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Behavior of excess electrons in a one-dimensional classical bath: Equilibrium properties
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The behavior of an excess electron in a one-dimensional classical liquidlike bath is studied. A
variety of equilibrium properties of the electron and the solvent are presented to characterize the
structures of the different systems. For a repulsive potential between the electron and a fluid of
hard rods, the electron becomes confined in a cavity. The localized electron exerts an "external
field" on the solvent and creates ordered structures in it around the electron at high solvent densi-

ties. We find contrasting behavior for an electron rod potential in which a negative 5 function is as-
sumed to be situated at the center of each hard rod. For the force parameters taken in this calcula-
tion, the electron is found to exist in a "quasifree" state and forms a cluster of solvent particles
around it. Ordered structure is found to develop in the cluster as the solvent density is increased.

I. INTRODUCTION

Excess electrons in deformable media exhibit a variety
of phenomena. ' In low-density gases, for example, the
electron behaves almost like a free particle. As the gas
density is increased, a variety of effects can substantially
change the "bare" state of the electron. At liquid densi-
ties the electron may get trapped in a cavity or droplet of
solvent particles created by its own field or remain
"quasifree" depending upon the nature of the electron-
solvent interactions. Observed properties such as the
electron mobility and absorption spectra probe the na-
ture of the electronic states in deformable materials and
the phenomena of localization.

When an electron is solvated in a polar liquid such as
water or ammonia, the strong anisotropic electron-
solvent interaction causes significant local modification of
the equilibrium fluid structure. ' The electron becomes
localized in a small cavity because molecules in a solva-
tion shell orient to create a potential minimum. Similar
"bubblelike" structures are also found in liquid helium
and neon. ' The reason for this behavior is strong repul-
sion between electron and solvent, which results in the
depletion of the solvent molecules from the region of the
electron and forms a highly localized state of the elec-
tron. In both cases of localization, the electron adiabati-
cally follows the slow changes in the deformation and
therefore "feels" the instantaneous potential well, and
maintains the stationary nature of the well and of the cor-
responding deformation of the medium with its field.

In many other nonpolar fluids ' like Ar, CH4, etc. ,
the electron always remains in a state of high mobility (or
quasifree). The electronic mobility of these Auids is com-
parable to those found in many semiconducting materi-
als. An interesting density dependence of the mobility
has, however, been observed in them. It shows a
minimum near critical fluid density and a maximum at
liquid density. All these features of a solvated electron
can, in principle, be understood" on the basis of
Chandler, Singh, and Richardson' theory.

The theory of Chandler, Singh, and Richardson'
(CSR) is based upon the path-integral formulation of
quantum theory which maps the behavior of the electron
on to that of a classical isomorphic polymer. ' The
solvent-induced potential surface for the self-interaction
of the isomorphic polymer is evaluated using an integral
equation (e.g. , reference interaction site model' ) or
density-functional approach. ' With the known potential
surfaces, the polymer statistics is solved using a varia-
tional principle that allows the determination of the elec-
tronic properties and the structure of the liquid near the
electron. The theory has been found to be quantitatively
accurate for the quasifree and trapped states, but less ac-
curate in the region of transition from quasifree to local-
ized states. ' ' The width of the solvent density over
which the transition takes place is found to be broader
than those predicted by the computer simulations. All
these calculations are in three-dimensional space. Elec-
tronic states in reduced dimensions are of considerable
interest. For example, for a system of less than two spa-
tial dimension, electrons are localized with an
infinitesimal amount of disorder. '

The interest in problems of electron or phonon propa-
gation in a one-dimensional (1D) random potential stems
from the discovery and extensive experimental study of a
certain class of organic or metallo-organic materials. '

These materials exhibit strongly anisotropic, quasi-one-
dimensional behavior attributed to the fact that they con-
sist of long chains, weakly interacting with each other.
In many of these, the presence of a random potential has
been proposed in order to explain their behavior. In this
paper we concentrate on the equilibrium behavior of an
excess electron in a one-dimensional liquidlike bath.
Time-dependent properties of this system will be reported
in a future communication.

The paper is organized as follows: In Sec. II we briefly
review the CSR theory in a form suitable for the one-
dirnensional system. The model systems considered here
are described in Sec. III Results are presented and dis-
cussed in Sec. IV.
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II. THEORY OF ELECTRON SOLVATION

where, in the continuum limit,

W[x(t), [X,J]= f dt[ ', m lx(t)—l'
0

+ U„(x (t), [X, I )] .

Here X denotes the position of jth solvent particle and N
denotes their total number. The path for the electron
x (t), in an imaginary time interval 0 & t SPY&, is periodic,
i.e., x(0)=x(PA'), U„ is the total potential energy of
electron with solvent. The partition function Z is iso-
morphic to that for a solvated classical Gaussian ring po-
lymer with interaction sites connected by a nearest-
neighbor harmonic potential with the force constant
P/PA, Here P is number of interaction sites on the poly-
mer and A,, =(f3' /m)' is the thermal wavelength of the
electron, A,, is one of the lengths which characterize the
system. The other relevant lengths are the solvent atom
diameter 0., a length d which characterizes the electron-
atom interaction and ps

'
(ps being the mean number

density of the solvent).
When integrations are performed over variables IXJ j

with isomorphic polymer coordinates held fixed, Eq. (1)
reduces' ' to

Z =e ~ "=gDx(t)s' '[x(t)]y [x(t)],
where

s' '[x(t)] ~ exp ——f dt ,'m lx(t)l— (4)

and

y[x(t)]=exp[ —Pbp[x(t)]) .

In Eq. (3), s' '[x (t)] contains the intrapolymer energetics
and the weighting of a configuration is determined by

y [x (t)] which is a Boltzmann's factor for the solvent
contribution to the potential of mean force for the in-
teraction sites on the polymer. In the continuum limit,

Pbp[x(t)]=p, f —dkc„(O, Aps)
0

,'(Pfi) 'f dt f —dt—'v(lx(t)—x(t')I)
0 0

Though the problem of excess electrons in liquids be-

longs to a general problem of electrons in disordered ma-
terial, the liquid medium in many ways differs from that
of solids. In liquids the constituent particles are not only
free to relax but they can also diffuse and the local envi-
ronment around the solute electron can be substantially
different from that in a solid.

In CSR theory' the partition function Z for an elec-
tron in a bath of classical particles is written as the func-
tional integral

1V

Z =g Dx(t) f g dX exp( —PJV[x (t), tX,. I]),
j=1

and

c„(O,Aps)= f dx c„(x Aps) .

Here x and t appear as independent coordinates, x is the
distance between two sites and t measures the length
along the contour of the polymer and

Xss(x x ) =ps5(x x )+pshss(x»

is the density-density correlation function ("susceptibili-
ty") of the unperturbed bath. In Eq. (7) c„ is the
electron-solvent direct pair-correlation function. Its
value is determined from the equation

h„(x)=f dx' f dx "tv(lx —x'I)c„(lx' —x"I)ass(x"»

(8)

where

~(lx —x'l)=(13&) ' f d(t —t')~(lx —x';t —t') (9)
0

Equation (8) is solved for c„and h„using suitable clo-
sure relation. The intrapolymer pair-correlation function
appearing in Eq. (9) is defined as

co(x; t t ') = ( 5( I
x—( t ) x( t '

) I

—x )—} . (10)

This pair-correlation function describes the pair structure
of the isomorphic classical polymer, and it is the equilib-
rium response function for the electron. Points on the
isomorphic polymer do not, however, correspond to posi-
tions of the electron in real time. Once an analysis of
tv( I x x' I; t t—'

) is const—ructed, real-time correlation
functions and the dynamic response function can be
determined from an analytic continuation. '

Since all sites of a ring polymer on the average are
equivalent, the site dependence disappears from Eq. (8)
and only the zero-frequency component cv(x) of the equi-
librium response function is required in Eq. (8). In the
CSR theory, key role is played by the intrapolymer corre-
lation function co(x) and the electron to solvent pair-
correlation function.

g„(x)= 1+h„(x)

=p, ' g 6(IX, —x (t)l —x )
J

Use has been made of Feynman's variational ap-
proach to calculate to(x, t t') from th—e known poten-
tial surface b,p, [x (t)]. An optimum harmonic reference
functional is identified and the behavior of to(x, t —t ) is
determined by that reference. The structure of the liquid
near the isomorphic polymer is determined mostly by the
average polymer correlation function to(x). With this as-
sumption and the known values of u(x), the electron sol-
vent correlation functions h„and c„are determined

where

v ( I
x (t) —x ( t ) I )

= —f dx' f dx "c„(x',t )Xss(x', x")c„(x",x, t)
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Z =g D x(t)exp[ —Ps[x (t) ]j,
where

(12)

PS[x(t)]=—f dt [ —,'m ~x(t)~ +Pbp[x (t)]] . (13)

from Eq. (8). In this respect the problem becomes iso-
morphic to that of determining at infinite dilution the
structure of the solvent around a molecule whose internal
structure is described by co( ~x

—x'~ ).
As mentioned above, in Feynman's variational ap-

proach one seeks a quadratic functional that best approx-
imates, the functional integral

The mean-square displacement between particles half
way around the polymer chain yields the correlation
length

R =R( ,'Pf—i) . (20)

When there is ground-state dominance, characteristic of
compact state, the function R ( t t' } s—tarts from zero at
t —t'=0 and rapidly increases to its "saturation" value.
The characteristic rise time r of this initial (complex)
time dependence is measure of the energy difference hE
between the ground state and the first manifold of excited
states

The most general form of a Gaussian functional is

Zo =g Dx ( t)exp [
—Pso [x ( t) ]j,

where

(14)

bE-I/r .

This, however, gives only a rough estimate of the excita-
tion energy. For more accurate estimate, the real-time
method is necessary. ' In the CSR theory the average ki-
netic energy Ek of the electron is given by

X ix(r) x(—r')i (E„)= —,'ka T 1+ g.~o PmQ'„+y„
(21)

Here r(t t') is a so—lvent-induced force constant be-
tween different sites on the electron polymer and I o

merely determines the zero of the energy. The Bogo-
liubov inequality provides a bound for Z in terms of the
average over the reference Gaussian weight

The potential energy E is computed from the relation

(E~ }=p, f u(x)g„(x)dx,
0

(22}

where u (x) is the attractive interaction between the elec-
tron and atom.

1 z 1 z, —p(s —s, ). (16) III. MODEL SYSTEMS

The optimization leads to following equation for the
correlation function for the intrapolymer correlation in k
space:

co(k, r)=exp[ —
—,'k R (r)],

where R (r) is the imaginary-time mean-square correla-
tion function and is given by the following expression:

U„(X)=~ for X~cr

=0 for X&o. .
(23)

For this system the pair-distribution function is found ex-
actly

We consider a bath of hard rods of length o. distributed
in one dimension. The pair interaction between rods is
taken to be

[1—cos(Q„~)] .
„Pm Q„+y„

Here r=t t', Q„=(2'—n/Pk), and

(18)

X
L —s

ps —
&

s —1 X*—s
exp

1/ps —1

(X, )
1 ~ e(X*—s)

ps s = i (I/ps 1)(s —I )t

(24)

y„=—f dk f d~(k)k [1—cos(Q„~)]co(k~) . (19)
0 0

where e is a unit step function, X' =X/o. and pz =p&o. .
The structure factor S(k)= 1+psh (k) is found to be

cos(ko. ) —1 —ko (1/ps —1)sin(ko )
S(ko. ) =1+

1 cos(kcr )+——,'(kcr ) (1/ps —1) +(ko )(1/ps —1)sin(kcr )
(25)

In Fig. 1, we plot the structure factor of the liquid for
p&=0. 5, 0.7, and 0.9. The close-packed density for this
system is 1. At p&=0.9 the peaks are sharp and are
separated by values of ko. close to 2~.

The electron-atom interaction in real system has a
strong repulsion at short distances due to orthogonality

requirements between the wave functions of the core elec-
trons in the solvent particle and that of the excess elec-
tron and an attraction at large distances. The latter con-
tribution is due to polarization of electron cloud in an
atom. The medium polarization may give rise to the
many-body effect. However, in system of neutral atoms
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which measures the density relative to the potential
strength. Our motivation for examining this model stems
from the fact that an "exact" Monte Carlo calculation for
the electronic density of states has been made by Peter-
son, Schwartz, and Butler. Many approximate calcula-
tions have also been reported in the literature.

We solve Eq. (8) for h„and c„ for the first model using
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FIG. 1. Structure factor for the one-dimensional fluid of hard
rods at pz =0.5, 0.7, and 0.9.
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the electronic states are determined primarily by the
short-range repulsive interaction or excluded-volume
effect. The attractive interactions become important only
at low densities where the excess electron may induce
cluster formation or afFects the scattering cross sections.

In this article we present numerical results for two
model potentials. In the first model we concentrate on
the excluded volume effect on the electronic states, a
model suitable for the study of excess electron in insulat-

ing media. The electron-atom interaction is taken to be
hard rods with characteristic length d defined as

u„(x)=~, x ~d,

0.00
0-00

e.00-

6.00

0.10
I I

020 0 30
t')/p%

0.40 0.50

—0.00

0.30
=0, x)d . (26)

We take d =
—,'0.

In the second model, a negative 5-function potential is
situated at the center of each hard rod 050

u„(x ) = —
Vp 5(x —X„), (27)

p,e'
m Vp P( Vp/0')

(28)

where Vo) 0 and X„ is the position of the nth ion. An
isolated potential of this form leads to a bound state at
the energy Ez = —

—,
' Vo. This represents a primitive mod-

el for the one-dimensiona1 liquid metal. The hard rod
prevents the overlapping of scatterers and implies short-
range order as described by g (X). Complete randomness
is implied by p+~0, a case which Klauder treated in
great detail and for which Frisch and Lloyd obtained an
exact solution. Strong correlation is implied by pz —1,
and p&=1 reduces the system to the familiar Kronig-
Penney model. Results are given in terms of a dimension-
less parameter

200
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FIG. 2. Root-mean-square displacement as a function of Eu-
clidean time for an excess electron in a fluid of hard rods in-

teracting with fluid particles via a hard-rod potential (primitive
model). The results are given for d = ~cr at (a) A,, =4o. and (b)

A,, =16o and several values of pz. If o.=5 A, the (a) and (b)
curves would correspond to T =221.2 and 13.8 K, respectively.
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FIG. 3. Reduced correlation length of an electron in the
one-dimensional fluid of hard rods for the primitive model as a
function of solvent density at A., =40 and 16cr.
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the closure relation

c„(x)=0, x )d,
h„(x)= —1, x & d .

We can express Eq. (8) and the above closure relation in
variational form as

~ 0.60b

c3

0.40
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RISM5I
5c„(x) '

c„(x)=0, x )d,
where

(29)
0.00
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IatsM =psc-(0)+ f dk c '(k)co(k)j„(k) .
4m

(30)
FIG. 4. The zero-frequency response function co(ko. ) of an

electron in the fluid of hard rods at three solvent densities

ps =0.3, 0.6, and 0.9 and (a) A,, =4o and (b) A,, =16'.
Equation (29) is solved numerically by expanding c„(x)
for x d in a series of basis functions and then varying
the coeScients of the basis functions. The details of the
method are given elsewhere.

For the second model we use the HNC closure relation

c„(x)=h„(x)—ln[1+h„(x)]—Pu(x)

to solve Eq. (8). The self-consistency is achieved via a
method described in Ref. 28.

IV. RESULTS AND DISCUSSIONS

The primary physical phenomenon we are looking for
is the process of self-trapping of the electron. At low
densities of the solvent, the electron polymer is fairly ex-
tended, Auctuating with nearly the free-particle Gaussian
statistics where the second moment is given by

R ',„„(t t ') =A,'(t—t')(PA,
'

t + t')/(Pfi—)' . —

The overall size of the isomorphic polymer is therefore

roughly —,'k, . At high solvent densities, however, the
packing of the Quid environments prohibits extended
fluctuations, and the electron gets trapped occupying a
region characterized by the length o..

Since the interaction sites in the first model are exclud-
ed from penetrating spheres of radius d surrounding each
particle, an electron is always localized between two adja-
cent scatterers. The localization length is function of the
density of the solvent and the temperature. In the
present model the temperature enters through A,, which
depends on P.

Our computed R (t t') correlati—on functions are illus-
trated in Figs. 2(a) and 2(b) for A,, /cr =4 and 16, respec-
tively, and at several solvent densities. At higher densi-
ties we find the characteristic ground-state dominance
while, at lower densities, R (t t ) is time depend—ent
throughout the 0 + t —t ' ~ pA interval. The
temperature-dependent density which separates the two
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FIG. 9. Reduced correlation length of an electron in one-
dimensional fluid of hard rods as a function of solvent density at
@=1for the 5-potential model.

FIG. 11. The electron-solvent radial distribution function at
several solvent densities for the 5-potential model at a= 1.

co(0)=1. At higher densities, as the ground-state domi-
nance appears, Q(ko ) becomes more broad indicating a
more localized wave packet associated with the electron
in real space.

Let us now consider the nature of the electron-solvent
pair structure shown in Figs. 5 and 6. The behavior illus-
trates that the electron paths tend to expel solvent parti-
cles from the vicinity of the electron and forms the cavity
in which it gets trapped. The size of the cavity can be es-

timated from these figures. It can also be inferred from
these figures that the localized electron behaves like a soft
sphere at low solvent density but becomes sufBciently
hard to create local freezing at higher solvent densities.
This freezing becomes more clear at higher temperatures,
i.e., at A,, =4cr than A., = 160. The external field needed
to create such a density profile of the solvent is exerted by
the trapped electron. In Fig. 7, we plot the kinetic ener-

gy of the electron as a function of densities at these two
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FIG. 10. The zero-frequency response function Q(ko ) for the
6-potential model of three solvent densities mentioned in this
6gure and e= l.

FIG. 12. Average kinetic and potential energies of the excess
electron as a function of the solvent density for the 6-potential
model and @=1.
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temperatures.
A different scenario is found in the case of the second

model. The computed R (t t') correla—tion functions il-
lustrated in Fig. 8 for e= 1, A,, jo =4, and several solvent
densities show that the electron polymer is always fairly
extended, fluctuating with nearly the free-particle Gauss-
ian statistics. The overall size of the isomorphic polymer
is roughly —,A, This feature is more clear in Fig. 9 in

which we plot the correlation length R ( —,'Pfi) as a func-
tion of solvent density. We find that this length initially
decreases as the solvent density is increased, has a
minimum at about p&-0.6, and then increases. This
minimum is, however, weak and does not change, in any

FIG. 13. Logarithm of the friction constant as a function of
the solvent density for the primitive model (at two temperatures
indicated by the solid lines) and the 5-potential model (the dot-
ted line).

significant way, the basic features of the isomorphic poly-
mer. For small values of e the minimum may be strong,
greatly affecting the behavior of the electron.

In Fig. 10 we plot Q(ko ) as a function of the wave vec-
tor kcr at several densities. As expected, this function
remains almost unaffected by the solvent density. In-
teresting structures can, however, be seen in the
electron-solvent pair-correlation function g„(x ) plotted
in Fig. 11 for several solvent densities. We find that the
electron due to attractive electron-atom interaction forms
a cluster of solvent particles, with density distribution

p,'(x) =p,'g„(x '). The cluster initially becomes compact
as the solvent density is increased. But, at about pz -0.6,
the cluster expands and develops local structure. The
structure in the cluster becomes very apparent at

p5 =0.9.
In Fig. 12 we plot the average kinetic and potential en-

ergy of the solvated electron as a function of the liquid
density. We see that while the kinetic energy remains al-
most constant at all densities, the potential energy de-
creases with density reaching to a saturation value. As
has been emphasized before, y, is related to inverse mo-
bility for the electron. A graph of log, o(1/y, ) is given in
Fig. 13 for both models. It indicates that, for the model
of hard rods for the electron-atom interaction, the theory
predicts a large variation of mobility as a function of den-
sity with almost linear behavior. But for the model in
which electron-atom interaction is represented by an at-
tractive 6 peak, the mobility decreases initially reaching a
minimum and then has the tendency of increasing with
density. The real-time behaviors of these models are be-
ing investigated and will be reported soon.
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