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Numerical study of long Josephson junctions coupled to a high-Q cavity
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Long Josephson junctions coupled to a high-Q resonator are studied numerically and compared

with recently published approximative results, obtained by using a perturbative approach to the

fluxon motion in the junction. The similarities and differences in the two approaches are discussed.

Recently great interest has been devoted to the subject
of phase locking of soliton motion in long Josephson
junctions (LJJ's). This interest is caused by the possible
future use of phase-locked LJJ's as extremely narrow-
linewidth microwave sources in integrated superconduct-
ing heterodyne receivers. ' In a system of phaselocked
LJJ's it is possible to control the output frequency and at
the same time to increase the low output power of a sin-
gle junction. Experiments in the X band have shown
that phase locking between several LJJ's is possible. Nu-
merical simulations, using the so-called particle-map ap-
proach for modeling the soliton motion in the LJJ, have
demonstrated phase locking between two LJJ's coupled
through a linear resonator.

The purpose of the present paper is to study the phase
locking of a LJJ to a cavity and to another LJJ through a
cavity, by doing a full numerical simulation of the corre-
sponding partial differential equation (PDE). This sub-
ject is in fact quite similar to the study made in Ref. 3,
and a comparison of the results of the full sine-Gordon
wave equation and the particle-map approach used can
be made. As in Ref. 3, the configuration of one or more
junctions connected to a linear resonator is intended as a
highly simplified model of the 20-junction experimental
array described by Pagano et al. Their device [see Fig.
1(c) of Ref. 2] consisted of a series-biased array of
overlap-geometry junctions embedded near the center of
a linear distributed resonator which is one half-
wavelength long at the operating frequency ( —10 GHz),
the whole of which is in turn coupled to a microstrip
transmission line to carry the generated signals to a spec-
trum analyzer. Limiting attention to just the half-
wavelength mode of oscillation, we model such a distri-
buted resonator as a lumped LC tank, as shown schemati-
cally in Fig. 1 of Ref. 3.

As we shall see, some details are different in the two
treatments, but the overall characteristic features are the
same. It should here be noted that the map approach is
valid only when the LJJ is relatively long, since this mod-
el considers the soliton to be a relativistic particle with no
spatial extension. The PDE approach also provides more

$„(0,t) = —tco,

P„(l,t) =x,
(2)

where Ko and ~& are the normalized currents Rowing into
the LJJ through the boundaries at x =0 and x =l. The
corresponding power input to the LJJ through the boun-
daries is then given by

P =P„(O,t)P, (O, t)+P„(l,t)P, (l, t) .

By connecting the boundary at x = l to a parallel LC tank
circuit through a coupling resistance R we get the nor-
malized boundary conditions:

tc, =—[ V, (t) P, (l, t)), —1
(4a)

(4b}

Vo „=— Vo ((t) Vo(t)+ P„(l,t) . —(4c}
1 1 1

0 tf RC 0 t LC 0 RC tf

detailed information than the map about the interaction
mechanism between the nonlinear soliton resonator and
the linear resonator coupled to its boundary. The cost of
this is, of course, a much longer computing time.

As noted above, the perturbed sine-Gordon equation
(PSGE) is used to describe the dynamics of an LJJ.

P„„—P„—sing =a/, rl, —

where P is the difference in phase between the two quan-
tum mechanical wave functions belonging to the super-
conductors on each side of the junction. The spatial di-
mension, x, is normalized to the Josephson penetration
depth A,J and time t to the inverse Josephson plasma fre-
quency 1/co . The perturbations to the pure sine-Gordon
equation [right-hand side of Eq. (1)] are given by the
damping term a4), corresponding to the tunneling losses
and the external bias current density q.

The finite length of the LJJ enters the problem through
specification of the boundary conditions at x =0 and
x =I.
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Here P, (x, t) is the normalized instantaneous voltage
across the junction, Vo(r) the tank voltage, and

P, (0, t) =0 is assumed. Voltages are normalized to
A~ /2e. We note here that instead of specifying R, L, C
we may specify the normalized cavity resonance frequen-
cy by

period of the tank motion, as also seen from Fig. 1(a). By
choosing the tank resonance frequency coo smaller, the
soliton reflection time will of course be relatively smaller;
hence small values of coo will increase the validity of the
particle model used in Ref. 3. A decreased value of coo

should of course be considered together with an increased

coo= 1/(LCeo„) —a

the cavity damping constant a = 1/(2RCco ) and the cou-
pling resistor R, where R below will be understood nor-
malized to the characteristic impedance +L /C, where L
and C are the inductance and capacitance per unit length
of the LJJ.

The equations to solve for a single junction connected
to the tank are then Eq. (1) and Eqs. (4). This is done by
discretizing the spatial dimension and approximating the
spatial derivative by a fourth-order five-point finite
difference in the interior of the system and a second-order
three-point finite difference near the boundaries. This
combined five- and three-point approximation to the
second-order spatial derivative of P has been necessary to
eliminate diverging spurious oscillations, caused by the
discretization of the spatial dimension. The integration
in time was performed by a standard fourth order Runge
Kutta method. The spatial grid size and the time step
size were varied to find appropriate convergence for the
integration.

A typical behavior of the soliton motion in the system
considered is shown in Fig. 1. Here a steady-state period-
ic interaction between the tank voltage and the Josephson
junction voltage is found for a soliton frequency ~, just
above the tank resonance frequency coo. The parameters
used are a=0.05, 1=4, R =7, a=,~, coo=0.75 and

ri =0.5. Figure 1(a) shows the tank voltage Vo(t) and the
junction boundary voltage $, (l, t) as functions of titne.
Figure 1(b) shows the trajectory of the peak voltage in the
junction —i.e., as a function of the position of the soliton.
Clearly we see the effect of the tank on the boundary
reflection; the power lost by the soliton to the tank is seen
as the difference between the incoming and rejected peak
voltages. Also at the free boundary at x =0 a sma11
difference is found between the incoming and outcoming
peak voltages. This is, however, mainly caused by the ac-
celeration of the soliton towards its steady-state velocity.
This is not to be compared directly with the inherent en-

ergy loss in a reflection on a semi-infinite lossy line, since
the inherent energy loss would result in an outgoing peak
voltage smaller than the incoming. The phase space of
the tank voltage is depicted in Fig. 1(c). The near har-
monic motion is seen as the near elliptical trace. The
"bump" indicated by an arrow shows the effect of the sol-
iton hit on the tank. In the particle representation of the
soliton, used in Ref. 3, the tank phase-space trajectory
would be a displacement away from the origin followed
by a damped spiral-type motion 360' around the origin
until the next soliton hit displaced the trajectory out-
wards again. The same kind of motion is found in Fig.
1(c), but clearly the soliton hit is much smoother than a
sudden displacement. This is due to the fact that the soli-
ton reflection time is not negligible compared with the
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FIG. 1. The time evolution for the system of one soliton reso-
nator coupled to a linear tank is shown for a parameter set of
the following: a=0.05, I =4, g=0. 5, R =7, a= &~ ct)p=0. 75.
(a) Junction voltage at the tank boundary and the tank voltage
vs time. (b} The voltage peak value vs its position. (c) Phase
space of the tank voltage. The arrow indicates the effect of the
interaction with the soliton.
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length of the junction in order to match the soliton fre-

quency with cop. A characteristic angle 0 of the interac-
tion is defined by 8=6 Tco, where hT is the time interval
between the maxima of the tank voltage and the bound-
ary voltage P, ( 1, t ), and co, is the soliton frequency, run-

ning back and forth. The angle 0 is visualized as an ar-
row (showing the soliton hit) in Fig. 1(c). This angle was
found to vary in the interval of approximately
—n. /2~m/2 for locked states between soliton and tank
motion, when the bias was varied. The angle 0=0 corre-
sponds to the soliton frequency co, at cop, 0 (0 to co, & ~p
and 8&0 to co, &cop. Clearly the motion in Fig. 1 corre-
sponds to the case 0 & 0.

The tank amplitude had, of course, a maximum for
8=0 and decreased as ~8 was increased. We remark
here that the tank phase space motion seems to provide
the best criterion for deciding when steady-state motion
is obtained. Typically we had to integrate the system up
to 500 time units for a =

—,
' and up to 1000 time units for

a=,~ to find steady-state motion. In particular for
motion with co, (coo (low bias) we found that the tran-
sient time increased drastically.

Apart from the finite width of the soliton there are oth-
er differences between the treatment in this paper and the
one made in Ref. 3. %'hile the mapping in the particle
model gives the possibility of using extremely long in-
tegration times, it loses every information of what is hap-
pening between the soliton tank collisions. In the PDE
approach the long integration times are very incon-
venient, but all interactions between the soliton tank
reflections are retained. An obvious difference between
the map approach and the full simulation of Eq. (1) and
Eqs. (4) is the delta function approximation of the bound-
ary voltage. When low bias motion in a relatively short
junction (high coo) is studied, the approximation is espe-
cially bad, but also for large bias values can there be a
difference, even if the reflection time is much smaller
than the tank motion period. For high bias values the
plasma oscillations generated at the tank boundary dur-
ing a reflection are amplified, since the tank voltage is
positive for a large time after the refiection (because of
the angle 8)0); i.e., power is fiowing from the tank into
the junction. This is important to the stability of the soli-
ton motion, since states with high bias easily switch to a
nonlocalized rotating state. Typically we were not able
to find soliton motion in the I =4, a=0.05 junction for
bias values larger than 0.8 with coupling resistance R =7.
Also for soliton frequencies just above the tank resonance
frequency cup the junction very easily switched to a nonlo-
calized rotating state when the bias current was changed.
This may be caused by a bistability corresponding to the
reported hysteresis near the tank resonance.

In Fig. 2(a) we show a current-voltage (IV) curve for
the parameters noted above as well as the curve corre-
sponding to the case without the LC tank (only the shunt
resistance R present). The corresponding characteristic
angle 8 between the boundary voltage P, (l, t) and the
tank voltage is shown as Fig. 2(c). From the IV curve it
is clear that far below the tank resonance (low bias, 8& 0)
the soliton motion does not feel the LC circuit, but only
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FIG. 2. Variation with the bias {g). Parameters are as for
Fig. l. (a) Soliton frequency co, (solid curve). The soliton fre-
quency without the LC tank (dash dotted). The vertical dotted
line indicates the tank resonance frequency coo. In normalized
units the average voltages are 2', . (b) tank voltage amplitude
Vo,„. (c) The phase difference between the soliton motion and
the tank motion.

the resistor R. Increasing the bias we observe a frequen-
cy pulling towards resonant states near coo, (8=0). In-
creasing the bias further we observe that the IV-curve ap-
proaches a new state without interaction with the LC
tank and 8 approaches vr/2 In. Fig. 2(a) the current-
voltage curve is also shown for the system without the
LC tank —i.e., R =7, RC~~, LC~~ (Vo(t)=0).
The fact that the interaction through R is small when co,
is very different from coo is also seen from Fig. 2(b), where
the tank voltage amplitude is shown. From this it is
found that the stored energy increases drastically near
the resonance. Also the characteristic phase angle I9 be-
tween the soliton motion and the tank motion, Fig. 2(c),
indicates how the interaction is affected by the difference
between co, and ~p. At resonance, the junction boundary
voltage and the tank voltage have maxima at approxi-
mately the same times (8=0). Away from resonance, the
two oscillators move approximately +90' out of phase.
We note that for the present parameters very small hys-
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teresis in the IV curve is observed. Decreasing the damp-
ing constant a slightly from the present values would
create larger hysteresis near the frequency pulling region
in Fig. 2(a).

The correspondence with the results of the particle
model can also be seen from Fig. 2(a). Some difference is
observed but the essential behavior is present in both cal-
culations. Here it should be noted that in the map ap-
proach the phaseshift of the soliton due to the boundary
reflections was not considered. For the energy loss dur-
ing the reflection at the tank the perturbation result ob-
tained for R ))I was used. Thus clearly some deviation
between the map and the PDE is to be expected.

Finally we show the result of numerical experiments
with two LJJ's coupled to the same resonant circuit.
Apart from the structure of the coupling circuit this is
similar to the situation described in Ref. 8 and is a first
step in the direction of modeling the 20-junction array of
Pagano et al. We denote the phase differences of the
first and second LJJ by P and f, respectively. The
relevant normalized equations to solve are then

y„„—y„—sing=a

p„(0,/) =0, p„(1„r)=R,,' [V, (r) —$, (1„r)],
(5)q(, sin—q=a—

2

g„(0,/) =0, $„(l„r)=R»'[ V, (r) —g, (l„r)],
Vo „+Za Vo, + ( coo+ a ) Vo

= (R,2 C) '[P„(11,t)+ g„(lq, t)],
where R &2 is the normalized value of the resistor between
each LJJ and the LC tank. Solving Eqs. (5) the method of
integration in time was changed, since the transient time,
as expected, in this system was found to be extremely
long. Typically we had to integrate the system to
4000—5000 time units to observe steady-state motion.
The method used here was an explicit second-order
finite-difference method, which is to our knowledge the
fastest for this kind of system. The speed of integration is
at least five times faster for the second-order finite-
difference method than for the fourth-order Runge Kutta
method used to solve the Eqs. (4) and (l). For the param-
eters 1, =12=4, g, =r/&=0. 4, a, =0.05, a2=0.055,
R,2=7, a=75 Np=0. 74 the motion of the system is

shown in Fig. 3 as a time evolution of the tank and soli-
ton boundary voltages [Fig. 3(a)] and as the tank phase
space [Fig. 3(b)]. The three coupled oscillators are found
to be phase locked at a frequency co, =0.743, which is

just above the tank resonance frequency. Clearly we see
that the soliton of the low-loss LJJ hits the tank more out
of phase than the soliton of the high-loss LJJ ( ~ 8, ~

)
~ 02~ ).

In that way the difference in excess energy of the two LJJ
is compensated to produce the phase locked state ob-
served. Synchronization was observed for many parame-
ter choices. Thus we expect phase locking between the
oscillators to be present for a substantial range of
difference in parameter space of the two junctions. Using
the map approach it was possible to demonstrate phase
locking for a somewhat similar situation in which the
junction lengths were 1% different, and a large range of
bias values resulted in locked states. For a difference of
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FIG. 3. The time evolution of the system of two different

LJJ's coupled to a tank. The parameter set is q&=g2=0. 4,

l&
= l2 =4~ Ai =0.05& ay=0. 055, 8 l2 =7, a =

75 7 Q)0 0.74. (a)

The time evolution of the tank voltage and the tank boundary

voltages of the two LJJ's. (b) The tank voltage phase space in

the same time interval as (a).

10%%uo in losses Fig. 4 shows the result for parameter
choice. I, =lp=4 cx, =0.05 (12=0.055 R]2=7 a =

75,

cop =0.75- The simulation started at bias values
g=g&=F2=0. 3, for which value the oscillators did not
lock. Increasing the bias by steps of 0.01, transient times
of 5000 units and averages over 1000 units the oscillators
were found to be phase locked in the range
g=0.46~g=0. 72. At g=0.73 the soliton of the low-
loss LJJ disappeared. The very large locking range is
visible in Fig. 4(a) where the two IV curves of the LJJ's
are shown. Clearly we find that the two curves are
separated for low bias values. Near the lower end of the
locking range we find strong interaction between the os-
cillators. It is important to note that without the cou-
pling (the LC tank) there would be no intersection of the
IV curves of the two LJJ.

In Fig. 4(b) we show the maximum value of the tank
voltage. In the locking range we see the expected reso-
nance curve with maximum at the bias value for which
co, =coo [see Fig. 4(a)]. Just below the locking range we

find relatively large maxima of tank voltages. These are
caused by the temporary in-phase motion of the two LJJ
that takes place in the beating process of the unlocked
states. When the beat frequency is low (near the locking
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75 No 0.75. (a) Average of the soliton frequencies

cg, . The vertical dotted line indicates the tank resonance fre-
quency coo. In normalized units the average voltages are 2', .
(b) Maximum tank voltage. (c) Characteristic phase angles.

motions to one soliton motion only.
We finally show in Fig. 4(c) the characteristic phases of

the two solitons in the locked states. As expected we find
that ~8, ~

& ~82~ in the locked states, in order to allow the
soliton of the low-loss LJJ to transfer a larger amount of
excess energy than the other soliton. We note that the
phase 8& is pulled down in some sort of resonance dip
when I92=0, i.e., when the soliton of the high-loss LJJ is
in phase with the tank. Above the locking range the
phase 82 switches from 82=1 to 82=~/2 in order to
make the soliton motion of only one LJJ pull the tank.

In conclusion, we note that most features from the sim-

ple map approach are confirmed in the present PDE
simulations. Detailed information of the time evolution
is found using a full PDE simulation of the system, but it
is clear that for scanning the parameter space, the map
approach is much more convenient. For longer junctions
the agreement will probably be even more detailed since
the collision time will then be a small fraction of the soli-
ton transit time (or the cavity resonance period 2n /coo).

The ultimate objective of the present study is to pro-
vide a workable model for experimental devices of the
type reported in Ref. 2. In this connection, we note that
Monaco has recently performed detailed measurements
on a 20-junction, series-biased, X-band array similar to
that described by Pagano et a/. In this work he was able
to bias the array in such a way that a variable number,
from one to ten, of individual junctions participated in
the locked state. Salient results of his measurements are
the following: (a) the locking range in bias current varies
linearly with the number of participating junctions; (b)
the power (above the noise level) of the signal emitted by
the array varies with the square of the number of partici-
pating junctions. A successful model will obviously have
to be able to capture these experimental phenomena.
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