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Discontinuous change of superconducting transition temperature from BCS type
to bipolaron type in strongly coupled electron-phonon systems
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A unified theory for the superconducting transition temperature T, of an electron-phonon cou-
pled system has been derived, so as to clarify the nature of the intermediate region of coupling
strength, as well as the weak (BCS) region and the strong (bipolaronic) one. This theory is mainly
based on the polaron picture and takes the thermal fluctuation of pairing order into account within
the coherent-potential approximation. In the weak-coupling limit, it reduces to the Eliashberg
theory and gives a T, that increases as the coupling increases, while in the strong-coupling region, it
reduces to a pseudospin-type theory of bipolarons, and T, decreases as the coupling increases.
Thus, T, takes its maximum in the intermediate region. It is shown, however, that this change of T,
from the BCS region to the bipolaronic one becomes discontinuous when the bandwidth of electron
is greater than the phonon energy, while in the opposite case it changes continuously. The calculat-
ed results of the former case are discussed in connection with the insulator-superconductor transi-
tion of Ba~,K Bi03.

I. INTRODUCTION

Theoretical problems related to very strong electron-
phonon (e-ph) coupling have been subjects of consider-
able interest in recent years. In the case of one- and two-
body problems of electrons, they are closely related to the
optical properties of insulating solids, such as alkali metal
halides, rare-gas solids, and semiconductors. ' On the
other hand, in the case of many-body problems, they are
closely related to the superconductivity and the charge-
density-wave (CDW) states of various metallic solids,
such as the transition-metal oxides and low-dimensional
conductors. ' ' In the early stage of studies for these
strong-coupling phenomena, the one- (or two-) body
problem and the many-body problem have been
developed rather independently of each other, since these
two kinds of problems correspond to two quite different
states of solids: insulators and conductors. At present,
however, they are combined, so as to clarify various new
phenomena coming from this strong coupling. '

In the one-body problem, as is well known, the very
strong e-ph coupling causes a spontaneous breakdown of
the translational symmetry of an electron. When the e-

ph coupling is weak, the electron is in a wavelike state
with the same translational symmetry as the crystal.
However, in the case of a very strong e-ph coupling, it is
in a localized state, being trapped by a self-induced local
lattice distortion. This change of electron occurs almost
discontinuously as the coupling increases, provided the
energy-band width of electron is much greater than the
phonon energy. ' On the other hand, this change is con-
tinuous, when the width is of the same order as that of
the phonon energy.

In the case of the many-electron system, we have two
types of competing instabilities coming from the strong
e-ph coupling: the superconducting (SP) state and the
CDW state. The CDW state mainly comes from the adi-

abatic nature of the e-ph coupling, since we have a frozen
lattice distortion, that results in the structural change of
the crystal. On the other hand, the SP state comes from
the inverse-adiabatic nature of e-ph coupling, since the
local lattice distortion is always moving together with the
electron, resulting in no frozen lattice distortion. The rel-
ative stability between these two states changes from ma-
terial to material, according to the strength of e-ph cou-
pling, the energy of phonons, the geometry of the Fermi
surface, and the total number of electrons. '

Even though we have restricted ourselves only within
the SP state, we still have two possibilities of the pairing,
which are quite different from each other in their natures.
The first one is the conventional BCS-type, wherein the
electrons only around the Fermi surface make pairs
called Cooper pairs, while other electrons far from the
Fermi surface remain unpaired. The second is the bipola-
ronic pairing, wherein all the electrons in the conduction
band make the singlet pairs. The interrelation between
these two kinds of states is a matter of considerable in-
terest in recent years, since it is closely related to the
mechanism of the high-temperature superconductivity
and the CDW states in various transition metal oxides,
such as LiTiz04, Ba& K BiO3, " La-Sr-Cu-O, '

Ti40~, ' and Nao 33VQO5.
'

In connection with these problems, Nasu ' has studied
the SP state coming from very strong e-ph couplings, us-

ing the polaron-type theory combined with the coherent-
potential approximation for the Auctuation of pairing or-
ders. In this study, it is shown that the nature of pairing
changes from the conventional BCS-type to the bipola-
ronic one as the coupling increases. The transition tem-
perature ( —= T, ) is also shown to take its maximum value,
neither in the BCS region nor in the bipolaronic one, but
in the intermediate region between them.

In this theory, however, the nature of the intermediate
region is not studied in detail, except the fact that this re-
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gion becomes narrow as the ratio of the electron energy
bandwidth to the phonon energy increases. Moreover,
this theory does not reduce to the Eliashberg theory' in
the weak-coupling limit.

In the present paper, we will derive a new unified
theory for the superconducting transition temperature of
a strongly coupled electron-phonon system, so as to rein-
force our previous theory and clarify the nature of inter-
mediate region. It will be shown that the transition from
the BCS type to the bipolaronic one is almost discontinu-
ous when the ratio of the bandwidth to the phonon ener-

gy is large, while it is continuous when this ratio is small.
Results of the former case will be discussed in connec-

tion with the newly discovered high-temperature super-
conductor Ba& K„Bi03, especially in connection
with its insulator-superconductor transition at around
x =0.375.

=exp[ —v's/2q (g, gt
—)]rtJ

dt =M—'(,M=(t+v's/2q g nt

(2.4)

(2.5)

where ai is the creation operator of a polaron with a
phonon cloud around itself, and d& denotes the creation
operator of a new phonon whose equilibrium position has
been already displaced because of the e-ph coupling. In
terms of the polaron and new phonon, we can write h as

small q «1 in the weak-coupling case S «T or in the
adiabatic case T»co, while it will become maximum

q = 1 in the strong-coupling case S» T or in the
inverse-adiabatic case T «co. By using M, thus defined,
we can transform the electron and the phonon into a po-
laron aI and a new phonon d&, which are defined as

a
—1

II. HAMILTONIAN OF MANY-POLARON SYSTEM

Let us consider a model system composed of X lattice
sites and N, electrons (N )N, ))1) with the following
Hamiltonian ( =H),

h = t g— g ai ai exp.[&s/2q(di di —d—i. +di. )]
(1,t')

—u g n(~ntp+hpi, —uN, /2
I

H—:—T g g rit hatt +&Sco/2+ (gt+(I)nt
&i, r & l, cr

+~&0t0t .
1

(2.1)

+~s/2( I —q) g (di +di)ni
1

h~b —= g dt dt u —=s (2q —
q ),

1

(2.6)

(2.7)

Here T is the transfer energy of an electron between
neighboring two lattice sites I and I' of a simple cubic
crystal, and +&i i. ) means the summation over all neigh-
boring pairs of sites. gI is the creation operator of an
electron localized at site I with spin cr ( =a, P, where a
denotes the up-spin and P denotes the down one). S is the
site-diagonal e-ph coupling energy. gt is the creation
operator of a phonon localized at site 1 with the energy cp,

and nI ——gI gI . The interelectron Coulombic repulsion
is completely neglected for simplicity. It is expedient to
cast all quantities into dimensionless forms as

h =H /cp, t—:T/—co, s =—S/cp, (2.2)

M =exp Vs/2q g (gl —(I )nt (2.3)

and this notation will be used hereafter.
As is already well known, each electron in the

electron-phonon coupled system forms a polaron with a
phonon cloud around itself, and the thickness of this
cloud is of great importance. In the case of the one-
electron problem (N, =1), it is mainly determined by the
competition between t and s. However, in the case of the
many-electron system (N, )&1), it is also determined by
the electron density c = (N, /2N), as well as by the nature
of the Fermi surface and the crystal structure. In order
to take these effects into account, we introduce a dis-
placement operator ( —=M) for phonon as

where the first term of Eq. (2.6) denotes the transfer of a
polaron, the second one denotes the attraction between
two polarons, and the third one denotes the Hamiltonian
of new phonon. The last term [Eq. (2.7)] denotes the re-
sidual linear interaction between the new phonon and the
polaron, which is not taken into account by the transfor-
mation M.

Let us now set up an effective Hamiltonian of a many-
polaron system. Since the coordinate of the phonon has
already been displaced by M so as to take the e-ph cou-
pling into account, the equilibrium state of the new pho-
non acts as our reference state. The effective Hamiltoni-
an of our many-polaron system ( = hp ) in this equilibrium
state can be defined as

hp —=Tr i,(e '")/Tr(e '"), 8=co/ks T„~, (2.8)

where Tr „means the trace in the phonon space, and 0
denotes the reciprocal temperature ( T„ is the tempera-
ture). hp is given as

hp = —tX g Q ai ai —ucN —u + n, n,p, (2.9)
(i, ~ & 1

where X is the reduction factor of the transfer energy due
to the overlap integral of the phonon clouds between two
neighboring sites I and 1':

l, o.

X=exp( —sq /2) . (2.10)
where q is the variationa1 parameter that denotes the
thickness of the phonon cloud around the electron. At
the present stage, it is unknown but will be determined
later. As inferred from Migdal's theorem, it will be very

Here, we have neglected the thermal excitation of the
phonon, assuming the temperature is low; co »kz T„„.
Using ho, thus defined, we can divide h into four parts as
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h =hp+hph+h ) +h2

h, —:v s/2(1 —q) g (dl +d()n(
l, o

h2= —t g ga(~a(

(2.1 1)

(2.12)

h=—h —pX, ,

ho—=ho-pW

(2. 14)

(2.15)

and we also transform them into the following Nambu
representation:

aia ~~& asap ~iz (2.16)

where Al; (i =1,2) is a new fermion operator. In terms
of them, ho is written as

ho= Q E (AkAk(—k( Ak2Ak2)
k

—u g A(1A(2A(2A(, + g Ek ucN, —
I k

(2.17)

Ek ——ek
—

(L(, ek =— tX g e-
(t,o)

1/2 —ikl gkl
1

(2. 18)

(2.19)

where k is the wave vector of electron. h] and hz are also
rewritten as

h, =&s/2(1 —q) g (d, +d, )(A„A» A(2A»), —(2.20)
1

h2 = t g ( A(1A('1 Al'2A(. 2)

X {exp[1/s/2q(d( d( —dl +dl )) X—
) . —

X texp[1/s/2q(d(t dl——d(t+d(, )]—X),
(2.13)

where h, denotes the aforementioned residual interaction
and h2 denotes the difference between the real transfer
and the averaged one.

As shown in our previous paper, the unitary transfor-
mation M must also take a frozen part of lattice distor-
tion into account when we want to study the possibility
of a CDW state. However, throughout the present paper,
we will completely neglect this possibility, and concen-
trate only on the SP state for simplicity. In order to
study the SP state, it is rather convenient to describe all
the energies from the chemical potential p. Hence, we
define Hamiltonians h and ho, which are referenced from

p, as

uc N——uQ Q (A((A(2+ A(2A(, )+uQ N,
I

(3.1)

where the first term of the right-hand side comes from
the diagonal decoupling and the second one comes from
off-diagonal decoupling. Q in Eq. (3.1) is the order pa-
rameter defined as

Q —= g N '( A((A(2),
t

(3.2)

where ( ) is the expectation value of . . This Q, at
present stage, is unknown, and should be determined
self-consistently. Using this approximated form for the
attraction term, we can reduce ho into a mean-field-

theory Hamiltonian h M„which has a 2 X 2 matrix form

hoch MF

Ek —F Ak
—&(Ak»Ak2) F E

k k

+uNQ —uc(c+1)N+ QEk, F= uQ . (3.3)—
k

This 2X2 matrix can be diagonalized by the following
unitary transformation from Ak; to a new fermion opera-
tor Zk,

Zk 1 cos(Pk ) sin((t k )

—sin($„) cos(())„) (3.4)
Zk2 ~k2

1))k
——arctan[( Y(, +Ek )' /( Yk Ek )' ], —

Y —(E2+F2)1/2 (3.5)

Here F in Eqs. (3.3) and (3.5) denotes the energy ga~, and

Y( is the energy of new quaiparticles created by Zk, and

Zk2. In terms of F and Yk, h MF is rewritten as

h M„—g Yk(Z„,Zk, +Zk2Z„2)+ uQ N uc (c + 1)N—
k

studied later in detail. We have two types of mean-field
theories. The one is the conventional BCS theory, being
useful in the weak-coupling region s « t, and the other is
the pseudospin-type mean-field theory ' for bipolarons,
being useful in the inverse-adiabatic and strong-coupling
limits 1))s))t.

In the former mean-field theory, the attraction term in

Eq. (2.17) is decoupled as

—u QA(, A(2A(2A(,
I

(2.21) + QEk —g Y„. (3.6)

In Eq. (2.20) we have neglected the occurrence of the uni-
form displacement of a phonon.

III. TWO MEAN-FIELD THEORIES

Let us now study the superconducting transition tem-
perature T, given by ho within the mean-field theories,
neglecting h, and hz. The effects of h, and h2 will be

F=u gN ' tanh(SYk/2) .
F

2Yk
(3.7)

Since the chemical potential p itself is still unknown, we
must determine it from the following condition:

Using this form of hMF, we can evaluate the thermal
average in Eq. (3.2), and can get the gap equation as
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(3.8)

After taking this average using h M„, we get an equation
for p as

QM„= —28 ' g ln(1+e ')
k

—uc(c+1)N+ g (El, —
YI, )+NF /u .

k

(3.11)

&I
c =

—,
' gN '

1 — tanh
YI

0Y~
2

(3.9) Using this form, we can determine q from the following
condition:

QM„= —8 'ln[Tr(e ")],
and, in terms of Y& and F, it is written by

(3.10)

The thickness parameter q is also still unknown, and we
determine it so as to minimize the total thermodynamic
potential. The thermodynamic potential (=QM„) within
this mean-field theory is given by

~MF =0.
Bg

(3.12)

In this extremization of QMF with respect to q, we can as-

sume that F and p are independent of q since the extremi-
zations with respect to Fand p have been already finished

by Eqs. (3.7) and (3.9). Thus, we get the following equa-
tion for q:

c(c+1)+Q
c(c+1)+Qz+p( ,' c)+ g——N 'tanh(8Y& /2)EI, /YI,

k

(3.13)

q =0-1 . (3.14)

These three equations for F, p, and q can be solved nu-
merically, and their qualitative results at T„=O are
summarized as follows. q increases from 0 to 1 as s/t in-
creases,

square brackets in Eq. (3.17) denotes the real transfer of a
bipolaron from l to I' through the second-order perturba-
tion of t, while the first two terms denote the virtual
transfer. To describe the superconducting state given by
H„we define a new effective Hamiltonian H„referenced
from the new chemical potential ( =p, ) of this system as

p changes from the Fermi energy (—:ef ) of a noninteract-
ing electron to —s ( —,

' —c),
H,:H, —p, 2—+Sl'

I

(3.19)

p=e ——s( —,
' —c) .f Y (3.15) and within the mean-field theory, we replace SI', SI", and

Sf in H, by their averages as

F increases from zero to s v'c (1—c),

F=O-s&c(l —c) . (3.16)
S; y N-'&S;& =c —

—,',
I

(3.20)

7, given by this theory increases as s It increase, just like
F.

SI"—+ g N '&S(")=F„SLI'=0 .
I

(3.21)

Let us now proceed to the inverse-adiabatic and the
strong coupling limits, 1)&s&&t. In this case, we can
take the effects of t within the second-order perturbation,
and can get the so-called pseudospin theory. In this case,
all the electrons in the energy band form singlet pairs,
called bipolarons, each of which is localized almost
within a single site. We can describe this many-polaron
system, using —,

' pseudospin assigned for each site,
wherein up-spin corresponds to the presence of a bipola-
ron, while down-spin corresponds to absence. Thus, we
get an effective pseudospin Hamiltonian H, as

H, = —2J g [(0.5+Sl')(0. 5 SI')—
+ (0.5 —Sl')(0. 5+SI' )

Here, Eq. (3.20) is nothing but the equation for the new
chemical potential p„and it is determined so as to be
consistent with the total number of bipolarons. F, in Eq.
(3.21) is the order parameter of superconductivity. By
this approximation, H, is reduced as

H, ~ 6NJ+24J g—[(c —
—,
' —p,')Sf F,SP], —

I

p,
' =p, /12J, (3.22)

and using this form, we get the following self-consistency
equations for p, and F, :

+Sr SI +Sr SI ], J= t /s, —

SI—=S("+i5f, —
(3.17)

(3.18)

where J is the pseudoexchange energy and SI (5=x, y,
and z) is the Pauli spin matrix. The last term in the

(c —
—,
' —p, )

c —0.5=-
2[(c —

—,
' —

p, ,') +F, ]'

Xtanh[128J[(c —
—,
' —p,,') +F, ]'

(3.23)
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F,
F, =

2[(c 1 & )2+F2]1/2

Xtanh[12OJ [(c —
—,
' —p,') +F, ]'

kz T, is determined from the following condition:

(3.24)

(ki
~
G(7 —7.')

~

k'i')

—:—TrIe "T+[A„,(7)A/, , (7')]I /Tr(e "),
A/„(7) =—e'"A/„e

~k/) = g X ' e'"'~li)
I

(4.1)

(4.2)

(4.3)

a&s,")
=1,

BF, F, =o

and its result becomes as

8, '—:k (/T, /co= 1 2J(0. 5—c)/arctanh(1 —2c) .

(3.25)

(3.26) ho hz+h (4.4)

where T+ is the time-ordering operator.
In order to rewrite Eq. (4.1) into a functional-integral

form, we cast ho in Eq. (2.17) into the following form:

In contrast to the conventional BCS-type mean-field
theory, this T, decreases as s increases, and hence, T,
takes its rnaxirnurn in the intermediate-coupling region.

where unimportant constant terms are dropped. hz is
given as

IV. FUNCTIONAL INTEGRAL FORMALISM
hid —= g Ek( A/1Ak, —Ak2Ak2),

k

(4.5)

In order to derive a unified theory which can combine
the aforementioned two mean-field theories, in this sec-
tion we will develop a functional-integral formalism for
the one-electron Green's function

G(7—7'} .

It has two time variables ~ and ~', and has a 2N X2N ma-
trix form in the space spanned by the Wannier functions
of electron ~li), (i =1,2), with up (i =1) or down (i =2)
spin at each lattice site l. Its element can be defined as

( A(1 A 12 A/2 All }']/ (4.6)

Using this form, we can rewrite Eq. (4.1) into the follow-
ing perturbation expansion form with respect to hi, h„
and h2.

while hi denotes the attraction with the following quad-
ratic form:

hl —= —u g [( A/1A(2+ A(2 A(1)2

I

(ki~G(7 7')~k'i')=——TrIe '" T+[Zo(8)Ak;(7)Ak; ( 7')]) /Tr Ie
'" T [+Z (80)]),

Zo(8)=—exp —f d7[hi(7)+h1(7)+h2(7)]
0

Here, instead of Eq. (4.2), the time evolution of an operator 0 is now given as

r( hK +h
h j —9 hK + h h j

(4.7)

(4.8)

(4.9)

The time integral of hi(7) in Eq. (4.8) can be formally rewritten into the double-time integral as

—f d7h, (7)=u $ f d7 f d7'5(7 7')I [A„(7)A—„(7)+A„(7)A„(7)][A„(7')A(,(7')+ A„(7')Al, (7')]
0 o o

and by using the sinusoidal function f (7 ),

—[ A„(7)A/2(7) —A/2(7}A(, (7 }][A(, (7') A/2(7') —A(2(7 ) A(1(7 )]I /4,
(4.10)

&2/Scos(v 7), m & —1, v —=2m. m /8,
f (7)= &2/Ssin(v 7), m ~1,

8 ' m=O,

5(7 7') in Eq. (4.10) c—an be expanded as

5(7—7')= g f (7)f (7'), m =0,+1,+2, . . . .

(4.11)

(4.12)

delhi ~ =u
0

l, m

Substituting Eq. (4.12) into Eq. (4.10), we can get a quadratic form of the attraction term

8 2
d7f (7)[A(, (7) A(2(7)+ A(2(7) A(, (7)]

0

8
d7f (7}[A(,(7) A,2(7) A/2(7}A„(7)]—

0
4 (4.13)
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and using the following Gaussian-integral formula for an operator 0:
0 /2 (2 )

—1/2f d oy —y /2

we can now linearize the quadratic form as

(4.14)

T+ exp — d ~ hl ~
0 I, m, i =1,2

(2n ) ' fdQI; exp
I, m, i =1,2

Q2 /2

XT exp v'u/2g dr f (r)[(QI i+'Ql 2)AIi('r)Au(r}+H. c.]
I, m

(4.15)

Thus, the interelectron attraction is rewritten into a linear interaction between electrons and a randomly fluctuating
field Qi; (i =1,2), which is nothing but the real (i =1) or the imaginary (i =2) part of the order parameter at site 1

with frequency v . From Eq. (4.15), we get the functional-integral form for the Green's function as

fdgI; exp —g Q, , /2 Trte " '" T +[Z(8) Ak(r) Ak; (r')]I
(ki(G(r r') —~k'i') = —' I, m, i

T

fdQI, exp —g Q&;/2 'TrIe " '" T [Z(8)]I
I, m, i =1,2 I, m, i

(4.16)

8Z(8)—:exp — dr h, (r)+h2(r) —&u/2g f (r)[(Q I, +ig&~ )2A I(i)rA (12)r+H. c]
0

I, m

(4.17)

Since this notation for the Green's function is exact, it includes both dynamical and static fluctuations of the order
parameter. However, our purpose in the present paper is to look for an interpolation theory that can unify the
aforementioned two mean-field theories. For this reason, we take only static (or thermal) fiuctuation of the real part of
the order parameter, m =0 and i =1. Hence, we define the static part QI as

Qi:Ql0 i /&28u

and in terms of it, the Green s function is rewritten as

(4.18)

(ki
~
G(r r')

~

k'i') —~—
I

f dQI Tr t e ' T [Z'(8) Al, ;(r)Ak; (r')] I
I

fdg, Tr[e '""o'T,[z(8)]I
(4.19)

8Z'(8)=—exp —f dr[h, (r)+h2(r)]
0

(4.20)

Here, ho(Q) is the unperturbed Hamiltonian defined by

ho(Q): h» +hI(Q)+ h&s +u g Ql
I

(4.21)

and hI(Q) denotes the linear interaction between QI and
electrons,

be determined self-consistently with the resultant Green's
function.

In order to make this self-consistency clear, we define
from Eq. (4.19), a componential Green's function

G(r —r', Q)

hr(Q )—:—u g QI ( A i, A I2+ H. c. ) .
I

(4.22)
for a given configuration of Q. Its element is given as

(ki~G(r —r, Q) ~k i')
In these formulas, Q symbolically denotes an N
dimensional vector

Q=(Qi Q2 . . QX» (4.23)

and the time evolution of an operator 0 is given by ho(Q)

who(Q) who(Q)O(r ~e ' Oe (4.24)

Thus, our system is now formally reduced to a one-
electron problem under statistically fluctuating random
field QI. However, the statistical distribution of Q should

I

Q(Q) = —0 'ln TrI e T+ [Z'(8)]], (4.26}

and, in terms of G(r —r', Q) and Q(Q) thus defined,

—Oho(Q)
TrIe T+[Z'(8)Ak;(r)Ak; (r')]I

Tr I e ' T [Z+'(8)] )

(4.25)

On the other hand, we can also define the componential
thermodynamic potential Q(Q) for a given configuration

Q,
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G(r —r') is given as

G(r r—')= g
I

0" 0
1/2

f dQ
—e[n(Q) —n}

h;(Q) —= —u y hl'(Q(),
I

hi((Q, ) = Q([Ii 1 )(121+Il2)(i 1
I ],

(4.34)

(4.3S)

XG(r —r', Q) .

Here 0 is the thermodynamic potential,
' 1/2

0" 00—:—8 'ln —80(Q)

(4.27}

(4.28}

and IA,(Q) } in Eq. (4.32) is the eigenvector corresponding
to E~(Q). Using h» and hi(Q), thus defined, we can
write the Fourier transform of the zero-order componen-
tial Green's function Go(r —r', Q) as

G()(ice, Q) = Ii cu —[h»+ hr'(Q)] J

(ki
I Go(r r', Q)—I k'i ')

—eh 0(Q)Tr[e ' T+[Ak, (r)Ak (r )]I

T'(' eho(Q))
(4.29)

and the corresponding zero-order componential thermo-
dynamic potential Qo(Q) can also be defined as

I

Qo(Q)= —8 'ln Tr(e ) . (4.30)

Since ho(Q) is the one-electron Hamiltonian, we can
formally rewrite it as

Q()(Q)=u g Q&+8 'Eln(1 —e o)
I

(4.31)

Here, the second term denotes the free energy of pho-
nons, and it will be neglected hereafter, while Ei(Q) is
the A,th eigenvalue of an electron given by the following
equation:

[h»+ hl'(Q) ] I ~(Q) ) =Eg(Q) I ~(Q) ) (4.32)

In this formula, h» and hi(Q) are the one-electron ver-
sions ofh» and hi(Q);

and we can see from Eq. (4.27) that the factor
exp[ —8Q(Q)] gives the statistical weight of each
configuration.

The zero-order Green's function in the expansion in
Eq. (4.2S) is of great importance, since the polaron effects
have already been included in it. This zero-order corn-
ponential Green's function

G()(r —r', Q)

can be defined in the following way:

co =n(2m'+ I)/8, (4.36)

(4.37)

The zero-order thermodynamic potential 00, the Green's

function, and its Fourier component can all be obtained
from their componential ones by integrating them over Q
as

1/2

Qo ———8 'ln
I

G,(r—r') —= g
I

Q" g

fdQ, e
'"""

1/2 —8[00(Q ) —Ao]d, e

(4.38)

X Go(r —r', Q),
8 (CO 7

Go(ict) ) = dr Go(r)e
0

(4.39)

(4.40)

where exp[ —800(Q}] is the statistical weight of each
componential Green's function. However, as shown in

Eq. (4.37), this weight itself depends on the Green's func-
tion, and hence all the quantities must be determined
self-consistently.

In the context of this functional-integral formalism, let
us reformulate the previous BCS-type mean-field theory
shown in Eqs. (3.1) and (3.2). In the calculation of Qo us-

ing Eqs. (4.21), (4.22), (4.30), and (4.38), we can divide Q(
into its mean value Q and the deviation b, Q& therefrom as

Q(=~Q(+Q (4.41)

and Eq. (4.31) can also be rewritten as

Qo(Q)=u QQ&
I

+8 ' fdEln(1+e o
) Tr[G()(E+ie, Q)] .

h» = g Ei (Q)[Ik 1 )(k 1
I

—Ik2}(k2I], (4.33} and in terms of b, Q( and Q, Qo is given as

Q" g
1/2

exp —gQ Q I Tr {xp —Q QMF
—Q Q I AI1AI2 +H c

I I

(4.42}

Here, h „is the same as shown in Eq. (3.3}except constant terms. When the following condition is satisfied:

Tr[e ( Aj) A(i Q)]ehMF

=0
( MF)

we can neglect the linear deviation of Q, from its mean-value Q, and this condition is equal to Eq. (3.2). Thus, our

theory can reproduce the BCS-type mean-field theory.
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V. TWO-STATE APPROXIMATION AND COHERENT-POTENTIAL APPROXIMATION

In order to derive a unified theory in the context of the functional-integral form given in the preceding section, let us
return to Eq. (4.38) and consider its physical significance in connection with the broken symmetry and the phase transi-
tion. It can be rewritten as

~ "'=n fdaP(a) ~ P— dETr Go E+ie, ln 1+e (5.1)

Pl(Ql ) —=

7T

1/2 —Dug
e (5.2)

The quantity in the large parenthesis in Eq. (5.1) denotes
the thermodynamic potential of electrons at a given
configuration Q, and the summation over all possible
configuration with the weight

rI p(a)
I

gives the total thermodynamic potential. When a broken
symmetry occurs, however, the multidimensional
configuration space spanned by Q, , Q2, . . . , QN will be
separated into small regions which are independent of
each other. In each region, there is a central
configuration around which the local thermodynamic po-
tential takes an extreme value. As for the order parame-
ter, it takes a nonzero value in each local region, al-
though its summation over all local regions becomes
zero. How to find such a local region appropriately is a
basic problem in the theory for phase transition. Howev-
er, we can put this problem in a somewhat different way.
The summation over Q within such a local region can
also be described by Eq. (5.1) if we replace Pl(Ql ) by a
new weight function P/'(Ql) that effectively reflects this
conditional summation over Q. In this case, Pt (Ql ) has a
polarization in Ql space so as to give a nonzero order pa-
rameter, although the original weight function Pl(gl ) has

not. Thus the problem to find a local region is now con-
verted into the problem to find P/'. For such P/'(Ql ), we
assume the following simple form:

—8uQ(
Pl'(Ql ) =e 'P'i(Ql »
»(Qi ) =y+ ~—(Ql Q )+y- 5(Ql +Q»
y++y —=

&

(5.3)

where Ql takes only two values, Q and —Q with statisti-
cal weights y+ and y, which are unknown at the
present stage and will be determined later, self-
consistently.

Although this two-state approximation for P' is very
simple, it can easily be seen covering the two limiting
cases mentioned before. We can get the BCS theory, if
we take y =0 and y+ =1, while the aforementioned
mean-field theory for bipolarons is nothing but the two-
state approximation. Thus, our theory is an interpolation
between the two kinds of mean-field theories; the BCS
type and the pseudospin type. In this sense, the local or-
der parameter Ql need not be a complex number. In or-
der to determine this P (Qi)lself-consistently, we also
define another distribution function Pt '(Ql ) as

P/"(Ql)=Pl(Ql) g f dQlP/'. (Qi. ) exp — f dE Tr[G 0(E +i eQ)]1 n(1 +e
'

)
I' (41) 7r

(5.4)

It gives the polarization at site 1, induced by the polariza-
tion Pl' (Ql ) of its surrounding sites 1 (Wl). Since all the
sites must be equivalent, the origin of the polarization
and the resultant polarization should be equal. Hence,
we can assume as

Pl ( Ql ) Pl ( Ql » (5.5)

0"(Ql)—:—8 'lnP, "(Ql) . (5.6)

It can be easily seen that when T„=O and T=0,
0"(Qi) has two minima with equal depths at Ql=+Q,

and it gives a self-consistency equation for y+.
Let us now consider the nature of this equation in de-

tail. From Eq. (5.4), we define an efFective thermodynam-
ic potential 0"(Ql) of a site 1 under the polarized cir-
cumstance as

since the site 1 is not suffered by the polarization of sur-
rounding sites even if we take y =0 in Eq. (5.3). As T
increases, however, the two depths become unequal as
schematically shown by curves a and b in Fig. 1, since the
electrons at site l can move to l' and see the polarization
therein. If T increases further, it will finally become a
single-well curve like c. In this single-well situation, the
original assumption for Pl'(Ql ) described by Eq. (5.3) is of
no sense, and Eq. (5.5) cannot give a self-consistent solu-
tion except y =0. Thus, we must return to the BCS-
type simple solution when the two points Q, =Q and

Ql = —Q are not separated by a potential barrier. This is
the limitation for us to use Eq. (5.5).

Even if we restricted ourselves within this simplified
distribution of Pi'(Ql ), we, in the next step, have to per-
form the integral over Ql in Eq. (5.1), which can be
rewritten as
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exp —™dgTr G g+jg ln J+e (5.7)

«»=g fdQ(p((Q)
l

(5.8)

In order to perform this average over Q(, we take the fol-
lowing two approximations: the neglect of higher-order
cumulants more than the first, and the coherent-potential
approximation. Within the first approximation, we get as

Qo~uNQ

called the coherent potential, '

hi( ( Ql ) VI (E + ( E

V((E+ie)—:g V;;.(E+ie)~li)(li'~,

(5.10)

(5.11)

+8 'f dEln(1+e ) ™Tr((G(E+ie,Q)» .

(5.9)

This approximation gives the exact result in the strong-

coupling limit ( T =O, SAO), and also in the weak-
coupling limit ( TAO, S =0), and hence it acts as an inter-
polation in intermediate cases. The second approxima-
tion is to replace the randomly fluctuating part hI((Q( ) of
the Green's function by a complex self-energy V, (E +i e),

z =iso or E+ie . (5.12)

This self-energy is determined under the condition that
the single-site scattering due to this replacement Eq.
(5.10) is zero,

where V,,' is the element of VI, assumed to be indepen-

dent of 1. The averaged Green's function Gc(z) within

this approximation is given as

((Go(z, Q) »~Gc(z)—:z —
h(r

—u y V(
I

Gc((E+ie)=((Gc((E+ie)I[1+u [hI((Q() V((E+ie—)]Gc((E+ie)] » (5.13)

where Gc& is a 2 X 2 matrix of Gc at a site 1,

Gcl(E+ie)= g~li—)(li~Gc(E+ie)~li')(li'~t. (5.14)

V,,
= u [( V, ,' V...—Q )G. ..+ U, , G, ,

+ V;;(G;; V;.;+G, , V...)], (5.15)

I-
Z
LUI-0
CL

C3

Z O'

0 Cl

CC
UJ

As shown in our previous paper, in the practical calcula-
tions we have to solve the following nonlinear equations
for V;;:

V...=Q+u[(V;, —Q )G;;+ V(;V;;G;;

+ V;;(G„V;;+G;;V;; )],
Q—:(y+ —y )Q, (i,i')=(1,2) or (2, 1}

(5.16)

(5.17)

P("(Q()~1'((Q()

Xexp f dE ln(1+e "
)

X —™Tr((G, (E+i~,Q) &&,

(5.18)

(( », —= g f dQ, p, (Q, ). .
I' ( 41)

(5.19)

((Go(E +if, Q) »(~Gc/[ I+u [hI((Q(}—V(]GCI .

where G;; in Eqs. (5.15), (5.16), and (5.17) denotes the ele-

ment of Gc( given by Eq. (5.14).
As for the average over Q( (1'%1}in Eq. (5.4), we also

use the same two approximations, and can get as

I

0 Q

(5.20)

LOCAL ORDER PARAMETER

FIG. 1. The schematic nature of fl"(Q() as a function of Q(.

Here the average over Q( at surrounding sites 1' (Xl) is

to replace hl& by VI . After the integration by parts over
E in Eq. (5.18), we can get a well-known form for the
thermodynamic potential as
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Eln 1+e Tr((Go ))& = —8fdE n (E) Tr(ln((Go))l ), n (E)=(eoE+ I) (5.21)

and using this result, we get our final equation for y+ as

Im [1+u [hr', ( —Q) —V(]Ger I

y /y+ =exp —8 IdE n (E)Tr ln
'7T

[ 1+u [hli( Q )
—

Vt )Gci I

wherein the trace of the 2 X 2 matrix becomes

(5.22)

Tr(ln[1+u [hli(+Q) K]Gci l ) =lnf 1 —u [ V»G»+ Vz2Gz2+( V,2+ Q)G2, +( V2, T Q )G,2]

+ u [ 11 V22 ( V12 + Q )( V21 + Q )(G11G22 G2l 12 (5.23)

The transition temperature T, is determined from Eq.
(5.22) as the highest temperature that can give a nontrivi-
al solution,

(5.24)

Let us now see how this theory can reproduce the
aforementioned two mean-field theories shown in Sec. III.
Since we have already mentioned the BCS-type theory
occasionally, we will now examine our result only in the
strong-coupling and the inverse-adiabatic limits,
1 »s » t, in comparison with Eq. (3.26). In this case we
can neglect t as the zero-order approximation and get
two levels at each site, as schematically shown in Fig. 2.
When Qi =Q, we denote these two levels i+ ) and i

—),
and they are given as 24J8+c (1—c jy ky+ oce (5.29)

Using this energy-level scheme, we can calculate the en-

ergy gain due to the second-order perturbation of t,
which causes the virtual intersite mixing between occu-
pied levels and unoccupied levels, as shown in Fig. 2. We
can easily see that the mixing between i+ ) and i+ )' is
zero, because the up-spin electrons and the down-spin
ones have opposite signs of the transfer with each other
in Eq. (2.17). In taking the average over Q, , we can see
that these two sets of levels exist with a statistical weight

y+ and y as shown in Fig. 2, and using this result we
can calculate the total energy gain due to the second-
order perturbation of t. When Q, = —Q, the situation is
entirely the same, and we finally get from Eq. (5.22),

i+ }=&cil 1)+&I—c ~l2),

~

—)=—&1—c iI I)+&c i12) . (5.26) 8, ' —= ks T, /ro = 12J&c ( 1 —c ) .

(5.25) It gives a T, defined by

(5.30)

In this calculation, we have used the limiting values of q,
p, and F, which are shown in Eqs. (3.14), (3.15), and
(3.16). When QI. =Q (l'Al), we also have the same two
levels in the surrounding sites, while, when QI = —Q, we

get another two levels denoted i+)' and i

—)'. They are
given as

Equations (5.30) and (3.26) give almost same results as
shown in Fig. 3, and they are equal when c =0.5 as
shown in our previous paper.

(5.27)

(5.28)

CENTRAL SITE 0 SURROUNDING SITES 0" (wg)

UNOCCUPIED
LEVELS

r//7/vr/

OCCUPIED
LEVELS

I-) S
2

I+) --~S

m/r nnnn r/rinnwrzrrnr

I

—)'= —&c ~1'I)+&1—c il'2),

I+ )'=&1—c ll'1)+&c ll'2) . U
K
UJ
Z
UJ

CC
UJ
CL Z
UJI-

X
o ~

0
(6
Z UJ

CC
~ (n

CL

2

0
0

I

0.2
I

0.4 C

FIG. 2. Localized energy levels at each site, T=0, Q, =g.
y+ and y are the statistical weights of each level. I is the
relevant site and I' is its environmental sites. The long arrows
denote the mixing between levels through T.

ELECTRON DENSITY

FIG. 3. T, as a function of the electron density c ( =N, /2N)
in the inverse-adiabatic and strong-coupling limits, co »S» T.
J=T'/Sco The dashed .line is the mean-field theory: Eq.
(3.26).
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VI. RESIDUAL INTERACTIONS

As the effective Hamiltonian for our many-polaron sys-
tem, we have used hp instead of h, neglecting h] and h2
given by Eq. (2.20) and (2.21). Therefore, in the weak-
coupling limit, s « 1 « t, our theory does not coincide
with the Eliashberg equation, ' which is based on the
second-order perturbation with respect to s.

In order to remedy this apparent defect, we take the
effects of h& into account by the perturbation, using the
present framework of the theory. In this case, the order

I

parameter ( A&, A&&), the thickness of the phonon cloud
q, and the chemical potential p will all change from their
old values. However, the effects of h

&
become zero in the

strong-coupling limit because of the factor (1—q) includ-
ed in it, and hence, we assume such change occurs only in
the order parameter Q without any changes of q and p.

Therefore, at first we calculate this new value ( =
Q ')

of ( AI, AI2) within the conventional BCS theory. For
this aim, we will expand the Green's function given by
Eq. (4.7} straightforwardly with respect to the attraction
h, andh, as

(ki(G(r r')—fk'i') =(ki)G00(r r')f—k'i')

+ g f dr, (ki /G00(7 ry)/li)(li'/G00(ry 7')/k'i')[ —u(1 5;—; )(li/G(+0)fli')]
0

+y f dr, f dr, (ki(G&(r rz)f!i—)(li'[G&(1y 7')[k'i')
o

'
o

X ——(1—q) (1—5,,')(ii~6(~2 —r, }~li')D(r~ —r, ) + (6.1)

where Gpp is the Green's function given only by h&, and the second term denotes the first-order perturbation of the at-
traction. The third term is the second-order perturbation of h „wherein D (rz —

w, ) denotes the phonon Green's func-
tion

Tr(e '"T+ [[di (r2)+d&(rz)][dr(r, )+dr(r, )]J )
D( ~

r—~, )—=
Oh nTr(e '" )

(6.2}

In the above expansion, we have taken into account only
the off-diagonal part of the interaction and the diagonal
part is neglected, since the polaron effect has already
been included in hz. As for higher-order terms not writ-
ten explicitly in Eq. (6.1), we take only the diagrams
which are reducible into these lowest two terms. Taking
the Fourier component of this equation, we can get the
Green's function GM„based on the BCS-type mean-field
theory instead of the exact Green's function G as

W;;. (ice )=——(1 q) 8 'N—

X g D(iv, )(li~GMF(iv .)~li'),
l, m'

D(iv ):—(1+iv ) '+(1 iv )— (6.6)

while W;;. comes from the third term of Eq. (6.1) and is

given as

G(iso )~GMF(i co ) —= [ice —h» WMF(—ice )]

(6.3}

where FMF denotes the of-diagonal self-energy, coming
from the two origins shown in Eq. (6.1), and it is defined
as

Here D (i v ) is the Fourier component of D (r). Equa-
tions (6.3)—(6.6) form a set of simultaneous equations,
since 8';,"'* is given by GM„ itself, and if 8';;. =0, our
theory becomes equal to the previous BCS-type mean-
field theory. In order to perform the summation over m'
in Eqs. (6.5) and (6.6), we define the imaginary part of the
off-diagonal element as

X[W,,"(ice )+W';; (iso )](ii'~ . (6.4) p;; "(E)= — (li ~GMF(E+ie)~li'), (6.7)

W~ comes from the second term of Eq. (6.1) and is given
as

W, ,
", (iso )—= uo 'N ' ge~—™0(li/GMF(ice )[li'),

and in terms of it, we can formally rewrite GMF as

MF(Ei )
(li~GMF(ice )~li')= fdE'

'~m
(6.8)

I, m'

(6.5)
We substitute this new form into Eqs. (6.5) and (6.6), and
can get as
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8;-,"'= —u dE'p, ,-.
"E' n E' (6.9) and using these results, we finally get the new value Q

' of
(Ai|W„) as

W, ,'(E +i e) = ——(1—q)
Q

'= —u f dE'[p|2"(E') +p~,"(E')]n(E')/2 . (6.12)

X f dE'p;;."(E')

X
1 n(—E')

E+i e (E'—+1)

n (E'}
E +i e (E'—1)—

which are essentially same as the Eliashberg equation
when q && 1. In practical calculations, we can use the fol-
lowing form of the off-diagonal element:

{li~GM„(E+ie)~li')

As mentioned occasionally, this value becomes different
from Q only in the weak-coupling case, since this
difference comes from h &.

Next let us take into account the effects of thermal
fluctuation of this order parameter by the method
developed in the previous sections. Similar to Eq. (5.3},
we approximate that QI fluctuates only between two
values Q

' and —Q ', with the weight y '+ and y
'

(y'+ +y' =1). In this case, the Green's function is also
given by the average of the componential one given by
Eq. (4.25). It is written as

= gN '(W" + W )/2Yt
k

G(~ ~') =—(( G (r—~', Q) ))', (6.13)

X [(E+ie YI )—' (E+ie—+ YI ) '],
Yr —[E2+(W A + WB )( WA + WB )]1/2 (6.11)

where (( ))' denotes the above-mentioned new aver-
age of over Qi, similar to Eq. (5.8). By expanding
this Green's function with respect h „we get

(ki~G(~ r')~k—'i')

I

,' f d~—, f—dr2((TrIe ' T+ [21„(r)h,(r, )h, (v2)Ak; (~')]I/Tr(e ' )))'+ (6.14)
0 0

where the first term denotes the free propagation in this random fluctuation and the second term denotes the second-
order scattering due to h, . To be consistent with Eq. (6.1), we take only the off-diagonal element of this second-order
effect, and as for the free propagation we replace them by the Green's function given by the CPA as

(ki ~6(r r') ~k'i'}—

=(ki(Gc(w w'))k'i'}+ g—f dr& f d~2(ki)Gc(r wz))li }(li'—[Gc(r& r'))k'i'}—
0 0

X ——(1—q) (1 5;; )(li~—G(rz. r, ))li'}—D(r2 —~, )) + (6.15)

where Gc is the Green's function given by the new CPA.
It should be noted that this Gz is not equal to G& of the
previous section, since the distribution of QI has now be-

come different from the previous section. %e can denote
it in terms of the new self-energy V; as

W, (ice )—:g ~li)(1 5,, )W,", (—in) ')(li'~, (6.19)

G(ice ) ~Gcc(ice ):[Gc(ice )
' —W, (ice )]—

(6.18)

Gc(z)= z — h» —u g VI'(z)
I

V,'(z)—= y V; (z)~li)(1!'~ .

(6.16)

(6.17)

where 8"; is the off-diagonal element corning from the
second term of Eq. (6.15) and is defined by

This self-energy V,' must be determined by a similar
equation as that of Eq. {5.13), and it will be mentioned
later. After taking the Fourier transform of Eq. (6.15),
we can get a new CPA Green's function G&c instead of
the exact one G as

W,', , (ice ):———(1—q) 8 'N

X g D(iv )(li~Gcc(ice ))li') .
m', I

(6.20)
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Similar to Eq. (6.3) given by the mean-field theory, Eqs.
(6.18), (6.19), and (6.20) form a set of simultaneous equa-
tions, and can be solved by the same method as shown in
Eqs. (6.7), (6.8), (6.9), and (6.10).

In this case, however, equations for y+ and V; must
also be solved simultaneously, and these equations are
essentially the same as Eqs. (5.22) and (5.13), if we replace
Gc and V by G&& and V', respectively. It will be not
necessary for us to repeat them again. We have thus ob-
tained a new theory that can interpolate two mean-field
theories: the BCS-type and the pseudospin type, and this
new theory also becomes identical to the Eliashberg
theory in the weak-coupling limit, because in this case we
get q &&1.

We can also take the effects of hz into account, accord-
ing to the similar principle given above. However, this
term gives only small effects, since in both limits of weak
and strong couplings it becomes zero.

z T
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FIG. 5. The phase boundary between the BCS region and the
bipolaronic region as a function of the electron density c and S.
T/co=2 and 3.5.

VII. NUMERICAL RESULTS
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FIG. 4. Thickness of the phonon cloud q as a function of S.
c =0.3. T/co=2 and 3.5.

Let us now see numerical results obtained by the
theory developed in previous sections. In the inverse adi-
abatic case, T/co & 1, we cannot get any new results other
than reported in our previous paper. In this case, we get
q =1 irrespective of the ratio sIt, and hence h, is always
zero. In our previous paper, however, we were concerned
with only the ¹iteN-electron system (c =0.5). In the
present paper, we could clarify the c dependence of T, .
Its result in the strong-coupling limit, sit &)1, is shown
in Fig. 3. From this figure, we can see that the pseudos-
pin type mean-field theory and our unified theory give al-
most the same results, although they are not exactly the
same except for the case c =0.5.

On the other hand, in the case of a rather large but
finite value of T/m, we get a discontinuous increase of q
from a small value to 1, as s increases. As shown in Fig.
4, in the weak region, it is about 0.1 because of the
Migdal's theorem; however, it increases abruptly to 1.
This is nothing but the transition from the BCS-type state
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FIG 6 T as a function of S. c =0 3 T/co=2and 3 5

to the bipolaronic state. The origin of this change in the
thickness of the phonon cloud is essentially the same as
that of the one-body problem of the electron, as men-
tioned in Sec. I. However, the critical value of S/T is
smaller than that of the one-body case because the total
energy gain due to the e-ph coupling has a many-body na-
ture. In fact, the critical value of S/T increases as c de-
creases, as shown in Fig. 5. In connection with such c
dependence, we can also see from Fig. 5 that the back
transition from the bipolaronic state to the BCS state
occurs as we decrease c, keeping S constant. We will re-
turn to this point later.

Figure 6 shows T, as a function of Slee at c =0.3. In
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the BCS region, T, increases rapidly as S/to increases,
while it decreases as S/to increases in the strong-coupling
region. The transition between two regions is almost
discontinuous and in the case of T/co=3. 5, T, decreases
in its two orders of magnitude. As seen from the
difference between the case T/co =3.5 and that of
T/to=2. 5, this discontinuity decreases as T/co decreases.
This comes mainly from the reason that the retardation
effect decreases as T/co decreases.

In order to compare these theoretical results to the
newly found high-temperature superconductors of transi-
tion metal oxides, ' let us discuss the nature of the bi-
polaronic state. If we assume that the full bandwidth
12T is 4 eV and the phonon energy co is 0.08 eV, we get
T/to=3. 5. It is a typical case realized in these metal-
oxides materials, and in this case, T, of the bipolaronic
state becomes too small to be observed. Thus, we can ob-
serve only the bipolaronic state above T„wherein there
is no coherence between bipolarons, although the pairing
within a single bipolaron is still well established. Such a
state is usually called the charge glass or the bipolaron
glass in analogy with the spin glass. It has no paramag-
netic susceptibility, since the spin has already disap-
peared by the pairing. It also has no long-range spatial
order of charge, but has an optical gap in the one-body
excitation spectrum which corresponds to the pair break-
ing. The absence of long-range order allows us to distin-
guish this state from the CDW state. As for the electric
conductivity, it will give small value, because the bipola-
ron is heavy.

According to the recent experimental studies " on
Ba& K BiO&, the "insulating state" of this material in

the region x =0.35 has no long-range CDW-type order
that can result in the strong mixed valence of Bi. Howev-
er, it has a large optical gap in the visible region. On the
other hand, when x becomes larger, x &0.375, the elec-
trons of this material are in the BCS-type superconduct-
ing state with T, of 30 K. The increase of x in this ma-
terial just corresponds to the decrease of the electron
number in the 6s band of Bi, and x =0.375 is nearly
equal to the case c =0.3 of our theory. Thus, the
insulator-superconductor transition of this material is
one of possible candidates for the bipolaron-glass to BCS
transition predicted in Figs. 4-6.

Vni. CONCr. USION ~No OI.SCUSSION

As mentioned occasionally, we have shown that T,
discontinuously changes from the BCS region to the bipo-
laronic region as the e-ph coupling s increases, provided
the ratio T/co is large. It is also shown that the back
transition occurs as we decrease the electron number c.

Because of simplicity, the CDW-type instability is ex-
cluded from the beginning, and hence we have to clarify
the relative stability between the CDW state and the bi-
polaronic state. It is our theme for future study. Howev-
er, we can say that there will be many cases wherein the
bipolaronic state becomes more stable than the CDW
state, depending on the crystal structure, the dispersion
relation of the electron energy band, the energy of the
phonon, and the electron concentration. The presence of
randomness and other inhomogeneous natures of crystals
are also expected to favor the bipolaronic state rather
than the CDW state.
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