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Inelastic-neutron-scattering study of methyl tunneling and the quantum sine-Gordon breather
in isotopic mixtures of 4-methyl-pyridine at low temperature
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The inelastic-neutron-scattering spectra in the 500-ueV region of a series of mixtures of totally
hydrogenated and totally deuterated 4-methyl-pyridine molecules (4MP-4, and 4MP-d, respective-
ly) with relative concentrations in 4MP-h; of 100, 85, 65, 50, 26, 20, and 5 % are presented at vari-
ous temperatures: 2.5, 4.5, 6.5, 8.5, 11 and 15 K. In pure 4MP-h, at 2.5 K, the spectrum shows
three partially resolved bands at 468, 510, and 535 ueV. These frequencies are unaffected by tem-
perature up to 15 K where the bands become rather weak. At 2.5 K, the main peak shows a con-
tinuous frequency shift with increasing concentration in 4MP-d,; down to 360 peV (5% 4MP-h,) in-
dicating collective motions of the methyl groups. This frequency shift is very sensitive to tempera-
ture and vanishes above 10 K. These unusual aspects of the methyl-group dynamics are quantita-
tively represented by the quantum sine-Gordon equation describing a one-dimensional infinite chain
of coupled methyl groups. Accordingly, the weak side bands at 468 and 535 ueV are assigned to in-
phase and out-of-phase tunneling transitions, respectively. The main peak at 510 ueV in pure 4MP-
h; is due to the excitation of the first quantized traveling state of the breather mode. Isotopic dilu-
tion effects are understood in terms of breathers trapped in clusters of 4MP-h, molecules surround-
ed by 4MP-d, molecules which act as reflective walls. Temperature effects are due to the thermal
excitation of breather-roton states in relationship with the zero-point energy difference for 4MP-h,
and 4MP-d; clusters. Finally, some previous spectroscopic data are reconsidered on the basis of the
quantum sine-Gordon theory.

INTRODUCTION
This paper concerns the torsional dynamics of the
methyl groups in solid 4-methyl-pyridine (C¢H,N, and
. o ; 2
otherwise known as y picoline) (Fig. 1) at very low tem-
peratures. Since the methyl group is linked to an aromat-

ic ring, the potential barrier for internal rotation is ex-
tremely low for the isolated molecule’? and remains ex-

ceptionally small even in the crystalline state.>” ' Al- 3 E
though this compound has been investigated using v
several different techniques [NMR,** inelastic neutron
scattering (INS),>”® NQR,'"'? x-ray and neutron
diffraction,'>'* infrared and Raman spectroscopy® '],
the potential function governing the methyl torsion in the

crystalline state is still a subject of discussion. The earli- Cq 1
est studies of methyl tunneling using high-resolution INS C
(Ref. 5) revealed a strong transition at 4.19 cm™' (520
peV) and weaker features at 11.37 cm ™! (1.41 meV) and
15.48 cm ™! (1.92 meV), which were interpreted in terms
of a sixfold potential with a barrier height less than 100
cm ! (12.5 meV). The three bands were assigned to the
0—1, 12, and 0—2 transitions, respectively. The fre-
quency ratio of approximately 5 (TCH3/ TCD3) as measured
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by INS (Ref. 8) is consistent with tunneling in a periodic

potential with either threefold or sixfold symmetry. Ra- FIG. 1. Crystal structure of 4-methyl-pyridine at 4 K after
man spectra at low temperature, on the other hand, sug-  Ref. 6.
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gest very peculiar dynamics for the methyl rotation.®!°

Several transitions are identified unambiguously at low
temperature. Surprisingly, frequencies are not consistent
with a periodic barrier and correspond better to a non-
periodic potential. This suggests a collective nature to
the motion of the methyl groups.

New experimental data on 4MP at low temperature ob-
tained with the IRIS spectrometer (ISIS pulsed neutron
facility, Rutherford Appleton Laboratory, Chilton, Unit-
ed Kingdom) with a better resolution than in previous
measurements® are presented in this paper. Several com-
ponents were resolved in the 4 cm™! (500 weV) region
that had not been seen previously. In order to decide
whether these components are due to intermolecular
and/or intramolecular effects the spectra of a series of
mixtures of totally hydrogenated (4MP-4,) and totally
deuterated (4MP-d;) compounds were obtained in the
0-8 cm ! (0-1 meV) region. The main band in the 4MP-
h4 spectrum showed a continuous frequency shift with in-
creasing concentration of deuterated molecules, which
confirms the existence of collective motions for the
methyl groups. We are not aware of any similar effect
having been observed previously for methyl rotation and
we propose a totally new interpretation in terms of
“breather” modes within the framework of the quantum
sine-Gordon theory.

Experimental data for pure 4MP-h,, pure 4MP-d, and
various mixtures of h, and d; compounds between 2 and
15 K are presented in Sec. I of this paper. It is shown
that they do not agree with the theoretical models al-
ready proposed for methyl tunneling. In Sec. II of the
paper the classical and quantum sine-Gordon theories are
applied to one-dimensional (1D) infinite chains of coupled
methyl groups and the spectra of the quantum pseu-
doparticles (soliton, antisoliton, and breather) are charac-
terized. In Sec. III, the INS spectra of 4MP-h; and
4MP-d, are interpreted in terms of traveling breathers in
the crystal. In Sec. IV the frequency shifts observed in
isotopic mixtures of h, and d; 4MP at various tempera-
tures are discussed in terms of breather dynamics in
boxes of different sizes corresponding to hydrogenated
and deuterated clusters. Finally, a general discussion
reconsiders previous experimental data on the basis of
possible breather and soliton dynamics and statistics.

I. EXPERIMENTAL DATA AND SPECTRA

A. Experimental

The deuterated compound (4-methyl-pyridine-d) was
prepared by four exchanges with D,O for 48 h in the
presence of activated Raney nickel, followed by one ex-
change with D,0 in the presence of Adams platinum for
70 h at 125°C. NMR shows a total deuteration degree of
99.1% for the methyl group, 98.5% at the a position, and
99.3% at the 3 position.

The neutron-scattering experiments were carried out
on the IRIS time of flight spectrometer'® at the ISIS
pulsed neutron facility. IRIS is an inverted geometry in-
elastic neutron spectrometer that uses a long incident
flight path and an array of pyrolytic graphite analyzers

5991

close to back scattering to define both the incident and
scattered neutron energies with high precision. The elas-
tic resolution of the spectrometer is 15 peV and the
energy-transfer range available with good resolution is
quite large. The low final energy of the crystal analyzers
(1.82 meV) means that the spectrometer is particularly
well suited for neutron energy-loss spectroscopy from
cold samples.

Liquid mixtures of 4MP-h, and 4MP-d, at room tem-
perature were introduced into aluminum cans about
40X 40X e mm? with e=0.6, 0.6, 1.0, 1.0, 1.0, 2.0, and 5.0
mm for 100, 85, 65, 50, 26, 20, and 5 % concentrations in
4MP-h, respectively. Cans were loaded into a liquid-
helium cryostat and the temperature as controlled to
+0.5 K.

B. Crystal structure

The crystal structure of 4-methyl-pyridine at 4 K (Fig.
1) (Ref. 16) is tetragonal, I4,/a (C§,) with four mole-
cules in the primitive cell. The site symmetry is C2 and
the methyl groups are disordered. The dominant dipole-
dipole interaction leads to an antiparallel ordering of the
molecules with respect to the ¢ axis. The shortest inter-
molecular distance, a methyl-methyl contact parallel to
the ¢ axis of 3.462 A, is significantly shorter than the sum
of van der Waals radii for two methyl groups of about 4
A (see for instance molecules labeled 1 and 2 or 3 and 4
on Fig. 1). Ohms and co-workers'* state that this short
CH;-CHj; distance is only possible if there exists a strong
correlation between the mutual orientation of adjacent
methyl groups of different molecules. They should be
twisted by 60° with respect to each other and perform
combined hindered rotations.

Beside these close contact Eairs, the next shortest
methyl-methyl distances (~4.0 A for molecules labeled 1
and 3 or 4 and 4’ on Fig. 1) occur perpendicular to the ¢
crystal axis. They form two different sets of equivalent
infinite chains made of equidistant methyl groups with
their mean directions parallel to the a or b crystal axis,
respectively. a and b chains are not located in the same
(a,b) planes. The other methyl-methyl distances are
larger than 6 A.

High resolution neutron powder diffraction data
(Ad /d ~4.10™*) have been obtained recently for 4MP-
h; and 4MP-d, at 4 K.'® On account of thermal con-
traction the cell dimensions are about 1% smaller than
those determined at 120 K.'* The crystal structure is
unaffected by temperature or deuteration. This confirms
that the phase transition near 100 K observed by Ra-
man'® is mainly due to some modification of the methyl-
group dynamics. The monoclinic structure at 90 K pro-
posed by Biswas'? is not confirmed.

C. Experimental data

The INS spectra of six different isotopic mixtures of
4MP-h, and 4MP-d,, at 2.5 K are presented in Figs. 2
and 3. In Figs. 4 and 5 are plotted the frequencies of the
band maxima. Three major factors emerge from these
data.
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FIG. 2. Inelastic neutron scattering spectra at 2.5 K of isotopic mixtures of 4-methyl-pyridine and its perdeuterated derivative.

(i) There are clearly three components in the pure
4MP-h, crystal at 2.5 K. Further decomposition of the
main peak into two components was proposed previous-
ly'” on the basis of band shape analysis and maximum en-
tropy analysis with a Gaussian resolution function. How-

ever, a more rigorous analysis, including the true resolu-
tion function of the spectrometer, which is rather asym-
metric, does not confirm this conclusion and throws
doubt on the existence of the fourth component. At the
present stage of the spectrometer development, systemat-
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FIG. 3. Inelastic neutron scattering spectra at various temperatures of an isotopic mixture containing 5%

methyl-pyridine.

of hydrogenated 4-
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FIG. 4. Isothermal variation of the frequency at maximum
intensity in isotopic mixtures of 4-methyl-pyridine and its per-
deuterated derivative at different temperatures. The lines are
guides for the eye. Concentrations are 4MP-h,%.

ic band decompositions may be misleading and the dis-
cussion will be concentrated on the frequencies at max-
imum intensities for the bands (Figs. 4 and 5).

(ii) At very low temperature (2.5 K) the band frequency
is extremely sensitive to the isotopic dilution and de-
creases rapidly for 4MP-h, concentrations lower than
50% (Fig. 4). The frequency shift is rather smooth and
indicates a progressive change of the methyl frequency.
The bandwidth increases with the concentration of deu-
terated molecules and remains rather broad for the mix-
ture containing 5% of 4MP-h, (Fig. 2).

(iii) The frequency shift at constant isotopic dilution is
very sensitive to the temperature and almost disappears
at 15 K (Figs. 4 and 5). This is in marked contrast with
pure 4MP-#,, which shows no frequency shift with tem-
perature (Fig. 5 and Ref. 17).

The different theories which have been proposed so far
to describe the methyl-group dynamics in crystals at low
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FIG. 5. Isoconcentration curves for the variation of the fre-
quency at maximum intensity in isotopic mixtures of 4-methyl-
pyridine and its perdeuterated derivative at different tempera-
tures. The lines are guides for the eye. Concentrations are
4MP-h,%.
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temperatures are (i) the isolated methyl group, (ii) pairs of
coupled methyls, and (iii) coupling with lattice modes.

1. Isolated methyl groups

The simplest approach to methyl rotation is the isolat-
ed internal top experiencing a periodic potential. The
corresponding Hamiltonian is

# 32
H _ —_ .
0 20 36? +V(30) (1)

1, is the reduced moment of inertia of the internal top,
6 is the angular coordinate, and V(38) is a periodic po-
tential consistent with the threefold symmetry of the
methyl group. In this equation the kinetic coupling with
the molecular frame is neglected. The potential may be
expanded into a Fourier series:

V(30)=3 V3, (3i6) . 2)

If one of the terms (usually V5 or V) is dominant the
eigen problem associated with the torsional motion may
be transformed into the well-established Mathieu equa-
tion.'®!° Energy levels are labeled with two quantum
numbers: the principal torsional quantum number for
the harmonic oscillator limit v and a sublevel index o,
which gives the symmetry or periodicity of the torsional
wave functions. If the barrier is sufficiently low the de-
generacy of the v, sublevels is removed by tunneling. In
the case of 4MP, the observed bands may then corre-
spond to 0,— 0, transitions. The mean frequency of the
low-resolution spectrum gives an estimate of the barrier
height, either three or sixfold.>® This simple approach
cannot account for isotope dilution and temperature
effects in 4MP.

2. Pairs of coupled methyl groups

Pairs of strongly coupled methyl groups with their axes
parallel to the ¢ axis of the crystal are suggested by the
crystal structure (Fig. 1). This model was proposed for
lithium acetate (CH;COOLi-2H,0).%°"22 The corre-
sponding Hamiltonian is

# | 9 0?
H12= - + V (39 )
21, | 362 2362 o
+V0(392)+V12(3(91~62)) Py (3)

where 0, and 6, are the angular coordinates for methyt
groups. The two groups rotate in a static field ¥, around
a common axis and are coupled together via an interac-
tion potential ¥,. This Hamiltonian is a particular case
of a more general problem considering two coupled tops
with nonparallel rotational axes.'® "2 There are 9 func-



5994

tions belonging to the ground state (w =v, +v,=0), 18
functions associated with the w =v,+v,=1 state, etc.
Each of these functions is a product of solutions of the
single top problem that can be denoted (vlal,vza2 |. For

uncoupled methyls (V,,=0), there are three distinct
w=0 energy levels, 44 ({0y,0]), EA ({0.,,05| and
{0y,0.,!, fourfold), and EE ({0,,,0,,/, fourfold) at rela-
tive energies: 0, hv,, and 2hvy; v, being the tunneling
frequency of the uncoupled methyl groups. The effect of
the coupling term V', is to shift the levels {0,,0,| and
(0.,,044] by —28 and levels (0, ,0,/, {0p,0,,|, and
(04,,04,| by 8.2°722 This model was recently extended
to include a possible methyl-methyl kinetic coupling that
is represented by an additional term (proportional to
92/036,06,) in the Hamiltonian [Eq. (3)].!7 The A A4 and
E A levels are unshifted, while the EE level is split.
Therefore, a suitable combination of static and dynamical
coupling may account for the different components ob-
served in pure 4MP-4 .

In isotopic mixtures three different pairs must be con-
sidered:*? fully hydrogenated (CH;-CH,), fully deuterat-
ed (CD;-CD3;), and mixed (CH;-CD;). In the absence of
preferential pairing, between CH; and CDj;, if p is the
concentration of CH; groups, the concentration of the
three different pairs are p? (CH,-CH;), 2p (1—p) (CH;-
CD,), and (1—p)? (CD;-CD;). In the low-resolution lim-
it, where the fine structure for each pair is not resolved,
similar intensities for (CH;-CH;) and (CH;-CD;) pairs
are expected for p=50% (neutron scattering by CD; is
neglected). In the corresponding mixture (Fig. 2) the
rather broad band at 490 peV might be due to two equal
contributions of pure and mixed pairs. Therefore, the
frequency shift for mixed pairs, with respect to fully hy-
drogenated pairs, should not exceed 30 ueV. This is quite
small compared to the frequency shift in the mixture con-
taining 5% of 4MP-h, (~150 peV). An additional
mechanism is necessary to account for this large frequen-
cy shift.

3. Coupling with lattice modes

The coupling of the methyl group rotor to lattice dis-
placements (phonons) has been proposed to account for
the shift of the tunneling frequency in isotopic mixtures
of LiAc (Ref. 22) and for the temperature effect in methy-
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liodide (CH,I).%* The corresponding Hamiltonian is writ-
ten as

H=H12—+-th+H,_ph , (4)

where H |, corresponds to Eq. (3) and

P}f my
H,,= +——wix}
ph % 2m, 2 XK |, (5)
o, 172
Hrphzz % Xk
k
X T/Af(sin391+sin392)

c

8k
+ V3 (cos36,+cos36,)

(6)

This Hamiltonian describes two rotors coupled to lattice
modes (coordinate x,, frequency w; ). The coupling term
proportional to g; is called the “shaking” term. It de-
creases the effective potential barrier for the rotors. The
coupling term proportional to g is called the ‘“breath-
ing” term. It increases the effective potential barrier.

At very low temperature, a thorough analysis of this
Hamiltonian?? shows that the deuteration of one rotor in
a pair increases the effective potential of the adjacent
CH,; group. Then a decreasing of the CH; tunneling fre-
quency ratio (TCH}/ Tcp,) should be larger than the value

calculated without change of the effective potential. The
observed frequency for the hydrogenated and deuterated
compounds is then a good indication of the change of the
effective potential. For 4MP-h, and 4MP-d, the calcula-
tion of the potential functions in the single-particle ap-
proximation (Table I) shows that the barrier could be
enhanced by 10-20 % in 4MP-d, compared to 4MP-h,.
However, the corresponding shift for the tunneling fre-
quency of 4MP-h, diluted in 4MP-d; should be only
3040 peV, which is again very small compared to the
150 pueV observed for highly diluted samples.

Another consequence of rotor-phonon coupling is that
the effective potential experienced by the methyl groups
may depend on temperature, via the phonon state popu-
lation. The “shaking” terms leads to a decreasing of the
tunneling frequency with increasing temperature. This is

TABLE I. Single-particle potential barriers for 4-methyl-pyridine and its perdeuterated analogue at
5 K. V; and ¥V, correspond to threefold and sixfold potentials, respectively.

Veare (em ™)
Veps cm™1) (@) ¥3=32cm ' (b) V;=38cm ' (a) V=160 cm ! (b) V4=176 cm™'
CH;N 4.16 4.14 3.75 4.10 3.87
CD,N  0.80 1.03 0.80 0.93 0.80

#Potential scaled to the CH; frequency.
Potential scaled to the CD; frequency.



42 INELASTIC-NEUTRON-SCATTERING STUDY OF METHYL . ..

usually the most important. The ‘“breathing” term, on
the other hand, enhances the tunneling frequency at high
temperature. In the case of pure 4MP-k, and 4MP-d,,
there is no significant frequency shift with temperature
and the coupling terms are certainly too small to account
for the large temperature effects in isotopic mixtures.

This discussion points out that isotopic dilution and
temperature effects are crucial aspects of the experiments
presented in this work. They cannot be explained simply
with the theoretical models previously proposed for
methyl tunneling. At this stage, two different strategies
can be considered. First, all the theoretical models re-
viewed so far are based on limited expansions of the
Hamiltonian describing the methyl dynamics and it may
be wondered whether higher-order terms are relevant.
This would lead to rather complicated calculations. Al-
ternatively, if it is suspected that the observed phenome-
na are so far from the known properties of the usual
Hamiltonians that perturbative approaches are not
relevant, then, a completely new theory, based on a new
Hamiltonian, must be worked out. This is the purpose of
Sec. II.

II. INFINITE CHAINS
OF COUPLED METHYL GROUPS

Beside the close-contact pairs of methyl groups the
crystal structure clearly indicates two sets of crystallo-
graphically equivalent infinite chains made of equidistant
methyl groups, with their mean directions parallel to ei-
ther a or b axes. The C—C bonds acting as rotor axes be-
ing perpendicular to the chain directions, the methyl
groups are ideally positioned to behave like gear wheels
and the CH,-CHj; distances of 4.0 A are consistent with a
coupling due to van der Waals interactions. Chains a and
b do not cross each other since they are in different (a,b)
planes. However, dynamical coupling of the chains may
occur through the close-contact pairs parallel to the ¢
crystal axis. Therefore, the methyl dynamics should be
described by a local potential and coupling terms due to
intrapair and intrachain interactions, respectively. De-
pending on the relative values for the coupling terms,
different dynamical models should be considered: pairs
of coupled methyl groups if the intrachain coupling is
negligible, or isolated infinite chains of methyl groups if
the intrapair coupling is negligible, or an infinite network
of coupled rotors if both couplings are important.

A complete molecular-dynamics simulation would be
necessary to estimate the coupling terms. This is beyond
the scope of this paper. Nevertheless, it is possible to ob-
tain qualitative information with simplified models for
the crystal structure. Considering pairs of methyl groups
along the c crystal axis (molecules labeled 1 and 2 on Fig.
1) or along the a or b directions (molecules labeled 4 and
4' or 1 and 3 on Fig. 1), proton-proton interactions can be
represented by a pair potential of the Kitaigorodskii
type
6

+47 000 exp d

—12.34—
2ry

2r
E=-0.214 |— 2 .
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E is in kcal/mol, ry and d are in 1°\, respectively. Elec-
trostatic and polarization effects are neglected. The
methyl groups are assumed to be tetrahedral with C—H
bond length of 1.1 A and ry=12 A.? Interaction ener-
gies were calculated by varying 6, while 6, was kept con-
stant. In both cases, the coupling potentials are threefold
and close to a cos36, function. The barrier heights for
nearest neighbors are 4.1 and 6.6 cm ™! for the intrapair
and intrachain potentials, respectively. These barriers
are divided by about 100 and 10, respectively, for next-
nearest neighbors with CH;-CHj distance of 6 A. These
values must be considered with very strong reserves
indeed, since the pair potential [Eq. (7)] does not include
all the interactions in the crystal. However, these simple
calculations suggest that neither of the two couplings can
be neglected without further considerations. In Sec. I
isolated pairs of coupled methyl groups have been con-
sidered. In this part, a theoretical approach for the dy-
namics of isolated chains of coupled methyl groups is
proposed.

A. Theoretical model

The Hamiltonian describing a one-dimensional chain
of coupled methyl groups (labeled j) is

# 3 W .
H= ? o0 862 T(l—cos310j)
V. .
+—2—[1—cos3l(9j+1——9j)] . (8)

The first term represents the kinetic energy, the second
term represents an ‘“on-site” or external 3i-fold potential
(i=1,2,...) that does not depend explicitly on lattice
position and the last term is due to coupling (“strain” en-
ergy) between neighboring lattice sites. If 6, ,,—6; is re-
stricted to small amplitudes, then the coupling term can
be linearized:

# 3t Vo .
H~ ; 2l 892 —2~(1——cos319])
Ve 3y

6.)?. 9)

+2 2(j+1—_1

This Hamiltonian is equivalent to that of the sine-
Gordon potential. ¢~

As usual in quantum field theory,?’ it is worth begin-
ning with the first approximation in which quantum
effects are ignored and to treat this equation as if it were
describing classical field configurations rather than quan-
tum operators. Quantum mechanics may be regained by
quantizing the classical solution through semiclassical
[Wentzel-K ramers-Brillouin (WK B)] methods. 2

B. The classical sine-Gordon theory

In this section we follow the notation of Currie and co-
workers. *? The classical sine-Gordon equation:
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Hm—LAg ¢+@m—wwﬂ+2L2@H 6,7,

(10)

where L is the lattice constant, is equivalent to the classi-
cal version of Eq. (9) provided

¢;=3i6; , (11)
T
G 12
Vo(3i)?
w%=%—— ) (13)
V. L%(3i)?
3=T=w§L2. (14)

r

In this system solitons, phonons, and breathers are the
elementary excitations.

C. Continuous chains

If the coupling between sites is strong enough to ensure
that variations of ¢ from site to site are quite small then
the site index j can be replaced by a continuous position
variable x so that ¢ becomes a continuous function of x
and ¢ (time): ¢;—@(x,7). In this case, nonlinear kinks
become well-defined elementary excitations with long life-
times and as such behave very much like particles (soli-
tons). The analytical form

X —ut
b+ (x arctan |exp d(l——vz/C%)l/z ] l
C
d= a)o (16)
0

describes kink (+) and antikink (—) solutions traveling

¢p(x,t)=4arctan
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at velocity v. The ‘“relativistic” Lorentz factor depen-
dence on v appears also in the energy (Eg. ) associated
with a single kink:

Eo
Eg,= m , (17)
E is the rest energy of the kink:
Ey=8Aw,Co=4V, V)2, (18)
and the kink rest mass is given by
0= ff; Gz Vo/ve (19)

In the present case, the kink carries the mean position
of the methyl group from one minimum (say O) of the lo-
cal potential to another minimum (say +2/3i) or vice
versa for an antikink. The kinkwidth at rest is roughly
2d. The rest energy is larger than the local potential bar-
rier and the kink density vanishes at low temperature.
Thus the kink signal in the INS spectra becomes negligi-
ble.

In addition to the large-amplitude spatially localized
kinks, phonons (referred to as “rotons” in the present
case) corresponding to small-amplitude oscillations are
also solutions of the approximate Hamiltonian linearized
with respect to a potential minimum:

H, ~LA2 17+ 1ofel + 2 L2 ¢,+1 $,)*. (20)
The continuum dispersion is
=i+ C3k? . (21)

The third kind of elementary excitation is composed of
breathers or doublets which have the form

(wh/wy — 1) %sinfwp(t —vx /C3)/(1—v2/C3)} /2]

The breather is traveling at velocity v (v <Cy) and its
energy is given by
(1—w} /od)'?
Eg =2E0—(T—_UW . (23)
E, is the kink rest energy [Eq. (18)] and wy is the fre-
quency with which the breather envelope oscillates har-
monically. In the classical limit this frequency varies
continuously from O to o, and as wp —0 the breather am-
plitude approaches 27 /3i and its width approaches twice
the soliton width. It decomposes to become a soliton-
antisoliton pair. On the other hand, as wz—w, the
breather profile becomes very extended and of low ampli-
tude. Breathers can be viewed either as soliton-

cosh[(x —vt)(1—w} /wd)?/d (1—v?/C})?]

antisoliton bound states or as anharmonic phonons. Ar-
bitrarily low creation energies are possible for breathers
and these excitations may contribute to the observed
spectra at low temperature.

D. Discreteness effects

In a real discrete lattice the roton dispersion, the
shape, and the dynamics of solitons and breathers are
changed in several aspects.

The roton dispersion is

(oF:
0i =wj+ 4——(sm2‘kL) (24)
L?
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The continuum equation has the remarkable conserva-
tion property that soliton and breather excitations have
infinite lifetimes. On the contrary, in the discrete prob-
lem, a traveling one-particle initial condition leads to a
solution comprising both a particle and rotons (common-
ly referred to in this context as “radiation”). In the clas-
sical theory, the velocity of the particle decreases with
time while the low-amplitude harmonic oscillations in-
crease in number. The rotons are generated and provide
viscous damping that draws energy and momentum from
the traveling particle. The particle center is trapped in a
particular unit cell.*” The lowest potential configuration
corresponds to lattice particles being symmetrically
placed about the center of mass with no lattice particle at
the center, while the highest potential configuration is
again symmetric but with one lattice particle at the
center. In the classical theory, this discrete lattice ““pin-
ning effect” is found to modulate sinusoidally the velocity
of propagation and the pseudoparticle position with a fre-
quency o, and an amplitude nearly proportional to w,
over the range of w, for which propagation is possible.
The pinning potential depends on the particle width. If
the width is large compared to the lattice parameter then
the difference between the two extreme configurations is
weak. In any case, owing to the Lorentzian contraction
of the pseudoparticle, the width may become small for
large velocities and pinning results.

E. The quantum sine-Gordon theory

Dashen and co-workers?® have applied to quantum
field theory the semiclassical or WKB method. The
chain is supposed to be a large closed loop with a perime-
ter of length NL and periodic boundary conditions. In
order to eliminate some divergences in summations it is
necessary to renormalize the mass of the particles. This
accounts for the kink interactions with phonons that
modify the zero-point energy. The kink (antikink) of the
classical sine-Gordon potential turns into quantum-
mechanical particles with a rest mass:

s

M, =M, 87

) (25)

g=3i. (26)

The renormalized mass M, is interpreted as the ob-
servable rest mass, as opposed to the bare mass M|, of the
classical kink [Eq. (19)].%°

The quantization of the classical breather solution [Eq.
(22)] yields a discrete spectrum of particle masses:

Ig?

1— g’ _s
16(1—g2/87)

My()=2M, —

sin

I=12,...<=2—1. @7
g

The crucial role played by g in this equation is a conse-
quence of the quantization of the sine-Gordon Hamiltoni-
an.** In classical physics changing g amounts to multi-
plying the Hamiltonian by a constant. This has no effect
on the physics other than redefining the energy scale. On
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the other hand, in the quantum theory the energy scale is
determined by #/g? and energy rescaling due to a change
of g is equivalent to rescaling Planck’s constant 4. This is
somewhat obscured in theoretical works since units are
usually chosen such that #=1. The zero-point vacuum
energy of the quantum system (mass renormalization) and
the number of stationary states above this lower limit are
related to g. For very low g (weak-coupling limit) the re-
normalization factor is nearly unity and the system is
close to the classical limit. There is a large number of
mass states for the breather. As g increases the mass
states disappear one by one and decay into soliton-
antisoliton pairs; when the [th state disappears
(I=8w/g*—1) Ey(l) is twice the soliton energy. The
I=1 state is the fundamental breather state and
2E, —Eg(1) is the activation energy for the creation of a
soliton-antisoliton pair at rest. For g?>8x the lowest
state breaks up and disappears from the spectrum. The
renormalization factor become negative and the theory is
physically meaningless. This is of importance in the case
of methyl groups: the quantum sine-Gordon theory is
relevant only for the threefold potential. Then, there is
only one mass state for the breather (/=1) and this is the
fundamental state.

According to Egs. (23) and (27) the classical harmonic
frequency of the breather is

Ig?

(=wycos——=>— .
OB O (1—g2/87)

(28)

In the WKB theory the renormalized energy spectrum
of the breather is

E,=[E§(D+p2CE1"? n=0,£1,%2,..., 10 , (29)

where p, is the center-of-mass momentum of the breath-
er. There is thus a finite set of particles (labeled /) with
masses Mp(l) that propagate for discrete momentum
values p,,.

F. Tunnel effect

Another important aspect of quantization is the can-
cellation of the classical ground-state degeneracy yielding
a tunnel effect and level splitting. The methyl tunneling
problem in the infinite chain of coupled groups is now a
one-dimensional band-structure problem.?’ The eigen-
values are labeled Eva,k with a band index v, and a wave
vector k. (In the first Brillouin zone —g/2<k <g/2.)
The corresponding eigenfunctions have the Bloch form

¢Ua,k(0)=exp(ik9)uva,k(9) (30)
with
2

u 9+—g’5 =u, 4(6). (31)

v,k

By putting these eigenfunctions into Eq. (8) it appears
that tunnel splitting may occur only when the eigenfunc-
tion has Fourier components of the same periodicity as
the potential terms. This is the case at the zone center
(k=0), where the methyl groups are in phase and at the
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zone boundary (k =g /2), where the methyl groups are
out of phase. The eigenproblem then reduces to an
analysis of the corresponding Mathieu equations:

w3 Yo 0) |h(0)=E(60 (32)
T sty 1—cosg) [WO)=EU6)
# 92 Vo
oL 892+ 3 (1—cosgB)
V.
+ = (1—cos2g0) |9(0)=E(6) . (33)

G. Methyl dynamics and inelastic neutron scattering

In the single-particle approach, the periodic potential
manifests itself through tunneling and rotational transi-
tions. The former corresponds to permutations of the hy-
drogen atoms, whereas the latter are related to small-
amplitude oscillations around the equilibrium position,
when the potential barrier is high. In the infinite chain,
the dynamics is rather different and much richer. The ro-
tational motion of the single particle turns into a continu-
um of roton states [Eq. (24)]. This is the usual correspon-
dence between isolated vibrations and coherent excita-
tions in crystals. Similarly, the tunneling of the single
particle gives coherent tunneling for the whole chain.
However, there is no continuum of states: only in-phase
and out-of-phase permutations of the protons are allowed
by the symmetry translation of the chain [Egs. (32) and
(33), respectively].

In addition to these coherent excitations, spatially lo-
calized incoherent excitations may occur in the chain.
Traveling solitons (antisolitons) achieve progressive per-
mutations of the protons along the chain [Eq. (15)]. This
may be compared to classical jumping above the potential
barrier for the single particle. In both cases, these pro-
cesses are thermally activated and occur only at high
temperature. The breather, on the other hand, has no
parent for single particles. As a soliton-antisoliton bound
pair it can be seen as the preliminary step for the creation
of a soliton and antisoliton pair. Alternatively, as a su-
perposition of roton states, it corresponds to spatially lo-
calized oscillations of the methyl groups around their
equilibrium positions.

Coherent and incoherent excitations can be dis-
tinguished by INS. For 4MP-h,, the relative proportions
of scattered neutrons are ~9% (coherent) and 91% (in-
coherent). For the deuterated derivative, these values
turn into 84% (coherent) and 16% (incoherent). There-
fore, the incoherent modes in 4MP-h, are ten times more
intense than the coherent modes, whereas for MP-d, the
incoherent modes are five times weaker than the coherent
modes.

III. TUNNELING AND BREATHERS IN PURE 4MP

The spectra of pure 4MP-h,; and 4MP-d, can be inter-
preted in terms of tunneling and breather modes in a
threefold quantum sine-Gordon potential. The weaker
bands at 535 and 468 ueV in 4MP-h, are assigned to in-
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phase and out-of-phase tunneling transitions, respective-
ly. The corresponding sine-Gordon potential is then
completely determined according to Egs. (32) and (33)
(Table II). Two tunneling transitions at 141 and 74 ueV
are expected in the d; compound. These two bands are
not resolved (Fig. 3 and Ref. 8). However, the observed
transition at 100 ueV corresponds well to the mean value.
The soliton and the breather envelope at rest are
represented in Fig. 6 and their characteristic values are
gathered in Table III. The renormalized rest energy of
the breather [17.64 meV (142.16 cm ')] and the
minimum energy required for the creation of a soliton-
antisoliton pair at rest [22.95 meV /(185 cm ™ !)] yield an
activation energy [~ 5.33 meV (43 cm™')] that makes the
soliton population practically zero in the present experi-
ments below 15 K. The internal frequency of the breath-
er is the only value depending on the isotopic substitu-
tion.

Once the rest energy of the breather is determined then
the energy spectrum can be calculated. The breather
may be seen as a free particle in a periodic medium. Be-
cause of the translational symmetry, steady propagation
occurs only if the associated de Broglie wavelength is an
integer fraction of the lattice parameter:

1 L

7&=—=7 n=0,%£1,%2,..., (34)

and
E ,=[Eg(+n’l]'"*. (35)

The calculated and observed breather spectra are in
good agreement (Tables IV and V for s, and d; mole-
cules, respectively). The weak band near 220 eV in the
5% 4MP-h; mixture (Fig. 3) may correspond to the
n =0— 1 transition calculated for 4MP-d, [1.8 cm™'(223
peV) in Table V]. As expected, the relative intensities for
the breather (incoherent) and tunneling (coherent) excita-
tions are quite different in 4MP-#, and 4MP-d .

Small differences between observed and calculated fre-
quencies may be due to the perturbation of the wave
forms in the real lattice. In the discrete lattice, particles
are narrower than the continuum particles propagating at
the same velocity*®3” and the real waveform of the soli-
ton and breather may differ slightly from those shown in

0=’—;’||ITIHHHW!HH
®
MNe

LUOLJJ

L1
5 i

0=0 L1 [1

-5

FIG. 6. Waveforms for the soliton (1) and for the envelope of
the semiclassical breather in the lowest mass state (2) at
rest in the sine-Gordon potential: Ve,
=223(1—cos36;)+ % [1 —cos3(6;,,—6,)]; V and 6, are in
cm ™! and radian units, respectively.
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TABLE II. Observed and calculated frequencies for the methyl rotation in the sine-Gordon poten-
tial: V(6;)=22(1—cos36;)+ % [1—cos3(6;,,—6,)]; ¥V and 6 are in cm ™' and radian units. An as-

J
terisk denotes doubly degenerate levels.

4MP-h, 4MP-d,
in-phase out-of-phase in-phase out-of-phase
obs. calc. obs. calc. obs. calc. obs. calc.
4.31 4.31* 3.77 3.77* 0.8 1.14* 0.8 0.60*
26.74* 27.94* 17.75* 22.26*
52.12 45.64 27.16 27.10
54.21 66.69 31.13 42.11
92.04* 95.22* 47.30* 58.83*

Fig. 6. The calculated potential energy in the discrete
lattice for the continuum breather [16.54 meV (133.3
cm™')] is lowered by about 10%. The perturbation of
the wave form is probably of the same order. The calcu-
lated energy spectrum (Tables IV and V) with this value
is also in good agreement with the observation: the ex-
perimental values are between the calculated ones with
the continuous and discrete rest energies. According to
Eq. (35), the observed spectrum may provide an estimate
of the “real” energy at rest for the breather [16.52 meV
(133.1 cm™!), Tables IV and V]. This “exact” value will
be used in Sec. IV, where calculated and experimental
spectra are compared.

A numerical calculation shows that the pinning poten-
tial is about 5X 10~ % cm ™! for the breather and pinning
is not likely to play an important role. In the excited
states the breather velocity remains small compared to
C, and relativistic effects are negligible (Tables IV and
V).

At very low temperature, the spectrum is dominated
by fundamental transitions (0—1, 0—2, etc., Table IV).

TABLE III1. Soliton and

breather

At higher temperature, excited states are populated and
hot transitions [specifically the 1—2~1.39 meV (11
cm™!)] appear. Between O and 15 K, the population of
n =2 states is negligible and the intensity of the 0—1
transition is expected to decrease as [1—exp(hvgy, /kT)].
It is roughly divided by 2 between 2.5 and 10 K. This is
in qualitative agreement with the experiments. !’

IV. BREATHER DYNAMICS IN ISOTOPIC MIXTURES

In isotopic mixtures of 4MP-h, and 4MP-d,, the mole-
cules are completely miscible and distributed randomly
among the crystal sites. In the temperature range of the
experiments, i.e., far below the melting point, there is no
molecular migration nor chemical exchange between hy-
drogen atoms and deuterium atoms. Therefore, h, and
d molecules are distributed into clusters of various sizes
(s, and s, respectively) determined by simple combina-
torial statistics and unaffected by temperature. The ob-
served bandwidth and frequency are related to the
breather dynamics in the cluster distribution at a given

modes in  the  sine-Gordon  potential:

V(Oj)“—‘l%'—s—(l—coswj)—f- %‘-[1—-0053(9,+,—6,)]; V and 6 are in cm ™! and radian units, respectively.

L is the lattice parameter.

4MP-h, 4MP-d,
5.6 2.66 Rotational constant F=h?/87*, (cm™ ')
27.27 18.79 fiwy (cm ™)
33.30 22.95 #iw, (cm™")
1.22 1.22 d/L: particle width parameter.
144.11 144.11 E, (ecm™'): rest energy of the classical soliton.
92.51 92.51 E, (cm™'): renormalized rest energy
of the semiclassical soliton.
6.89 13.78 My (amu): renormalized rest mass
of the semiclassical soliton.
142.16 142.16 Eg(1) (cm™'): renormalized rest energy
of the semiclassical breather.
10.59 21.18 Mpg(1) (amu): renormalized rest mass
of the semiclassical breather.
17.45 12.03 fiwy (cm™'): frequency of the envelope
of the semiclassical breather
at rest in the fundamental state.
1.17 1.17 Maximum amplitude (in radian units)

of the semiclassical breather envelope.
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TABLE IV. 4-methyl-pyridine. Observed and calculated frequencies for the traveling breather in
the sine-Gordon potential: ¥ (6;)=2>(1—co0s36,)+ %[1—cos3(6,,,—6,)]; ¥ and 6 are in cm™' and
radian units, respectively. n is the kinetic quantum number, v the particle velocity, and d /L is the par-
ticle width parameter in lattice parameter units. N denotes neutron scattering; R denotes Raman
scattering after Ref. 10.

Breather
n obs. a b c v/C, (1—v2/C3)1? d/L
0 0.0 0.0 0.0 0.0 1.0 1.22
1 41 N 3.8 45 4.1 0.24 0.97 1.18
2 153 N 14.6 17.1 15.7 0.45 0.89 1.09
3 317 R 31.1 35.8 33.3 0.60 0.80 0.98
4 55 R 51.9 58.9 55.2 0.71 0.71 0.87
5 79.5 84.7 80.0 0.78 0.62 0.76

?Continuous approximation.
Discrete approximation.
“Experimental fit.

concentration and to the thermally populated states at a
given temperature.

A. Breather in a box

Although isotopic mixtures of 4MP-h, and 4MP-d,
molecules form a homogeneous crystal from the structur-
al viewpoint, clusters of 4, and d; molecules form a very
inhomogeneous medium for the breather dynamics. The
strain frequency w, and the speed C, are divided by V2
in d, clusters with respect to &, clusters. Therefore, even
if the energy at rest of the breather is not affected by deu-
teration (Table III) the internal frequency and the travel-
ing speed are dramatically reduced. Numerical simula-
tions>®?7 show that solitons may adjust potential and ki-
netic energies when traveling through impurities. How-
ever, the situation may be different for breathers that are
characterized by spatial and temporal coherence. Al-
though no theoretical analysis of the breather dynamics
in finite chains is available, it may be suspected that the
relationship between the dynamics and the impurity dis-
tribution is not trivial. A simple approach is to suppose
that deuterated clusters play the role of reflective walls

for breathers in h, clusters, and vice versa. Boxes of
finite length (sL) have thus to be considered. Strictly
speaking, breathers extend from — o to + o and it is
not clear whether it is justified in searching for breathers
in a medium of finite length. However, Dashen and co-
workers?® have conjectured that the sine-Gordon equa-
tion still acts like an exactly separable system in boxes of
finite length. The renormalization remains unchanged.
This is why the WKB method in a closed loop chain
yields exact results. Therefore, we shall assume that
quantum pseudoparticles in boxes may exist, and their
rest energies are not significantly dependent on the size of
the box. The main change due to the finite character of
the chain is that the ground state no longer corresponds
to the breather at rest. According to the uncertainty
principle the minimum momentum value is p,=(1/sL).
The relative energy of the ground state in a cluster with
respect to the fundamental state in an infinite chain is
then

E =[Ej(D+ol/s?)'V* s==%1,%2,... . (36)

In the excited traveling states, Eq. (35) with n>1

TABLE V. Deuterated 4-methyl-pyridine. Observed and calculated frequencies for the traveling
breather in the sine-Gordon potential: ¥(6,)=2:2(1—cos36,)+ % [1—cos3(6,,,—6,)]; V and 6 are

in cm ™!

and radian units, respectively. n is the kinetic quantum number; v the particle velocity, and

d /L is the particle width parameter in lattice parameter units. N denotes neutron scattering; R denotes

Raman scattering after Ref. 10.

Breather
n obs. a b v/Cy (1—v%/C3)17? d/L
0 0.0 0.0 0.0 0.0 1.0 1.22
1 1.8 N 1.8 2.2 2.0 0.17 0.99 1.20
2 7.1 8.4 7.7 0.33 0.95 1.15
3 21 R 15.6 18.2 16.8 0.46 0.89 1.08
4 32 R 26.8 30.8 28.6 0.57 0.82 1.00
5 44 R 40.1 45.9 42.7 0.65 0.76 0.92

2Continuous approximation.
®Discrete approximation.
°Experimental fit.
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remains valid. This is because the box size is always an
integer multiple of the lattice parameter. Therefore, the
de Broglie wavelength of the particle is an integer frac-
tion of the lattice parameter and of the box length as
well.

The transition frequencies for a breather in a box are
then

v =[EF(D+n*0? " —[EZ(D+w? /s?]'? . (37

Numerical values (Table VI) show that when the clus-
ter size decreases then the energy of the ground state,
with respect to that of the infinite chain, increases and
the 0— 1 transition frequency decreases. This is in quali-
tative agreement with the data (Figs. 2 and 4). Moreover,
the band frequency observed in the most dilute sample
[360 eV (2.90 cm ') in 5% 4MP-h,] is in good agree-
ment with that predicted for clusters including only two
h sites [380 ueV (3.06 cm ™ !)]. The discrepancy is about
5% and this is of the order of the possible change of the
effective potential due to deuteration (Table I). If this re-
markable agreement is not due to a fortuitous cancella-
tion of large errors, it confirms that the rest energy of the
breather is only very slightly affected by the box size.
For the minimum cluster size (s=1) the lowest state cor-
responds to the first excited state (n=1) in the infinite
chain. The existence of breathers in such minimal clus-
ters is questionable. Fortunately, in this case, the lowest
transition is expected at 11 cm™ !, i.e., far from the fre-
quency range considered in the present experiments and
one-site clusters do not contribute to the observed spec-
tra. Large clusters, on the other hand, are quite similar
to infinite chains. Practically, for s> 10, the frequency
shift is within the experimental errors. This corresponds
roughly to twice the breather width.

To describe completely the energy levels of adjacent 4,
and d, clusters it is necessary to account for their
different zero-point energies. The renormalization factor
being the same for &, and d, breathers, the difference is
(Df(wgp —wog) (ie., 525 peV (4.23 cm™!), Table III.
There is no state coincidence on the energy-level diagram
(Fig. 7) and breathers may go through the different clus-
ters only by tunneling. This tunneling is likely to depend

TABLE VI. Calculated relative energies (in cm ™! unit) in the
fundamental states (Ey-E,) and transition frequencies (E-E,)
for the breather in boxes of length sL.

4MP-h, 4MP-d,

s E-E, E-E Ey-E, E\-E,
1 4.10 0.00 1.97 0.00
2 1.04 3.06 0.49 1.48
3 0.46 3.64 0.22 1.75
4 0.26 3.84 0.12 1.85
5 0.17 3.93 0.08 1.89
6 0.12 3.98 0.05 1.92
7 0.09 4.01 0.04 1.93
8 0.07 4.03 0.03 1.94
9 0.05 4.05 0.02 1.95

10 0.04 4.06 0.02 1.95

6001
4MP -d; 4MP-h;
1.0
n:‘
n= 2
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FIG. 7. Relative energy levels of the breathers in 4, and d,
clusters of 4-methyl-pyridine. n is the kinetic quantum number.
S is the cluster size in lattice units.

on the minimum kinetic energy in the ground state (i.e.,
on the h, or d4 cluster size) and on the barrier width (i.e.,
on the size of the adjacent d5 or &, cluster).

B. Cluster size statistics

A complete analysis of the cluster size distribution in
an infinite chain of randomly substituted lattice sites is
not necessary since the incoherent scattering process in a
cluster is independent of the cluster distribution along the
rest of the chain. (Possible tunneling is neglected for the
moment.) Considering neutrons scattered by protons, the
intensity is proportional to the concentration p of 4, mol-
ecules (1—p for d;). The probability for a given lattice
site to belong to a cluster made of s contiguous 4, mole-
cules with one d; molecule at each end is

P(s)=p*(1—p)*. (38)

Here it is supposed that one d,; molecule on each side
is enough to isolate completely the 4, cluster. The tran-
sition frequency of the breather is v, and the scattered in-
tensity is

I,=sp*(1—p)*. (39

After removing the one-site clusters that are out of the
frequency range, the total intensity is

S IL=p—p(1—p). (40)

s>1
Owing to the spectral resolution and to the intrinsic
bandwidth, clusters larger than a certain threshold size S
cannot be distinguished. They all merge into a single
band, the intensity of which is
s

Is=p— 3 sp(1—p)?. (41)

s=1
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The mean frequency depends on the isotopic concen-
tration as

v,= 3 vl . 42)

s>1

Calculated spectra (Fig. 8) are in good agreement with
the experiment (Fig. 2) and the observed frequency shift
can be assigned mainly to the variation of the cluster size
distribution with the isotopic concentration. However,
there are some differences between calculation and obser-
vation. The relative intensity of the low-frequency band
[near 370 ueV (3 cm™!)] is overestimated and the calcu-
lated mean frequency does not agree with the experiment.
Moreover, the low-frequency band appears better
resolved on calculated spectra than on the experimental
ones. These differences are believed to come from the
crude approximation in the cluster distribution and do
not preclude the validity of the interpretation based on
the quantum sine-Gordon theory.

The previous calculation may be improved if fast ex-
change between clusters, probably due to tunneling, is
considered. It is supposed that for a given A, cluster of
size s;,, only d, clusters of size s; Zr(s,) behave like
reflective walls, whereas for s; <r(s,) d, clusters are
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FIG. 8. Calculated spectra for the breather in isotopic mix-
tures of 4-methyl-pyridine and its perdeuterated derivative at
2.5 K. Each transition is convoluted with a Gaussian profile
with a full width at half height of 15 ueV. The concentration
(%) in h, derivative is shown on each curve.
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transparent for h, breathers. Then, Eq. (38) is rewritten
as

P(s)=ps(1—p)2’m . (43)

Because of the lack of quantitative information on the
breather tunneling, r (s, ) may be represented by the same
step function for all s,:

ro, Sy SSO

r(Sh): l (44)

, Sp>S, .

The best fit (Fig. 9, T=2.5 K) was obtained with r,=4
and S;=4. This means that a d, cluster becomes a pure-
ly reflective wall when its size is of the order of the
breather width. These are only average values and the
real exchange mechanism is certainly much more compli-
cated. A theoretical model would be necessary to pursue
more sophisticated analyses of the data.

C. Temperature effect

In the breather energy diagram (Fig. 7) there is no state
coincidence for adjacent h, and d, clusters at very low
temperature. When the temperature increases, roton
states are thermally populated and a continuum of
breather-roton states appears according to Eq. (24). If
the temperature is sufficiently high, breather-roton states
in adjacent clusters may coincide and lower their total ki-
netic energy to merge into a single breather at rest, or
nearly so, extending over the two clusters. Both spatial
and temporal coherence of the new breather can be
achieved through interactions with rotons, which should
also remove the excess kinetic energy. This is possible
only if the thermal energy is sufficiently larger than the
difference of zero-point energies for s, and d; domains
[i.e., ~500 peV (4 cm™ '), Fig. 7]. Then, these energy
differences become small fluctuations that can be counter-
balanced by rotons.

This thermally activated process can be modeled with a
first-order law assuming that there is an activation energy
E,, with respect to the zero-point energy of d, clusters.
A d, breather-roton state at E = E, is incorporated into
an h, breather-roton state to form a breather at rest and
rotons, whereas for E <E, there is no breather interac-
tion across clusters, except through tunneling [Eq. (44)].
Therefore, populating breather-roton states at E Z E, is
formally equivalent to decreasing the concentration of d,
sites in the chain:

o Ea/kT

P(T)=p+(1—p)1— ). (45)

This approach is consistent with the experiments (Figs.
9 and 10) and the estimated activation energy (E,~9
cm 1) is about twice the zero-point energy difference for
h; and d, clusters. The real physics is certainly more
complicated since the activation energy probably depends
on the exact size of the adjacent clusters and it is not pos-
sible to say whether this relationship is purely phenome-
nological.
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FIG. 9. Calculated isothermal curves for the mean frequency
of the breather ( ) and experimental frequencies at max-
imum intensity in isotopic mixtures of 45 and d, 4-methyl-
pyridine. The calculated frequencies are rescaled (X ~1.1) to
the experimental data. Concentrations are 4MP-h,%.

V. GENERAL DISCUSSION

The rather good agreement of the calculated curves
with experimental data (Figs. 9 and 10) shows that the
methyl dynamics in 4MP is well described by the sine-
Gordon Hamiltonian for an isolated chain and there is no
real need to introduce further interchain coupling in or-
der to improve the fitting. The coupling term (¥, =22
cm ™!, Table II) appears much larger than the value cal-
culated (~6 cm™!) with Eq. (7), which turns out to be a
poor approximation. Electrostatic and polarization
terms should be included in a more realistic calculation.
The value estimated for the coupling in close-contact
pairs (~4 cm™!) is then probably underestimated. It
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FIG. 10. Calculated isoconcentration curves for the mean
frequency of the breather ( ) and experimental frequencies
at maximum intensity in isotopic mixtures of h; and d, 4-
methyl-pyridine. The calculated frequencies are rescaled
(X~1.1) to the experimental data. Concentrations are 4MP-
h7%.
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seems reasonable to suppose that intrachain and inter-
chain couplings could be of the same order of magnitude
but with different consequences on the methyl dynamics.
According to field theory,?’ in systems with dimension
greater than one, additional degrees of freedom have to
be used in order to support solitons and breathers. In the
case of methyl rotation, if there is no physical basis for
such additional degrees of freedom, solitons or breathers
should be confined in one-dimensional chains, even
though interchain and intrachain couplings are of the
same order.

A physical picture to understand why interchain cou-
pling may have no effect on the one-dimensional breather
dynamics may be sought in the ideal sine-Gordon case for
which breathers and rotons are completely separable ex-
citations. The internal frequency for the breather at rest
(wp) is within the roton energy band [Eq. (24)]. Chains a
and b being crystallographically equivalent, any breather
in chain a can be associated with a phonon in chain b, or
vice versa, such that the two methyl groups in the close-
contact pair that these two chains have in common oscil-
late at the same frequency. This is required to ensure the
stability of the breather. In the first excited traveling
state, relativistic corrections are small and the breather
can propagate steadily. In higher excited states, the
internal frequency may become quite large and fall out of
the roton energy bands. Then, the close-contact pairs
would give rise to damping that slows down the breather.
This would give band broadening in the spectra.

Even if it is relevant to think that interchain coupling
has no effect on the breather dynamics in pure 4MP, this
coupling is probably responsible for some of the observa-
tions in isotopic mixtures. As a matter of fact, whereas
the energy levels (Fig. 7) suggest that a single CD; group
should be a reflexive impurity for the breather in a CH,
cluster, the rather small frequency shift observed for the
50% mixture (Fig. 2), where there are 50% of CH;-CD;
pairs, suggests that mixed pairs are almost transparent
for the breather propagation along the chains. It is likely
that a CD; group in a given chain has different dynamics
depending upon whether it is in a CD;-CH; or in a CD;-
CD; pair along the c¢ axis. Intrachain coupling may thus
be hidden in our assumptions concerning the cluster size
threshold for breathers in 4MP-A clusters to go through
4MP-d; clusters. For the same reasons, interchain cou-
pling may also contribute to the bandwidth in isotopic
mixtures (Fig. 2).

Previous Raman data'® were interpreted in terms of
collective oscillations of the methyl groups. Raman
bands at low frequency due to methyl groups were clearly
identified by their frequency shifts upon deuteration,
which are quite different from those expected for the lat-
tice modes. Now, these transitions can be reconsidered
on the basis of the sine-Gordon theory. The observed fre-
quencies up to 6.82 meV (55 cm ™ !) (Table IV) correspond
rather well to transitions to upper traveling states for the
breather. Besides, a phase transition was indicated near
100 K.!° Above this temperature methyl groups are free-
ly rotating. The phase transition is monitored by a lattice
mode at 7.6 meV (61 cm~!). When excited states of this
phonon are thermally populated, the potential terms (¥,
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and V,) are canceled. This is indicative of “sh.akir}g”
type terms in the Hamiltonian [Eq. (6)]. The activation
energies for crystal disordering and for creation of
soliton-antisoliton pairs [~5 meV (40 cm™1)] are thus
similar in 4MP. The two phenomena occur simultane-
ously and the density of soliton-antisolitons is likely to
remain small.

If traveling breathers are real in 4MP, is there any
change to observe similar excitations in other crystals
containing weakly hindered methyl groups? To a large
extent, interpretations of methyl tunneling spectra are
based on the measurements of frequency ratios for hydro-
genated and deuterated materials. An important conse-
quence of the sine-Gordon theory is that the most intense
bands for hydrogenated and deuterated compounds may
not correspond to the same kinds of excitations. Travel-
ing breathers give the most intense incoherent signal in
the former, while coherent tunneling transitions are
enhanced by deuterium. Therefore, the apparent frequen-
cy ratio given by the most intense features may be
misleading and it was indeed in a previous work on
4MP.? The sine-Gordon theory provides good reasons to
reconsider previous data and to complete some earlier ex-
periments. Apart from 4MP, lithium acetate is the most
thoroughly studied system and a large amount of experi-
mental data seems to be consistently understood in terms
of “isolated” close-contact pairs of coupled methyl
groups.2~22 However, the data can be rationalized with
the sine-Gordon theory as well (Table VII). The spec-

TABLE VII. Lithium acetate.
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trum of the fully hydrogenated sample show three peaks
in the 200-ueV region. The weaker bands at 214 ueV
(1.725 ecm™ ') and 250 eV (2.015 cm™!) can be assigned
to the coherent tunneling (out of phase and in phase, re-
spectively) and ¥V, and V, are determined accordingly.
Then the 0— 1 transition for the traveling breather is cal-
culated at 283 peV (2.278 cm™!), which corresponds to
the most intense band. The frequency calculated for the
deuterated breather [142 peV (1.142 cm ™ !), Table 7] may
correspond to the band at 130 eV (1.048 cm ™ !) in dilut-
ed mixtures. In isotopic mixtures, the calculated breath-
er frequency shifts down to 212 peV (1.706 cm™!) for
CH,; clusters of minimum size. This may correspond to
the broad band around 180 peV (1.451 cm ™ !). The situa-
tion is less clear for the tunneling transitions in the fully
deuterated sample that are calculated at 41 peV (0.330
cm™!) and 21 weV (0.181 cm™!) for the in-phase and
out-of-phase modes, respectively, whereas transitions are
observed at 12.5 ueV (0.101 cm~!). There could be some
drift of the potential in the deuterated compound due to
the change of the zero-point energy and/or to some cou-
pling with phonons in the crystal. Nevertheless, even
though this approach deserves further refinements, the
main features in lithium acetate can be very well under-
stood in terms of tunneling and breather modes in quasi-
one-dimensional infinite chains of coupled methyl groups.
Therefore, in this case, both the close-contact pair model
and the sine-Gordon theory lead to similar agreement
with the experiments, even though their physical bases

Soliton and breather modes in the sine-Gordon potential:

V(6,)=2(1—cos36;)+ £[1—cos3(6,,,—6;)]; ¥ and 6 are in cm ™' and radian units, respectively. L

is the lattice parameter.

CH,COOLi-2H,0 CD,COOLi-2D,0

5.219 2.609
2.183 (2.015) 0.330 (0.101)
1.743 (1.725) 0.171 (0.101)
37.22 26.32
28.67 20.27
0.59 0.59
181.77 181.77
116.68 116.68
179.31 179.31
2.278 (2.281) 1.142 (1.048)
1.706 (1.451) 0.856 (—)
23.82 16.84
1.17 1.17

Eg(1) (cm™'):

wp (em™!):

Rotational constant F (cm ™~ ')=h, /87,1, (Ref. 22).
Calculated (observed Ref. 22) in-phase

tunneling frequencies.

Calculated (observed Ref. 22) out-of-plane

tunneling frequencies.

wy (cm™!)

o, (cm™")

d/L: particle width parameter.

E, (cm™!): rest energy of the classical
soliton.

Ex (cm™!'): renormalized rest energy of the

semiclassical soliton.

renormalized rest energy of the
semiclassical breather.

Calculated (observed Ref. 22) 0— 1 transition

for the semiclassical breather
traveling in an infinite chain.

Calculated (observed Ref. 22) 0—1

transition for the semiclassical breather
in a box of size 2L.

frequency of the envelope of the
semiclassical breather at rest in the
fundamental state.

Maximum amplitude (in radian units) of the

semiclassical breather envelope.
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are quite different. Is this due to fundamental ambigui-
ties of the spectra or are crucial measurements able to
discriminate between the two models? Presumably a
more thorough analysis of the relative intensities and
temperature effects on isotopic mixtures should be neces-
sary. In the case of 4MP, on the other hand, to interpret
the data in terms of the close-contact pair model Hamil-
tonian similar to lithium acetate would require many ad-
ditional couplings in the Hamiltonian [Eq. (3)]. Presum-
ably, coupling terms with phonons [Eq. (6)] might ac-
count for the isotopic dilution effects at low temperature
and for the temperature effects for a given isotopic con-
centration. Further terms should be necessary to account
for the influence of the isotopic concentration on the tem-
perature effects. It is not clear whether such a complicat-
ed Hamiltonian should be tractable. On the contrary, the
sine-Gordon theory provides a comprehensive interpreta-
tion of the data with a small number of physically sensi-
ble parameters. Once V¥V, and ¥V, have been evaluated
from the tunneling frequencies, then the breather dynam-
ics is completely represented. Isotopic and temperature
effects are simply related to the cluster size statistics and
to a first-order law. Even though this is not enough to
prove its physical consistency, this theory certainly
deserves and stimulates further investigation in the field
of methyl rotational dynamics.

CONCLUSION

Inelastic neutron scattering spectra of isotopic mix-
tures of 4MP-A, and 4MP-d, show tunneling and collec-
tive motion of the methyl groups at low temperature.
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The quantum sine-Gordon theory provides a very com-
pact and elegant tool for interpreting the INS spectra and
for describing the peculiar dynamics of methyl torsion in
4MP. It is remarkable that the starting equation depends
on two parameters (namely the on-site potential ¥, and
the strain potential V) that are determined experimen-
tally from the tunneling frequencies. Then the theory
yields a breather energy spectrum that deviates by less
than 5% from the experimental values. Furthermore, the
theory provides a clear understanding of isotopic dilution
and temperature effects in terms of breather dynamics in
finite boxes. This theory deserves further refinements.
Some calculations presented in this work are not free of
ad hoc parameters like the cluster size cutoff for the
breather tunneling, or the activation energy for the
breather state mixing in isotopic mixtures. Tentative cal-
culations suggest that 4-methyl-pyridine might not be
unique and the sine-Gordon theory provides a completely
new standpoint for further investigations in the field of
methyl tunneling spectroscopy.
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