alp

(5.9b)

The gauge transformation changes h "p(x) to h' p(x):

h "p(x)~h' p(x)=5 pf„' '[1—8'(x, L)]+V(x; L—)T, pf„', —
0 (5.10a)

=f„'"exp i8 g V(y, L)[$'(x; —x; )+—8'(x; —x; —1)]
iWlp

Xexp i8 g P'(y; L)[$'(x; —x;+1)—+P'( ;
—xx;)]

l Alp

=f"'exp i8 g [V(y, L) 8'(y, L—)][8—'( xx, }+8'(x, ——x, +1)]
lmlp

(5.10b)
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Therefore the translation t and the gauge transformation U leave Q~„~H(x,y;x) invariant. We show that the total
Harniltonian

H= g [H(x,y;x}+H(x;y;y)+H. c. ]
(x,y)

respects translational symmetry in the y direction.
To show that the Hamiltonian (4.1) is invariant under a 90 rotation, let us first make a gauge transformation, which

changes the vertical strings into horizontal strings (Fig. 12). The gauge transformation is given by W:

~ I(x, ,y, )];a)~ W~ I(x, ,y, )I;a),
W =exp +i 8 + 8(x; —x + —,

' )8(y —
y, —

—,
'

)i'
Under this gauge transformation

h &(r)~h &(r)=W '(x, +r„,y; +r )h &(r)W(x;,y; ) .

For r=x, (5.12) becomes

h &(x)=5 +f„'[1—P'(x; —L )]+@(x;—L )Tlg-„,

(5.11)

(5.12)

fr =exp i8—g I[8(x; +1—x;+—,')—8(x; —x;+—,')]8(y, —y;
—

—,')
l Wl0

+[8(x,—(x, + 1)+ —,
'

) —8(x, —x; + —,
'

)]8(y; —y; —
—,
'

) ]

Xexp i8 g [P'(x, —x;+1)6(y;—y; ,') P—'(—x;——x;)8(y; —y; —
—,')]

l Alp

g =W '(x; =l,y; )f-W(x; =L,y; )

(5.13a)

=exp i 8 g—I [8(1—x;+—,
'

) —8(L —x;+—,
' ))8(y; —y;

—
—,
' )+[8(x;—1+—,

'
)
—6(x; L+ —,

' )]6(y—; —y; —
—,
'

) )
l Alp

r

Xexp i8 g [8'(L —x;+1)8(y, —y,
—

—,') —P'(L —x;)8(y; —
y;

—
—,')]

l Plo

=exp[i8(N —1)]exp i 8 g [8(—y;
—y;+ —,

' )+8(y; —y; —
—,
' )]

i @10

(5.13b)

For r=y, (5.12) becomes

h &(y)=5 g [1—P'(y, L)]+8'(y; L—}T2g'—
f =W '(x;,y; +1)W(x;,y; )

T

=exp i8 g I8—(x; —x;+ —,')[8(y, —y; —1 —
—,')—8(y; —

y;
—

—,')]
1%10

(5.14a)

+8(x, —x, +-,')[8(y, +1—y,
—

—,')—8(y; —y; —
—,')]j

=exp i8 g [S'(y; —y;+1)8(x; —x;+—') P'(y; y;)8(x; x; + —,
' }]

lWlo

(5.14b)

g-„'=W '(x;,y; =1)g„W(x, ,y; =L)

=exp[i8(N —1)]exp i8 g [V(L+1—y;)6(x; —x;+—,') —P'(y; L)6(x, —x; + —,')]—

=exp[i8(N —1)]f (y; =L) . (5.14c)
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One can see that (5.13) and (5.14) are very similar to (4.3)—(4.6). We can show explicitly that (5.13) and (5.14) are identi-

cal to (4.6) and (4.3) after a 90' rotation,

x, —+1—y;+1,
y, x, ,

and a redefinition of T, and T2,

T
—I 0(N —]. ) T

—
&

2

T
—IH(W —])T

(5.15)

(5.16)

Now (5.13) changes to

h,&(x)~h "II( —y)=5,&[1
—8'(y; —1)]+8'(y; —1)Tz 'g" (5.17a)

g„~g"' =exp i8 g [e(x, —x, + —,')+e(x, —x; —
—,')]

I WI 0

(5.17b)

and (5.14) changes to

h &(y )~h "tI ( x ) =5 tt[ 1 8'(x; —L) ]f'„"—+V(x; L)T
~ f-'„—',

f ~f"'=exp i8 g [P'(x; —x;+1)e(y; —y; + —,')—&(x; —x;)e(y; —y;+ —,')]
I XIp

(5.18a)

=exp i8 g [V(x; —x;+1)e(y, —
y;

—
—,') —8'(x; —x;)e(y; —

y,
—

—,')]
IWIp

(5.18b)

The second equality in (5.18b) is because f'" is defined only for (x;,y; ), satisfying (x, ,y, )A(x„y; ) and
X 0 0 0 0

(x; + l,y; )A(x;,y;) for any idio We se. e that Eqs. (5.18) and (5.17) are identical to Eqs. (4.3) and (4.6). Because

h &(
—x) and h &(y) are simply the complex conjugates of h &(x) and h &(

—y), our result implies that the total Hamil-
tonian (4.1) is invariant [up to a gauge transformation (5.11)]under a 90' rotation.

We have shown that the translations t and t when combined with the gauge transformation U and U leave H in
(4.1) invariant:

(5.19)

However, this does not imply T„=t„U, and T =t U commute witk each other. In the following we are going to
show explicitly that T and T indeed commute and generate the usual translation algebra. First let us show that

(5.20)

Notice that

t„'U (x;,y;)t, =U (x;+l,y;)

=T2'exp i8 g P'(y, L)[e(x, —x + —,
'—)+e(x, —x, —

—,')][1—V(x, L)][1—V{x L—)]—
X exp i8 g &'(y, L)[2$'(x, L)[1——fit'(x, L)]+8'(—x, L)$'(x, —L)I— —

= U exp 2i 8 + P'(y, L)P'( xL) exp— 2i 8 + P'—(y, L)$'( xL)— (5.21)

where S2=+,8'{y, L). Since e' =1—, the second exponential in the last line of (5.21) can be simplified:

exp 2i 8 g 8—'(y, L)P'(x; —L) , =exp 2i 8(X—1)g —8'(y;—L)P'(x, L)——

=exp 2i8 g 5 (y; L)P'(x; L)— — (5.22)
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Using (5.22) we may write (5.21) as

t, 'U t, =U exp 2i8+P'(y, L—)$'(x, L—) (5.23}

Since T, and T2 satisfy the algebra (2.2), we can show that

U U„=exp 2i—8 g 8'(y,. L—) g P'(x, L—) U„U
l J

(5.24)

Equations (5.23) and (5.24) imply (5.20). One can also
easily check that (5.20) implies

t U„t, U, =t U, t„U (5.25)

using the fact that t 'U„t = U„. Hence the two transla-
tions T and T commute with each other.

Summarizing, we found that the Hamiltonian (4.1) is
translational invariant in both x and y directions. We
have shown that the translation in the x direction T„
commutes with the translation in the y direction T„, and
the energy eigenstates of (4.1) can be labeled by the crys-
tal momenta. We stress that this is a highly nontrivial re-
sult for the Hamiltonian (4.1), which at first sight does
not look translationally invariant. H in (4.1) also respects
the 90' rotation symmetry. If our lattice has different
sizes in the x and y directions the Hamiltonian (4.1) will
only respect the 180' rotation.

VI. NUMERICAL TEST
OF THE ANYON HOPPING HAMILTONIAN

In order to demonstrate the consistency of our Hamil-
tonian more completely, we also perform some numerical
tests. We implemented numerically the lattice Hamil-
tonian presented in Sec. IV corresponding to "free" spin-
less anyons on 2X2 and 4X4 lattices for the special case
of two semions (8=m/2). To diagonalize it we used a
modified Lanczos method, although for these special
cases the matrices are very small. The size of the Hilbert
space grows quickly with the lattice size and the number
of anyons so for a larger system a Lanczos technique
would be the only way to obtain the ground-state energy
and wave function.

For the 2 X2 lattice with periodic boundary conditions
the Hilbert space of two semions contains twelve states
(while for a system of fermions or bosons it has only six
states}. In this case we constructed the 12 X 12 matrix ex-
plicitly in addition to solving numerically (I.anczos) the
Hamiltonian. To monitor the translational invariance
properties of the system we studied the density of
semions at each site. Our result clearly showed that it is
uniform in spite of the fact that the particular gauge we
used makes the Hamiltonian look nonuniform. We also
studied the density-density correlation functions at a dis-
tance one defined as

G(x) = (n (x )n(x+e„)),
where n (x) is the anyon number operator and e„ is a unit
vector in the direction of the lattice axis. We found that
these correlations are also uniform and, in addition, equal
in both directions. This result implies that the Hamil-
tonian is also rotational invariant.

The ground state of the 2 X 2 system is not degenerate
if to satisfy the algebra Eq. (2.2) we choose as matrices T,
and T2 the following:

T) 737 T2 l7

where ~, and ~3 are the standard Pauli matrices. We re-
peated the calculation for a 4 X4 lattice with two
semions. There are 240 states in this case. We again
found that the ground state is not degenerate if the ma-
trices T, and T2 are selected as above. The density of
anyons is uniform,

(n(x)) =0.125,

and the correlation functions at distance of one lattice
spacing are also uniform,

G (x ) =0.005 016,

and rotational invariant as for the 2 X2 lattice.
Then we conclude that numerically we have shown

that our method to construct a Hamiltonian for anyons
on a lattice with periodic boundary conditions is con-
sistent. Work is in progress to extend this numerical
study to larger lattices and more anyons.

VII. EFFECTIVE HAMILTONIAN OF HOLONS
IN THE CHIRAL SPIN STATE AND ANYONS

IN A MAGNETIC FIELD

FIG. 12. The gauge transformation (5.11) transforms the
vertical strings into horizontal strings.

For 8=m/2, although (4.1) describes a translationally
and rotationally invariant semion system, (4.1) is not the
correct Hamiltonian for the holons in the (level-2) chiral
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spin state. This is because for the chiral spin state the
consistent number of holons is odd when L is odd and
even when L is even. While the consistent number of
semions in (4.1) is always even, independent on whether L
is even or odd. From the mean-field theory and the vari-
ational approach' we see that as a holon hops around a
plaquette, it sees a m flux. Therefore the correct Hamil-
tonian of the holons has a ~ flux per plaquette:

ho)on g 1{x,y)(x+~,y+r )H(x &y

{x,y), v

(7.1)

+i,i +xiii +x,i +x+y+i+x+y, i+y+i+y, i (7.2)

except for the last plaquette PLL . [(L,L ), (1,L ),
(1,1),(L, 1)] [i.e., the plaquette (7890) in Fig. 11). The
fiux going through PLL is fixed by (7.2),

(7.3)

so that the total flux is a multiple of 2m. Now the condi-
tion (a) becomes (a'), a semion (or holon) hopping around
a plaquette induces a phase —1. The consistency condi-
tion (4.11) changes to

gyje ' = —1,
LL

(7.4)

which implies the consistent number of the semions is
odd for odd L and is even for even L. We can also show
that Hh, ),„ is translationally invariant.

VIII. DISCUSSION

Before ending the paper we would like to make some
remarks on the flux quantization. Notice that the gauge
transformation

( ((x;,y; ) I;a) ~(T2)"&([(x„y, ) I;P)
introduces a phase e" ' to T, :

T t{2n/q) T

(8.1)

(8.2)

where n is an integer such that e' "' q' "=e' " . From
Eqs. (4.3) and (4.4) we see that the gauge transformation
(8.1) effectively adds a 2n /q fiux to the hole of the torus.
Or more precisely, an anyon hopping all the way around
the torus in the x direction obtains an additional phase
e' " . This result implies that the ground-state energy
E(@EM) is a periodic function with a period 2m /q:

277E(+EM ) E @EM+
q

(8.3)

where +EM is the electromagnetic flux going through the

where H(x, y;r) is given by (4.2)—(4.6) with H=n/2
g;J. in (7.1) satisfies ~g; ~

= 1 and

hole of the torus. Because the flux +EM changes sign un-

der a 180' rotation, the 180' rotation symmetry implies
that E(@EM) is symmetric:

E(@EM)—« —@EM) . (8.4)

In particular, for a semion system E(@EM) is a symmetric
periodic function with period m. These are actually the
characteristic properties of a charge 2e system.

Here we would like to discuss an important subtle
point. The anyon hopping amplitudes in general have
nontrivial phases due to the fractional statistics. It is
difficult to distinguish which part of the phases is due to
the fractional statistics and which part is due to the exter-
nal electromagnetic flux. Therefore it is nontrivial to
determine the value of @EM from the anyon hopping
Harniltonian. The correct definition should be derived
from the microscopic theory from which the anyons are
generated. Based on the physical picture provided by the
chiral spin state, we would like to propose a way to define
the external electromagnetic flux. Consider, for example,
the semion system. We know from the chiral spin state
that two semions are equivalent to two electrons. As we
move two semions around the torus once, the state

~ I(x;,y;));a) comes back to itself (i.e., a remains un-

changed). The phase e'& induced by this process can be
used to define the external flux @EM. Because two
semions are equivalent to two electrons, we will set

EM ige "=e'~. This only defines the +EM up to an n m am-

biguity. However, this is the best we can do, because the
semion Hamiltonian contains an intrinsic na ambiguity
in its flux. According to this definition, the numerical re-
sults in Sec. VI indicate that the total energy E(@EM) is
minimized at %EM=0, m. and that the minimum of the to-
tal energy is not shifted away from @EM=0. The shift of
the minimum observed in Ref. 4 could be due to a
different definition of the magnetic flux or the choice of
boundary conditions. We would like to remark that mov-
ing one semion around the torus twice also leaves the
state

~ I (x„y; ) I;a ) invariant. However, moving two
semions around the torus once and moving one semion
around the torus twice induce two diferent phases. The

i 2 PEM+m'
latter induces a phase e . If we use the latter to
define the flux, the minimum of the total energy will ap-
pear at m/2 flux, which corresponds to the result in Ref.
4. However, we believe that the first definition (i.e., mov-
ing two semions around the torus once) gives rise to a
correct value of the electromagnetic flux.

The ground states of anyon systems closed geometries
have many interesting topological properties. These
properties can be studied systematically using the explicit
lattice anyon Hamiltonian as the one derived in this pa-
per. Observing those topological properties in numerical
calculations may help to reveal the nontrivial topological
structure hidden in the anyon ground states. Work is in
progress.

We have received a related paper by Einarsson, who
also discuss the multiple components of the anyon wave
function on a torus. We would like to thank him for
making a copy of his work available to us prior to publi-
cation.
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