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Microscopic approach to the structure of transition-metal glasses
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A novel hybridized nearly-free-electron-tight-binding-bond approach to the interatomic forces in
disordered transition-metal alloys is used to construct realistic models for the atomic structure of

amorphous alloys.

The atomic structure of amorphous metallic alloys has
been a subject of intense research for many years.!?
Several distinct glass-forming alloy families have been es-
tablished:*~° (a) the transition-metal-semimetal (or
“metalloid”) systems (e.g., Fe-B or Ni-P), (b) the inter-
transition-metal alloys (e.g., Ni-Zr or Fe-Ti), and (c) the
simple-metal glasses (e.g., Mg-Zn or Ca-Al). Diffraction
investigations and modeling studies have shown that the
structure of metallic glasses of types (a) and (c) is rather
well described as a polytetrahedral packing of atoms,
modified by a certain degree of chemical short-range or-
der and by the necessity to accommodate atoms of
different size.® For the transition-metal glasses of group
(b), diffraction studies®~° indicate a high degree of chemi-
cal as well as topological short-range order, leading to an
atomic structure which is far more complex than that
found in groups (a) or (c). Attempts to build structural
models for the transition-metal glasses have been severely
limited by the lack of reliable interatomic potentials.

Here we present a novel hybridized nearly-free-
electron-tight-binding-bond (NFE-TBB) approach to the
interatomic forces in disordered transition-metal alloys.
These interatomic potentials are used to generate the first
realistic models for the atomic structure of transition-
metal glasses via a molecular-dynamics simulation. The
analysis of these results establishes clear correlations be-
tween the short-range order in the liquid or amorphous
alloy and the electronic structure.

The basic assumption is that the total energy E of a
transition metal may be decomposed into contributions
from the s and d electrons, E=E +E,. The s-electron
contribution is treated in a NFE approximation; i.e., we
use pseudopotential perturbation theory'® to write E, as
the sum of a volume- and a pair-interaction term with a
pair potential ®,. Within a TBB approximation the d-
electron contribution to the total energy may be written
in the form'!~

Ed:?z 2 qu.rep(Rl/)+Ed,bond‘ (1)

oy (5F1)

Assuming only one type of d orbital per site (i.e., assum-
ing the d orbitals with different magnetic quantum num-
bers to be degenerate and neglecting the directionality of
the d bond, which seems to be legitimate for liquid or
glassy systems), E 4 is given by

E,.
Epona =2 fo ' (E—¢g4,)n,(E)E . )

That is, E,; ,,,,q measures the covalent bond energy result-
ing from the local density of states, n;(E), at the site i,
calculated within a two-center orthogonal TB approxima-
tion. @, .. is a repulsive pair interaction provided by the
electrostatic, exchange-correlation, and nonorthogonality
contributions to the total energy.!""'> Hybridization be-
tween s and d states is taken into account by setting the
numbers N, and N, of s and d electrons equal to the
values resulting from a self-consistent band-structure cal-
culation for the crystalline transition metal.

The local density of states may be calculated via a
momentum expansion, and for the pure transition metals
an approximation at the level of the second moment is
found to be sufficient.’>'* In this case Ey,; may be writ-
ten as a sum over an attractive pairwise interaction
D, bona(R,j) proportional to the average canonical d-d
transfer integral h(R;;)={[(ddo)*+2(ddm)
+2(dd8)*1/5)'*=V 141 W (R, /R,;)>. W, is the width
of the d band and R, the atomic radius. The transfer in-
tegral is adjusted to reproduce the correct width of the d
band from a self-consistent calculation,'® and the pseudo-
potential core radius R, is fitted to the zero-pressure
equilibrium condition. These pair interactions yield a
very accurate description of the structure of the molten
transition metals.'*

For a binary transition-metal alloy, the total energy
will contain an additional contribution from the promo-
tion energy'?

Ed,prom:CA (Ng 4€4, 4 "Nc(i), 4 52, a)
+Cp(Nypeap—N3pels) » 3

where 8Ndv,=Nd>,—N,9,, and 8£d,,=£d‘,—82’1, 1=A4,B,
are the changes in the d-band occupancies N, ; and in the
site energies €, relative to their pure-metal reference
values on alloying. The s-electron promotion energies are
included in the pseudopotential approach. It may be
shown that if 8N,; and 8g,; are calculated self-
consistently under the constraints

8N, , +8N,,=0, I=A,B (4a)

(i.e., local charge neutrality, assuming that any change in
the d-band occupancy is completely screened by the
much more mobile s electrons) and

C,8N, ,+Cp 8N, =0, (4b)

the promotion energy is compensated to first order in
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8N, ; by the intra-atomic d-d and s-d interactions, except
for a site-diagonal term

Ejpromt Emia=C 48Ny 4 €% +C5 8N, 5 €5, (5)

intra

which may be combined with the volume energy. This
shows that the decomposition of the total energy into a
volume term, an s-electron pair interaction ¢, and a d-
electron pair interaction ®,=®; .., +®, 4,4 is valid in a
binary alloy. However, the second-moment approxima-
tion to @4 is found to be inadequate in an alloy be-
cause it does not account for the form of the d band.
QLHt]eé generally, the covalent bond energy may be written
as

Ejpona=32 2 h(Rpy)0, , (6)

1 J(+1)

where 6;; is the bond order which is defined as the
difference between the number of electrons in the bond-
ing 27"%(@,+¢,;) and in the antibonding states
2712, —¢@,) (the indices I and J stand for the atomic
site as well as for the site occupancy). The bond order is
obtained by integrating the off-diagonal Green’s function
G,;(E) over the occupied states:'!1°

2

Eg
[ " ImG,(E)dE . 7)
T 0

911—"

The calculation of the effective pair interactions for a
transition-metal alloy proceeds as follows: (1) The pseu-
dopotential and tight-binding parameters for the pure
metals are determined as described above, and the values
for Ni and Zr are given in Table I. (2) The electronic
density of states (DOS) of the d band in the alloy is calcu-
lated for a reference configuration in a self-consistent
Hartree-Fock TB approximation (using standard values'’
for the intra-atomic and interatomic Coulomb integrals
u, =0.5evV,u,;=0.75eV, u;;=1.6 eV, and V=0.25 eV),
respecting the constraints of local change neutrality (4a)
and of constant number of d electrons (4b). The simplest
reference lattice is a Bethe lattice'®!® (or Cayley tree)
with coordination number 12. (3) Within the Bethe-
lattice approximation, a closed set of equations may be
constructed for the off-diagonal Green’s functions
G;(E).*>?! (4) The effective pair potentials are calculat-

TABLE I. Parameters of the interatomic potential for
NisoZrsg, with pure-metal references given in parentheses. See
text for details.

Ni Zr

R, (A) 0.58 1.22

N, 1.38 (1.40) 1.32 (1.30)

N, 9.62 (9.60) 4.68 (4.70)

e, Ry)  —0.362 (—0.363) —0.185 (—0.184)
W, (Ry) 0.278 0.616

R, (A) 1.377 1.771

Ni-Ni Ni-Zr Zr-Zr
0,y —0.654 —2.143  —2.113

ed for the self-consistent numbers (N, ; and N, ;) of s and
d electrons, site energies €;,;, and bond orders 6,
(I,J = A, B) resulting from (2) and (3); see Table I.

The electronic DOS of NisyZrs, calculated on the
Bethe lattice shows a relatively narrow, nearly completely
filled Ni d band overlapping with a broad Zr d band [Fig.
1(a)]. The position of the peak of the d band about 2 eV
below the Fermi level agrees well with the results of soft-
x-ray emission spectroscopy.?? From the imaginary part
of the off diagonal Green’s functions [Fig. 1(b)], we find
that the Zr-Zr and Ni-Zr interactions are dominated by
bonding combinations of nearest-neighbor d states, lead-
ing to large bond orders 6,,;, and Oy;z,, whereas a nearly
complete cancellation between bonding and antibonding
interactions leads to a small Oy,y,. This explains the pro-
nounced nonadditivity of the pair interactions [Fig. 2(a)].
The individual contributions to the effective pair interac-
tions are illustrated in Fig. 2(b) at the example of @y, .
around the nearest-neighbor distance the s-electron con-
tribution is repulsive; the d-electron contribution is dom-
inated by the bonding term and is strongly attractive.

The pair potentials have been used to construct a mod-
el for the glass via a molecular-dynamics (MD) algo-
rithm. The simulation is started for the liquid alloy.
After reaclgin% equilibrium, the liquid (number density
n=0.0524 A ) is compressed isothermally to the density
of the glassy alloy (n=0.0584 A7% and reequilibrated
(with the pair potentials recalculated for the density of
the glass). Finally, the liquid is quenched to room tem-
perature at constant volume. The simulations have been
performed for ensembles of N=1372 atoms in a periodi-
cally repeated box; the potentials have been cut at a dis-
tance of about 30% of the length of the edge of the MD
cell. A fourth-order predictor-corrector algorithm with a
time increment of 8 =107 ! s was used for the integra-
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FIG. 1. (a) Electronic density of states n(E) and (b) imagi-

nary part of the off-diagonal Green’s functions G,(E) for disor-
dered NisyZrsy.
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FIG. 2. (a) Effective interatomic potentials ®,,(R) for

NispZrsy. (b) Decomposition of ®y,z,(R) into s- and d-electron
contributions (see text).

tion of the Newtonian equations of motion (for details,
see Ref. 23). Typical runs allowed ~3000 steps for
equilibration and ~2000 steps for production. The
quenching rate was dT /dt =~10'* Ks™ ..

The resulting reduced pair-correlation functions
G;(R)=4mrn[g;;(R)—1] for a NisyZrs, glass are shown
in Fig. 3, together with the results of neutron-scattering
experiments with isotropic substitution.” We note (1) the
good agreement between theory and experiment, which
extends to almost every detail of the rather complex
correlation functions, and (2) a pronounced chemical
short-range order (CSRO) with partial coordination num-
bers which are very similar in the computer-generated
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FIG. 3. Reduced pair correlation functions G;;(R) for amor-
phous NisyZrs,. Solid line, computer simulation; dashed line,
neutron diffraction (Ref. 7). The vertical bars represent the in-
teratomic distances in crystalline NiZr.

model and in the neutron-diffraction experiment, in the
glassy and crystalline (CrB-type) phases®* (see Table II).
Both theory and experiment agree in that the tendency to
form unlike-atom pairs around the Ni atoms is even
larger in the glass than in the crystal. (3) The Ni-Zr in-
teratomic distance in the glass is the same as in the crys-
tal, and much smaller than the mean value of the Ni-Ni
and Zr-Zr distances. Evidently this is a consequence of
the strong covalent contribution to the Ni-Zr interaction.
(4) The correspondence between the peaks in the G;;’s
and the interatomic distances in the crystalline com-
pound extends to the second and third coordination
shells, suggesting a local and intermediate-range order in
the glass which is closely related to the trigonal-prismatic
structure of crystalline (CrB-type) NiZr.

TABLE II. Interatomic distances d;; and coordination numbers N;.

Ni-Zr glass
Theory Experiment NiZr crystal
d (A) Ny d (A) Ny d (A) Ny,
Ni-Ni 2.68 2.2 2.63 33 2.62 2
3.27 2
Ni-Zr 2.75 6.1 2.73 6.7 2.68 4
2.73 2
2.78 1
Zr-Zr 3.50 7.8 3.32 7.8 3.27 2
343 2
3.44 4
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Similar calculations have been performed for all Ni-X
glasses for which detailed information on the structure is
available (X=Ti, V, Y, Zr, and Nb). The results show a
clear correlation between the difference AN,=N, \;
—N, x in the number of d electrons of the components
and the degree of local order: a large AN, leads to an
electronic DOS close to the split-band limit, large
differences in the bond-orders, and hence a strong SRO in
Ni-Y, Ni-Ti, and Ni-Zr, a smaller AN, leads to a
common-band-type DOS, small differences in the bond
orders, and a much weaker SRO in Ni-V and Ni-Nb.

In conclusion, we have developed a new interatomic

force field for disordered transition-metal alloys which we
believe contains an important improvement: the depen-
dence of the pair interaction on the bond order deter-
mined by the shape of the d band. We have shown that
applications to simulations of glassy alloys are very
promising. This will allow the study of the structure-
property relationship of these materials at a level of detail
not previously possible.
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