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Tunneling processes of two-dimensional electrons between two quantum wells (QW's) and those
from one QW to unconfined three-dimensional states outside through another QW are investigated
in various double-QW structures by time-resolved photoluminescence (PL) measurements. Electric
fields F, across the double-QW structures are applied to realize on- and off-resonance conditions,
and the electron lifetime and time-integrated PL intensity are measured as functions of the field F, .

The experiment has demonstrated the enhancement of the tunneling rate near the resonance and its
reduction under the off-resonance condition. The measured tunneling rates are compared with vari-

ous theoretical models to show that a scattering-assisted process plays a dominant role in interwell

tunneling when the ground levels of the two QW's are nearly resonant. At a certain bias voltage
above resonance, a distinct reduction of the electron lifetime is observed and is attributed to LO-
phonon-assisted tunneling into the other QW.

I. INTRODUCTION

Tunneling and interference of electron waves are
among the most important quantum-mechanical phe-
nomena in ultrathin semiconductor heterostructures.
Combined phenomena of tunneling and interference are
particularly important for both physics and applications
since they inAuence in a variety of ways electrical and op-
tical characteristics, as already demonstrated in such
structures as double-barrier resonant tunneling (DBRT)
diodes' and superlattices. So far, mainly static features
of the tunneling phenomena have been investigated,
while dynamic aspects, in spite of their importance, have
not been studied thoroughly. This is mainly because
the characteristic time scale of the process is of the order
of picoseconds or less, which is shorter than that measur-
able by commonly available methods. Furthermore,
theoretical studies have not been well developed, mainly
because of the lack of reliable theoretical approaches to
take proper account of scattering. Nevertheless, the dy-
namics should be investigated since it not only deter-
mines the ultimate speed of tunneling devices, but it elu-
cidates fundamental aspects of electronic waves in solids,

particularly their behaviors in time domain.
In order to discuss the resonant tunneling, the follow-

ing two representative processes should be distinguished.
In one process, unconfined three-dimensional (3D) elec-
trons tunnel to a confined two-dimensional (2D) state in a
quantum well (QW) or vice versa. ' This process,
which we denote as a 2D-3D process hereafter, is
relevant to the dynamics of electrons in DBRT diodes.
In another process, 2D electrons tunnel between two cou-
pled QW's. " This 2D-2D process is relevant to elec-
tron transport in multi-QW structures under electric
fields. In this process, tunneling can be affected by vari-
ous interference effects between an initial QW state and a
final QW state. Consequently, the dynamics is expected
to be complicated and quite different from the 2D-3D
process.

In order to clarify the dynamics of electron tunneling,
we have adopted time-resolved photoluminescence (PL)
spectroscopy. In a previous study, we first investigated
the 2D-3D resonant tunneling in double-barrier struc-
tures, where we determined the intrinsic tunnel escape
time, and successfully explained the data using a theory
that included nonparabolicity in the dispersion relation of
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electrons via a two-band k.p theory. This work has led
us to understand fundamental aspects of the 2D-3D reso-
nant tunneling.

In this work, we have extended our optical study of
tunneling to investigate the 2D-2D tunneling process be-
tween two coupled QW's. The tunneling process of 2D
electrons in one QW through another QW to unconfined
3D states was also studied. We clarify roles of the rela-
tion processes both in resonant tunneling and in off-
resonant tunneling by comparing observed tunneling
rates with various models. While a part of our work has
been reported &2, &s, &6, 22'24 Oberli pt pl. have independent-
ly studied electron tunneling processes between two cou-
pled QW's by a similar optical method. ' ' They have
examined, in particular, those cases where the ground
level of one well is near the second level of the other well
and where the two ground levels are apart. They have in-
vestigated the intersubband scattering time which deter-
mines the tunneling time between QW's and also the
enhancement of tunneling rate which may be ascribed to
LO-phonon scattering. In the present paper we plan to
provide complementary insights by investigating the tun-
neling process in somewhat different structures, where
the two "ground" states are scanned systematically by
electric fields to cover various resonant conditions. We
have also analyzed both PL decay time and time-
integrated PL intensity of both QW s. In addition, this
work includes tunneling into unconfined 3D states
through a QW.

We study mainly two kinds of double-quantum-well
structures which have the potential profiles shown in Fig.
1. The "left" quantum well (LQW) with a well width of
71 A is coupled with the "right" quantum well (RQW)
with a well width of 51 A through a thin central barrier
with a thickness of 31 A. The left barrier is made
sufficiently thick (100 A), whereas the right barrier has a
thickness of 31 A for sample I and 100 A for sample II.
All the barriers consist of pure A1As, while both QW's
are made of GaAs. Under the Hat band condition of Fig.
1(a), the calculated ground level of LQW and RQW are
69.0 and 112.5 meV, above the bottom of the conduction
band, respectively. We investigate the tunneling dynam-
ics of electrons in these structures under electric fields.

The tunneling dynamics of electrons is expected to
vary with electric field as schematically shown in Fig. 1

for sample I. Under the fiat-band condition [Fig. 1(a)]
and also the "below-resonance" condition, where the
ground level EI, of electrons in LQW is below that Ez,
of RQW, the tunneling probability of electrons from the
left well to the right electrode through RQW will be
small, since the wave function of EI

&
in the right well has

very small amplitude. Under the resonance condition
[Fig. 1(b)], the ground levels of both QW's coincide and
electrons tunnel back and forth between the two wells
(tunnel oscillation). The mathematics of the level cou-
pling and the tunnel oscillation process is described in
Appendixes A and B. As a result, the tunnel escape rate
of electrons from LQW to the right electrode will be
enhanced. When the electric field is made further nega-
tive [Fig. 1(c)], the ground level of LQW goes above that
of RQW. In such an "above-resonance" condition, the
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FIG. 1. Schematic illustrations of wave functions and tunnel-

ing processes of electrons associated mainly with the left quan-

turn well in a coupled-quantum-well structure (solid line, sample

I) under three representative conditions. Dashed line represents
a thicker right barrier for sample II. Figures (a), (b), and (c) cor-
respond, respectively, to "below"-resonance, on resonance, and
"above"-resonance conditions, where the energy level associat-
ed with the left quantum well is lower than, equal to, and higher
than that of the right quantum well.

penetration of the wave function to RQW decreases
again. Hence, the escape rate from LQW by "direct"
tunneling to the outside decreases. In this case, some
electrons may tunnel into RQW and scatter into the
ground level ER &

of RQW and finally escape to the out-
side by tunneling (scattering-assisted tunneling escape
process).

In order to clarify which tunneling processes are dom-
inant in actual systems, we have examined, under
different electric fields, tunneling times and densities of
electrons in each QW by measuring the PL decay time r
and the time-integrated PL intensity I of each QW. Note
that it is important to measure both r and I to analyze
the tunneling mechanism.

In the following, we describe the experimental pro-
cedures in Sec. II. In Sec. III, we present the experimen-
tal data of PL decay time and time-integrated PL intensi-
ty to show how they change with applied electric fields.
We then discuss the tunneling mechanisms by comparing
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the data with theoretical models. We first examine the
electron dynamics for the case where the ground levels of
the two QW's deviate slightly from the resonant condi-
tion. There we show that the tunnel escape through a
QW is dominated by the scattering-assisted tunneling
mechanism (accompanied by energy relaxation process-
es). We also discuss how the energy broadening of the
quantum levels affect the strength and the sharpness of
the resonance condition in actual structures. Next, we
analyze the electron dynamics under off-resonant condi-
tions, where the two ground levels are well separated;
there we clarify the suppression of the tunnel escape pro-
cess and investigate the contribution of the inelastic
scattering, especially that of the LO-phonon-assisted tun-
neling.

II. EXPERIMENTAL PROCEDURES

We prepared by molecular-beam epitaxy three double-
quantum-well structures (samples I, II, and III). The
structures of samples I and II were described earlier.
Sample III is identical with sample II except that the cen-
tral barrier is made thicker (57 A). Sample III is studied
to investigate how the tunneling process reduces as the
central barrier becomes thicker. The samples were
grown on (001) surfaces of semi-insulating GaAs sub-
strates at 600'C. First, we grew a superlattice buffer lay-
er [5 periods of (500 A GaAs)/(50 A Alc 3Gac 7As)], a
0.7-pm-thick n-type Si-doped GaAs layer (Nd —8X10'
cm ), 500 A undoped GaAs, and then one of the three
undoped double-QW structures (samples I, II, and III).
After growing a double-QW structure, 200 A
Ala 3Gao 7As, and 200 A GaAs were grown as a cap lay-
er. The layer thicknesses were strictly controlled by
monitoring the intensity oscillation of reflection high-
energy electron diff'raction (RHEED). Also, to get
smooth heterointerfaces, the molecular-beam epitaxial
(MBE) growth was interrupted at each interface for 1

min. All epitaxial layers are of high quality with an es-
timated residual acceptor (carbon) concentration of
10' —10' cm . On the sample surfaces, semitran-
sparent Au Schottky contacts were formed in order to
apply electric fields to the tunneling structures.

As shown schematically in Fig. 2, the tunneling pro-
cesses in these samples were investigated at 20 K by mon-
itoring time variation of PL intensity after generation of
electrons (and holes) in both QW's with mode-locked dye
laser pulses. The photoluminescence from each QW (Fig.
3) was selected by a monochromator, and detected by a
synchro-scan streak camera (Hamamatsu C1587) for
time-resolved rneasurernents. Time-integrated PL inten-
sity was also measured by a photomultiplier tube. The
pulse width of the laser was less than 10 ps and the full
width at half maximum {FWHM) of the time resolution
of our detection system was typically -70 ps.

Electron-hole pairs were generated in both QW's in ap-
proximately equal amounts in order to monitor the elec-
tron concentrations both in RQW and LQW. To gen-
erate the same number of electrons and holes in both
QW's over the whole range of applied voltage, the photon
energy of the laser pulse was adjusted to be above the en-

ergy of e 1-lhl and below the energy of e2-hh2 for both
QW s. Here, ei hhj (ei-lhj) indicates the transition be-
tween the ith subband of electrons and the jth subband of
heavy (light) holes. The high-energy electrons and holes
created in the QW's are expected to relax to quasi-
thermal-equilibrium states inside each QW with very fast
( & several picoseconds) processes including intrasubband
energy relaxation and also the transition from the lh1 to
the hh1 states. The concentration of these photogenerat-
ed electrons decreases either by recombination (radiative
and nonradiative) processes or by tunneling processes;
this decrease is reflected in the decay time of the PL in-
tensity. Hence, one can monitor the time variation of the
electron concentrations, which is strongly affected by
tunneling. Since the mass of the heavy hole is quite large
in our samples, hole tunneling can be neglected at least in
the initial phase of the tunneling process. Instead, those
holes are accumulated mainly in the QW's with some
steady-state concentration. These holes have a negligible
influence on the electron tunneling process, as will be de-
scribed later. If we deal with a quantum well where the
light-hole state and heavy-hole state are mixed, then the
hole tunneling has to be carefully taken into account.

III. EXPERIMENTAL DATA
AND THEORETICAL ANALYSIS

We first present in Fig. 3 the time-integrated PL and
photoluminescence excitation (PLE) spectra of sample I
measured at 20 K under several bias conditions: (1) flat
band, (2) the beginning of the quasiresonance region, (3)
the resonance, (4) the end of the quasiresonance region,
(5) the above-resonance condition. These bias conditions
will be discussed in detail later with reference to Fig. 5.

RQW
AlAs

TUNNELil
~ ~

Ep
LASER

+ " y4- ---og0

- —- —------ EF

PL

FIG. 2. Schematic illustration of our coupled-quantum-well
(CQW) system and various dynamic processes of photogenerat-
ed carriers for the below-resonance condition. EF denotes the
Fermi level of the n+-type GaAs region underlying the CQW
structure and Ep indicates the Fermi (or pinning) level at the
surface, where a Schottky contact is formed. V, is applied volt-
age. Solid and open circles indicate photogenerated electrons
and holes, respectively; their dynamical processes are indicated
by arrows that represent such processes as excitation by a laser
pulse, relaxation inside each QW, tunneling, and radiative
recombination resulting in photoluminescence {PL). Bold lines
denote the energy levels of QW's.
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of the lower energy level and then radiatively recombine.
Now we present in Fig. 4(a) the measured decay times

r of the PL peaks from the two QW's of sample I as func-
tions of applied voltage V, . Similarly, the time-
integrated intensities I of the two PL peaks are shown in
Fig. 4(b). Note that ~ and I vary sensitively with V„ in-
dicative of a strong variation of the tunneling process as
the relative position of the two quantum levels is varied.
The Bat-band condition is reached at V, —+0.7 V as in-
dicated in the inset of Fig. 3 where the I-V characteristic
of the structure is plotted.
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FIG. 3. Time-integrated photoluminescence (PL) and photo-
luminescence excitation (PLE) spectra of sample I measured at
20 K under several bias conditions: (1) flat band, (2) the begin-
ning of the quasiresonance region, (3) the resonance, (4) the end
of the quasiresonance region, and (5) the above-resonance con-
dition, whose meanings are described in the text with represen-
tation by symbols A —G. The solid lines show the PL spectra of
LQW and RQW and the arrow indicates the photon energy of
laser used for the PL measurement. The dashed lines show the
PLE spectra of LQW, where the detection photon energy is set
to be 9 meV below the PL peak energy of LQW. The inset
shows the gate current as a function of bias voltage, where the
solid line indicates the photocurrent under illumination by laser
with the same excitation condition (medium excitation) as that
for the time-resolved PL measurement, and the dashed line indi-
cates the dark current.

Solid lines in Fig. 3 show the PL spectra of LQW and
RQW and the dashed lines show the PLE spectra of
LQW. The arrow indicates the photon energy of the
laser used for the PL measurement.

Each PL spectrum has two peaks whose intensities de-
pend strongly on bias. These peaks are PL peaks from
respective QW's. The PLE spectra of LQW show a series
of exciton peaks in the PLE spectra of LQW; their as-
signment is indicated in the figure. It is noteworthy that
the peaks associated with the excitonic absorption in
RQW appears in spectra 1 —3; this implies that some frac-
tion of the electrons photogenerated in RQW are
transferred to LQW and contribute to the luminescence.
Note that each exciton peak is split into doublet struc-
tures, which is due to the well-width difference of one
monolayer (=2.83 A). Since the PL from each QW
comes mainly from the lower energy peak of the doublet,
most of the photogenerated electrons relax to the region
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FIG. 4. (a) Photolurninescence decay time and (b) tirne-
in(egrated photoluminescence intensity of sample I as functions
of applied voltage at 20 K. Open circles (solid line) are for
LQW and open squares (dashed line) for RQW. Solid circles
(dotted line) are the sum of the PL intensities of LQW and
RQW. The excitation wavelength is 6940 A. The symbols
A —G indicate the typical conditions of tunneling, which are de-
scribed in the text.
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FIG. 5. Time-integrated photoluminescence (PL) intensities
of sample I as functions of applied voltage for two different exci-
tation powers. Open circles (solid line) represent PL intensity
for LQW and open squares (dashed line) for RQW at the medi-

um excitation power (5 W/cm ) used for the time-resolved mea-
surement. Solid circle (dash-dotted line) and solid squares (dot-
ted line) represent PL intensities for LQW and for RQW, re-

spectively, measured with a lower excitation power (1 W/cm').
The numbers 1-5,1'-5' indicate the points where data in Fig. 3

were taken, corresponding to the various resonance conditions.

Before discussing these data in detail, we examine first

how the external voltage V, affects the potential profile in

this double-QW structure. If the concentration of photo-
generated carriers is sufficiently low, then the voltage V,
is supported evenly by the undoped part of the sample be-
tween the metal Schottky contact and the underlying
n+-type GaAs region. In such a case, the electric field

F&w between the two QW's can be easily estimated, since
the field is uniform and is equal to (0.7 V-V, )/d„„~,
where d„„~ is the thickness of the undoped region. When
the concentration of photogenerated carriers increases,
then these carriers start to screen the external field and

give rise to a field nonuniformity. In fact, it was found
that the bias voltage dependence of PL intensity shown in

Fig. 4(b) is somewhat dependent on the power intensity P
of the excitation laser. To clarify this situation we also
measured the PL intensities as a function of V, by using a
weaker excitation ( —1 W/cm ) with a power intensity —,

'

of that for Fig. 4(b). The data are shown by solid circles
and solid squares in Fig. 5, where the data of Fig. 4(b) are
also replotted with open circles and open squares for
comparison. Note that the two sets of data are quite
similar to each other except that the voltage scale is dis-
placed about 0.5 V.

This implies that when the excitation power is medium

( —5 W/cm ), the eff'ective electric field F&w in the QW
region remains nearly constant in the range of
V, =0.7—0.2 V. Hence, the local field F&w is then ap-
proximately (0.2 V- V, )/d„„~. In the present experiment,
while we could perform the time-integrated measurement
of PL intensities with the weaker excitation power, we
had to perform the time-resolved PL measurement with
the medium excitation power (-5 W/cm ) because of the
limitation of signal-to-noise quality of the data. Hence,
we always consider this voltage-offset effect.

This voltage shift is caused by two factors, as will be
described in detail later; the first is the Ohmic voltage
drop 6V=I hR& which is caused by the series resistance

Rz ( —140 fl) and the photocurrent I h associated with

the photoexcitation; the second and more important is
due to hole accumulation in the QW region, which partly
screens the external field. This hole accumulation results
mainly from the leftover holes in LQW that fail to recom-
bine with electrons that have leaked out by tunneling.
These holes consist of those generated in the QW's and
those injected from the undoped GaAs region. The holes
will be accumulated over many periods of laser pulses
and influence mostly the steady-state field distribution,
since the hole transport from the QW's to the outside will

occur in a much slower time scale than the radiative
recombination and electron tunneling processes. Note
that this hole accumulation does not directly influence
the tunneling dynamics of the electrons since the height
of the A1As potential barriers is scarcely modulated; the
change of the potential height caused by the hole accu-
mulation is estimated to be less than 50 meV, which is
much smaller than the potential barrier height ( —1 eV)
of A1As. The effect of the hole accumulation will be dis-
cussed more in Sec. III A 3 a. Note also that the radiative
recombination process in our case occurs under the con-
dition where the hole concentration is much higher than
that of electrons. This situation is favorable since the
recombination rate 1/r„„ is independent of hole concen-
tration and the PL intensity is proportional to the e1ec-
tron density at low temperature (20 K), where the car-
riers are under the degenerate condition.

As explained in our earlier work, ' ' ' it is convenient
to discuss the data of Fig. 4 in several different regions.
The region 3 —B in Fig. 4 corresponds to one of the off-

resonant conditions, which we refer to as "below reso-
nance" since the ground level of LQW is well below that
of RQW. In the region between C and E, the two ground
levels come close to each other (quasiresonance), while

the exact resonant condition is believed to be established
at D, as will be discussed later. The other off-resonant
condition, which we refer to as "above resonance, " is
reached in the region F—6, where the ground level of
LQW is way above that of RQW. In the following, we
discuss in detail the electron dynamics in each region,
and compare the experimental data with theoretical mod-
els.

A. Tunneling dynamics under quasiresonance
condition (C—E )

In the region between C and E, the measured carrier
lifetimes v.l and ~„, and PL intensities II and I„,vary
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sensitively with V, . Note in this region that the lifetime

~L of LQW is almost the same as that ~z of RQW, sug-
gesting that the communication between the two QW's is
frequent. The lifetimes ~L and ~z decrease rapidly as V,
is reduced. At the end of this region (E), rL decreases
down to 90 ps. The observed variation of lifetime indi-
cates that the tunneling process dominates the lifetime,
and that the tunneling rate varies strongly with V, since
the radiative recombination lifetime ~„, should not vary
too much with V, in these narrow QW's and is around
400—500 ps. In fact, the measured r„, is -400 ps (Ref.
27) under the flat-band condition, and v„„is estimated to
increase to -500 ps or longer for the above-resonance
condition from the measurement of PL decay time in a
double-QW structure with a thick ( =100 A) central bar-
rier with an electric field.

Figure 4(b) indicates that the PL intensity IL of LQW
decreases monotonically with decreasing V„while the
PL intensity I„ofRQW increases and reaches its max-
imum. At the end of this region (E), IL decreases to ap-
proximately —,

' of In. (Note that IL becomes almost equal
to Iz at D, where the exact resonance is reached, as will
be described later. ) We compare these data with theoreti-
cal predictions to clarify the tunneling mechanism in this
region. We first examine the direct tunnel escape model
(or coherent tunneling model); this idealized model is
known to describe adequately the key features of reso-
nant tunneling current in double-barrier diodes,
where the energy distribution of incident electrons is usu-
ally far greater than the effective width of transmission
resonance peak. We point out that electron transport in
double-QW structures under quasiresonant conditions
cannot be explained by this model, but can be accounted
for successfully by the relaxation-dominant model to be
described later.

1. Direct tunnel escape model
(coherent tunneling model)

As shown in inset (a) of Fig. 6, the wave function origi-
nating from the ground level EL, of LQW is mainly
confined in LQW. Some part of this wave function, how-
ever, penetrates into RQW and leaks out to the region of
the right electrode. Hence, this state can be viewed as a
quasibound state. The wave function of this state
changes with applied field as follows. When the ground
level EL, of LQW is brought close to but slightly below
that En, of RQW, the wave function starts to penetrate
appreciably into RQW, which should result in an appre-
ciable increase in the escape rate by direct tunneling. Un-
der the exact resonant condition, the wave function is al-

most equally distributed in both QW's [inset (b)], and
hence the tunnel escape rate from LQW to the outside
should reach its maximum. When the ground level of
LQW is slightly above that of RQW, the penetration of
the wave function into RQW should diininish again [inset
(c)], and the direct tunnel escape rate should decrease.
We examine in the following this direct tunnel escape
model (coherent tunneling model) by calculating the tun-
nel escape time on the basis of this model and compare it
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FIG. 6. The tunneling time of electrons in sample I from the
left well (LQW) through the right well calculated for the direct
tunneling escape process as a function of bias electric field. The
inset illustrates the direct (coherent) tunneling escape processes
of electrons from the left well (LQW) through the right well

(RQW): (a) at slightly below resonance, (b) on resonance, and
(c) at slightly above resonance.

with the experimental data.
The tunneling escape time from the left well to the out-

side (through RQW) was calculated in the following way
on the basis of the two-band tight-binding approach.
This approach includes nonparabolicity effects in the
conduction band and varying electrostatic potential
across the structure. ' For a given voltage or electric
field F„we assume that a free electron wave with a nor-
malized amplitude is incoming from the "outside" region
on the right side of RQW into the double-QW structure.
Then, the wave function 4(z) in the entire region was cal-
culated as a function of incoming electron energy E, .
The square

~
%~ of this wave function was integrated spa-

tially over the regions of LQW and RQW separately to
obtain the probability densities pL and pn in LQW and
RQW as functions of incoming energy E, . These curves,

pI (E, ) and ptt (E, ), have peaks at the energies of the res-
onances in LQW and RQW. The line shapes are charac-
teristic Lorentzian line shapes typical of resonant tunnel-
ing transmission curves. The energy widths I L and I R
of these resonance curves or the FWHM of the peaks
represent the lifetime w of these quasibound states; hence
the escape time of electrons from LQW to outside by the
direct tunneling process can be determined as hatt'/I

L .
Note that in a strict sense, the present calculation deals

with the escape time of the quasibound state 4 (energy
eigenstate in the total system) associated mostly with the
ground level of LQW in the double-QW structure, and
not that of the localized state 4L (eigenstate of a single
QW) in LQW. In the case where electrons are initially
created in the localized state of LQW, those electrons ex-
perience the tunneling oscillation process between the lo-
calized states of each QW (Appendix B). However, the
results of the present calculation remain valid even for
that case. This is because the tunnel escape process to
the outside is not directly influenced by the oscillatory
nature of the electron density, but is primarily deter-
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mined by the time average of the electron density for the
present case in which the oscillation period is much
shorter than the direct tunnel escape time to the outside,
as described in detail in Appendix C.

Now we present in Fig. 6 one example of such a calcu-
lation for sample I, where the direct tunneling time ~1" is
plotted as a function of electric field I', . As expected, the
tunnel escape time rl" becomes minimum (-230' ps) at
resonance, and the width AF, of the resonance peak is
comparable to the energy splitting (0.57 meV, estimated
by the two-band tight-binding approach) of the two cou-
pled levels at the resonance divided by the average sepa-
ration (92 A) of the two QW's. The calculated escape
time r~'" of the coupled QW's at resonance (-230' ps) is
nearly two times as large as the calculated escape time ~z
( —110' ps) of electrons in a single 51 A QW to the out-
side through a barrier of 31.1 A. (Note that quan-
tities accompanied with a superscript asterisk change
somewhat if a barrier thickness is different from the
designed value, as will be discussed later. ) This relation,
rl" /r~ =2 at resonance is quite understandable since the
flux of electrons hitting the rightmost barrier is reduced
by a factor of 2 for the coupled QW structure at reso-
nance as compared with that of a single QW. This is be-
cause the fraction of the electron wave function is split
equally over the two QW's and the fraction in RQW is
about one-half of the total at resonance. It is worth not-
ing that even in the case that electrons are distributed in
both of symmetric and antisymmetric states at 20 K, the
net tunneling time also becomes twice v.

& since the tun-
neling times of the respective states equally become twice
~~. Note also that in a more general case, including the
off-resonant condition, the direct tunneling escape time of
electrons in a particular quantum state +z of coupled
QW's should be approximately equal to rz/Pz(qil ),
where Pz(%1 ) is the fraction of the wave function %r
residing in the right QW.

If the time constant vz" of the tunneling escape process
is 230* ps as the model predicts, then this tunneling pro-
cess should make a greater contribution than the radia-
tive recombination process, which has a typical time con-
stant ~„,of 400 ps at low temperatures. In this case, the
PL intensity II of LQW should decrease at resonance by
a factor of -0.4 as compared to the off-resonant case,
since the relative probability of the radiative recombina-
tion is given by (1/~„, ) /(1/r„, + 1/r~'") -(1/400
ps)/(1/400 ps+1/230' ps). Note here that the time-
integrated PL intensity should be nearly proportional to
the ratio of the radiative recombination decay rate 1/v„,
over the total decay rate 1/r„, + 1/~t'" including the tun-
neling rate.

A similar analysis is applicable to the photolumines-
cence associated with the ground level Ez& of RQW as
long as the relevant roles of the two wells are properly ex-
changed. Once the fraction P„(%'„)of electron wave 0'~
residing in RQW is known, then the tunneling escape
time rz" is approximately given by 1/~„"=Pz(+z )/r~
Hence, the tunneling escape time of electrons associated
with the ground level of RQW is predicted to approxi-
mately double [rz ( —110* ps) to -2' (-230* ps)],
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FIG. 7. Schematic illustration of the time-integrated PL in-

tensity of each QW in sample I as a function of applied voltage,
expected in the direct (coherent) tunneling escape process.

when the level is brought to the resonance. As a conse-
quence, the time-integrated PL intensity IR should in-
crease approximately double ( —1.7), and is expected to
become equal to that II of LQW when the level is
brought to the resonance, where PR(qI~ ) =PR(qll ) =0.5

and v.z'"=~I"=2~&. Hence, this model predicts that the
PL intensities II and IR of the two QW's should vary
with the applied voltage as schematically shown by the
solid and dashed lines of Fig. 7.

If the effective thickness of the right barrier is thinner
than the planned value by 0.5 ML or 5% of the barrier
thickness, then the relevant tunneling times (marked by
the asterisk in the text) will be shortened to 70% of the
original values. In such a case, vz should be about 80 ps
and ~~" about 160 ps. For such a case, the changes of PL
intensities associated with resonance will be somewhat
greater than those just discussed: II should be reduced
by a factor of 0.3 (instead of 0.4), while Iz should in-
crease nearly by a factor of 2.

Here we also note that for a realistic interpretation of
the measured data of Fig. 4 one must take into account
the presence of a well-width fluctuation of 1 ML ( =2.83
A) as indicated by the PLE spectra of Fig. 3. For a sam-
ple of this kind the measured V, dependence of Ip„ is the
superposition of Ipl -versus- V, curves coming from
different areas of the QW's. This will be discussed later.

Now we compare the experimental results with the
direct tunneling model by examining the dependences of
tunnel escape time ~ and PL intensity I on applied volt-
age V, . Although the V-shaped dependence of lifetime

~1 on V, is seen in both experiment and theory, we note
that there are some important discrepancies. Here we as-
surne that resonance is reached at point E of Fig. 4 since
the direct tunnel escape model predicts that the tunnel
escape time of LQW should become minimum at reso-
nance. The first noteworthy discrepancy is that the PL
lifetimes of the two QW's are no longer equal at point E,
while they should be the same at resonance. Further-
more, the minimal value of the measured lifetime is 90 ps
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at point E [Fig. 4(a)], shorter than the prediction (230 ps).
Discrepancies are found also in the observed depen-

dences of the PL intensity on V„as explained below. As
discussed earlier and summarized schematically in Fig. 7,
the model predicts that the PL intensity of LQW should
decrease at resonance by a factor of -0.4 (or 0.3*) from
the off-resonant value, and become equal to that of RQW,
while the PL intensity of RQW is predicted to approxi-
mately double at resonance from the off-resonant value.
These predictions do not agree with the experiment; the
observed dependence of PL intensity on V, [Fig. 4(b)]
was far stronger than the predictions, and the PL intensi-
ty of LQW at point E is as small as —,

' of that of RQW in

contrast to the prediction that they should be equal if we
consider point E as the resonant point. These discrepan-
cies indicate that the actual electron tunneling is dom-
inated not by the direct tunneling mechanism alone but is
strongly influenced by another mechanism. Note espe-
cially that point E should not be the exact resonant point,
as will be discussed in the next section.

2. Scattering-assisted funnel escape process

As discussed in Sec. IIIA1 the direct tunnel escape
model (or coherent tunneling model) is not adequate to
explain the experimental results on the tunnel escape pro-
cess in the double-QW structure. It is reasonable to con-
sider effects of scattering since the scattering time is usu-
ally far less than the tunneling escape time ( ) —100 ps)
in our structure. Indeed, the importance of scattering in
the interwell tunneling process was recently emphasized
by the theoretical work of Ferreira and Bastard. In the
following, we investigate a model which takes into ac-
count the scattering and energy relaxation between the
two quasibound QW states, and the subsequent tunneling
to the outside.

First, we examine the time constant for the scattering-
assisted transition between the two lowest quantum
states, which are associated mainly with the ground levels
of the two quantum wells. %e discuss, in particular, how
this transition time changes with electric fields. This
transition time is generally determined by the slower of
two relevant processes: the tunnel oscillation process
with period T„, (Appendix B) and the interlevel scatter-
ing process with time constant r""', because both must
occur in series for the interwell transport to take place.
In our sample, the interlevel scattering time w'"«dom-
inates the transition time since H''« is almost always
much longer than the tunneling oscillation period T„,
An exceptional case appears only in a very small region
near the exact resonance condition, where r'"" (less than
several picoseconds) may become comparable to the os-
cillation period ( ~ 7 ps), as described below.

Suppose there exist two quantum levels or eigenstates
E+ and E in a double-QW structure with wave func-
tions 4+ and %'; the transition rate between them by
some scattering potential V„,«should be proportional to
~('V+~V„,«~4 )~ . In the present case, the two wave
functions %'+ and + are expressed as linear combina-
tions of the ground levels of the respective wells (See Ap-
pendix A), and the coefficients of the combinations

change strongly with bias, whereas V„,«can be assumed
to be nearly constant ( V„,«) in the bias range of the
quasiresonance condition. Hence, the matrix element is
roughly V,„«multiplied by the overlap integral
( 4+ ~

4 ) and, consequently, the electric field depen-
dence of the scattering rate 1/2"" is primarily deter-
mined by the overlap integral between the wave functions
%+ and%

Note that the overlap integral over all space is zero due
to orthogonality. The relevant quantity for estimating
the scattering time 2"« is the overlap integral over one
well or one barrier. This is because the major scattering
potentials in one well or one barrier should be mostly in-
dependent or incoherent with the others for such impor-
tant scattering processes as electron-phonon scattering
and interface roughness scattering.

By using the equations in Appendix A, the overlap in-
tegral in one well is written as

~ ( 'p+ ~%' ) ~

(well)=~a+a
~

=~a+a"
~

and the overlap
~(4+~% ) ~

(barrier) in the central barrier is written as
~(a+a" +a+a )(4z ~4L ) ~, where 4z and 4L are the
unperturbed localized states in each well, and a,~

represents the mixing coefficients of the localized states in
each eigenstate. In our sample, a numerical estimate in-
dicates that the integral over one well is dominant com-
pared to the overlap in the barrier. Hence, I/r""'
should be roughly proportional to ~a+a
(= la+a" ). Note that the absolute scattering time is
determined by the intrinsic scattering strength, which de-
pends on the scattering mechanism. Qualitatively, this
scattering process in our structures has some similarity to
the intrasubband scattering in a single QW in the sense
that the relevant initial and final wave functions for
motion perpendicular to the epitaxial layers have nearly
the same shape in both scattering events. Hence, at reso-
nance (a J- I/&2), r""' is expected to be comparable to
that of the intrasubband scattering time, which is es-
timated to be less than several picoseconds from the cal-
culated and/or measured mobility value.

The dependence of r""' on electric field is calculated
and is shown in Fig. 8; here the minimum value of r""' is
normalized to be 1 ps, which is a typical order of magni-
tude of the time constant of intrasubband scattering in
QW's. As Fig. 8 shows, r"'" is strongly dependent on
electric field F, ;

8"'« increases significantly when F, devi-
ates from the resonant point by some value AF„which is
equal to the energy splitting AE, ;&, of the two coupled
states divided by the average separation (92 A) of the two
wells.

These considerations indicate that on the resonance
and in its vicinity (the quasiresonance condition), the in-
terwell electron-transport process occurs within several
picoseconds in the present sample. Hence, under the
quasiresonance condition, a quasiequilibrium distribution
of electrons should be reached between LQW and RQW
since the transition time is much faster than the time for
tunneling to the outside of the wells. Consequently, the
time evolution of the electron concentration in each well
is dominated mainly by the electron tunneling to the out-
side while the electron concentrations XL,Nz in the left
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FIG. 8. The dependence of interlevel scattering time in sam-

ple I on bias electric fields calculated from the overlap integral
between the electron wave functions of each QW. The minimal

scattering time is set to be 1 ps. The inset illustrates this process
under the conditions of (a) "slightly below" resonance, (b) on
resonance, and (c) "slightly above" resonance.

IR at the edge (point E} of the resonant region.
Throughout the quasiresonance condition, the lifetime of
RQW is expected to be the same as that of LQW due to
the fast relaxation between the two wells. In addition,
the PL lifetime is expected to be twice ~~ at resonance
and to decrease down to —rs at the edge (point E) of the
resonant region because r becomes nearly zero. These
predictions agree well with the data.

The above discussion clarifies that interwell transport
processes under the quasiresonant condition is very fast
and creates a quasithermal equilibrium distribution of
electrons by relaxation processes. Hence, the tunneling
from the left QW to the outside via the right well is dom-
inated mostly by scattering-assisted sequential processes.
In addition, the resonance condition is interpreted to be
reached on average at point D in Fig. 4, where both the
PL intensities and the lifetimes of the two QW's are equal
to each other.

and right well are in quasithermal equilibrium, and their
ratio r =NL /Ntt should be approximately equal to
exp[ —(EL, ER, )/ks—T]. In the case that there are
some well-width fluctuations, the ratio should be
redefined by the ensemble average ( exp( EL, Iks T—) ),„I
(exp( E„,/ktt T—) )/, „, which is the average over various
areas where the quasiresonance is established.

Under such a quasiequilibrium condition, the electrons
tunnel to the outside with a time constant, which should
be determined as follows:

d (NL+N„) (NL+ N„)
(1+r )hatt

where ~z is the electron escape time by tunneling from
the right well to outside through a single barrier. This ~~
can be calculated by the method described in Sec. III A 1

and is 110—80 ps for this case (L ir =51 A,
Ltt =31.1 —29.7 A}. Hence, the characteristic decay time
is equal to (1+r )rtt, which becomes quite long when the
greater fraction r (=NLINtt ) of the electrons dwells in

the left well. Similarly, PL intensities I~ and IL from the
right or the left QW's are given by IL ~„~=NL ~tti/r„„,
where v.„,is the radiative recombination lifetime.

Using the above equations, the PL efficiencies of each
QW, defined as the ratio NPL/N, „„can be predicted,
where Np„ is the density of the radiatively lost electrons
in one well and N,„, is the initial density of those elec-
trons excited in the well by a laser pulse. The PL
efficiencies are then predicted to be -2rsl[r„„+(I
+r)r&] for RQW and -2rr&/[(r„, +(1+r}r&] for
LQW, where r is the ratio NL /NR of the electron concen-
trations. Therefore, it is predicted that at resonance
(point D) where r =1, the luminescence from both wells
should have the same intensities (IL =I+ ). One also ex-
pects that I~ decreases when the ratio r decreases as the
applied voltage becomes more negative, while I~ in-
creases first and reaches a more or less constant value.
This mechanism explains why IL becomes far less than

3. Energy width and strength of resonance

In this section, we discuss both the energy width and
the strength of the resonant coupling in actual experi-
mental situations, and how the inhomogeneous broaden-
ing affects them. We can define the effective width of the
resonance from the experimental data of Fig. 4(a) by tak-
ing it to be half of the voltage range in which the lifetimes
of the two QW's are nearly equal to each other. The
width 5 V, of the bias voltage thus determined is 200 mV.
In order to translate the voltage width to the energy split-
ting between the ground levels of the two QW's, one must
consider how the electric field is distributed across the
undoped region.

a. Field distribution and hole accumulation The c. al-

culation described in Sec. III A 1 predicts that the reso-
nance condition is reached when electric field (F&w ) be-
tween QW's is —47 kV/cm. If the electric field is uni-
form, the bias voltage at resonance should be -0. 1 V
[=F&w X(1200 A)+0.7 V]. In contrast, the measured
voltage is —0.5 V, which differs from the predicted value

by 0.6 V. As discussed earlier, the major component of
this discrepancy comes from the hole accumulation
effect, which offsets the flat-band voltage by about 0.5 V.
In fact, as shown in Fig. 5, the time-integrated PL inten-
sities measured with low excitation light become equal
for the two QW's at point 3, which indicates that the res-
onance is reached at the bias voltage of +0. 1 V.

Next we discuss quantitatively the two mechanisms
that may screen the external voltage and reduce the field

F&w. First, the Ohmic voltage drop across the electrode
region is estimated to be less than 0.17 V because, as
shown in the inset of Fig. 3, the series resistance R, is 140
0 and the photocurrent is less than 1.2 mA. Hence this
component is relatively small.

Next, we estimate quantitatively the effect of hole ac-
cumulation in the QW's. Some of the holes photogen-
erated in the QW's cannot recombine radiatively since
some photogenerated electrons are lost by tunneling be-
fore recombining with the holes. In addition, some holes
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photogenerated in the undoped GaAs layer are injected
into the QW's because of the electric fields. Those left-
over holes are accumulated mainly in LQW since the
ground level of hole in LQW is lower than that of RQW.
After the accumulation, holes are lost slowly through
nonradiative decay processes such as tunneling, ther-
mionic emission, and trapping into nonradiative centers.
The density of these accumulated holes is then given by
the product of the incoming flux of holes (cm s ') and
the lifetime determined by nonradiative decay processes.
If we take the incoming flux to be (1—2)X10' cm in
each period (24 ns) of the laser pulse, and the lifetime of
leftover holes to be 1 ps, the density Nz of accumulated
holes is expected to be (4.2 —8.3)X10" cm . These
holes in LQW screen the field by inducing an electric field
between QW's by bF=eN&/@=29 58 —kV/cm. If the
hole density does not depend much on the bias voltage,
the net effect is quite simple and gives rise to a voltage
offset of 0.3—0.6 V in the PL-intensity —versus —V, curve.
Hence, this hole accumulation effect explains successfully
why the measured V, dependence of PL intensity de-
pends on the excitation laser power P and is shifted by
about 0.5 V when P was reduced. Note at this point that
the change b,F in the electric field F&w between the QW's
can be estimated by taking this shift into account and is
almost equal to the bias voltage change b V, divided by
the thickness ( = 1200 A) of the undoped region.

b. Resonance width and its broadening mechanisms.
The fact that the lifetimes of the two QW's are equal over
the voltage range AV, of 200 mV indicates that the in-
terwell transport is quite efficient over the energy-level
width of about 15 meV for the two QW's. This is because
the average separation of the two QW's is 92 A and ac-
counts for only 7.7% of the total thickness of the un-
doped region ( —1200 A). This energy width AE,„, is
much larger than the calculated energy splitting hE, ];,
(0.57 meV) due to the resonant coupling and also far
greater than the lifetime broadening fi/~„caused by the
scattering which is expected to be -1 meV. Therefore,
the effective resonance width b,E,„, is determined by
other mechanisms, such as (1) the energy-level broaden-
ing associated with well-width fluctuation, (2) the nonuni-
formity of the applied electric field, and (3) the nonuni-
form screening of electric field induced by photoexcited
carriers in the QW's.

We examine the first contribution the heterointerface
quality of the QW structure can be estimated by the line-
shape analysis of the PLE spectra of Fig. 3. There the
PLE peaks for each exciton absorption are split into rela-
tively sharp doublet structures, which is typical of QW's
prepared by MBE with growth interruption. The sharp
splitting indicates that the top (A1As on GaAs) interface
of the QW's is flat over a wide area with a step interval of
more than 1000 A, which is larger than the exciton di-
ameter ( -200 A). When a well-width difference bL ii, of
1 ML exists, the ground level energy of electron mill
differ by an amount AEM~. This difference AEM„ is 5

meV for LQW (when estimated from an energy splitting
of 8.2 meV for an el-lhl exciton), and 10 meV for RQW
(from the corresponding splitting energy of 14.4 meV for
an el-hhl exciton). The widths of each PLE peak are

mainly ascribed to the roughness of the bottom (GaAs on
A1As) interface of the QW's, where the lateral size of is-
lands is less than 100 A. ' The observed broaden-
ing can be split into the level fluctuation of electrons and
that of holes; the former hE„„z is estimated to be about
2.6 meV for both QW's when assessed from the measured
FWHM ( -4.8 meV) of the PLE peak of e 1-lh1 in LQW
and that ( —3.4 meV) of el-hhl in RQW.

These splittings AEM& and broadenings AE„„„of the
electronic levels in the present double-QW structures will
certainly broaden the resonance condition. We refer to
the two pairs of the quantum levels by (Ez „E~~ ) and

(Ez„ER, ), in which Er'~ and ER, denote the (higher)
ground levels coming from the thinner regions of respec-
tive QW's, while Ei, and ERi denote those lower ground
levels coming from the thicker regions of the QW's. As
the bias voltage is applied negatively from the flat-band
condition, E~, resonates first with E„,. As the bias be-
comes more negative, Ez, resonates with ER, , then E~,
resonates with Ez &, and finally Ez, resonates with E~, .
Since each of these four resonance modes overlaps with
adjacent modes due to the level broadening AE„„&,the
resonance width will be broadened considerably and will
be close to the sum (15 meV) of the energy splitting (5
meV for LQW and 10 meV for RQW).

The broadening may also result from a local variation
of Schottky barrier height (( -0. 1 eV) but this contribu-
tion is estimated to be only a few to several meV to the
broadening of the resonance width. The broadening
caused by the nonuniform distribution of carriers in the
QW's is estimated to be less than several meV, because
the variation of local potential profile caused by the po-
larization of photogenerated electrons is estimated to be 6
meV even at an electron concentration of 5X10' /cm
while the density of photogenerated electrons in the QW
is far below 5 X 10' /cm .

c. Inhomogeneity and intermell tunneling process.
Next, we examine how the inhomogeneous broadening
AE,„~, affects the interwell tunneling process. Although
doublet structures were observed in the PLE spectra (Fig.
3), we assume that the resonance condition is dominated
by a broad but single peak structure since the PL-
intensity —versus —bias curves [Fig. 4(b)] agree with this
assumption. The reason why the doublet structures are
blurred in the PL —intensity —versus —bias curves is that
both the level broadening in LQW and that in RQW con-
tribute jointly to the broadening of the resonance curve.
Now we discuss the influence of the broadening to the in-
terwell tunneling based on this assumption. There are
two possible regimes that might be important, depending
on the relative rate of the perpendicular transport (or in-
terwell tunneling normal to the quantum-well planes) to
that of lateral transport (parallel to the planes). The first
regime is one in which the lateral lengths of the inhomo-
geneity or the well-width fluctuation are so small that the
time needed for carriers to equilibrate between different
regions is negligibly small compared to the interwell tun-
neling time near the resonance. In this case the effective
or observable interwell tunneling time, v.r(eff), becomes
longer than the intrinsic tunneling time ~r(intrinsic) by a
factor of AE,„,/AE, „„where rr(intrinsic) represents
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the interwell tunneling time in the absence of inhomo-
geneous broadening. Generally, ~z (intrinsic) corresponds
to the longer time constant of the two serial processes,
scattering-assisted interwell tunneling time and oscilla-
tion tunneling time, depending on the sample structures.
This increase of ~z- originates from the fact that only a
fraction (=hE, „,/b, E,„,) of the electrons can actually
tunnel resonantly from one well to the other at a given
time, assuming that the redistribution process of the elec-
trons over a lateral area does not delay the process. Note
here that this increase of the tunneling time occurs only
for the resonant interwell process but does not directly
affect the tunneling escape process to the outside.

The other regime is one in which the characteristic
time needed for electrons to move laterally into an area
where the resonant condition is fulfilled is far larger than
the intrinsic interwell tunneling time. In this case the
effective interwell tunneling time is determined by the la-
teral transport time needed for electrons to travel from
nonresonant to resonant regions.

Our case is expected to be the former regime for the
following reason. As discussed earlier, the inhomogene-
ous broadening of the resonant peak is dominated in our
sample mostly by the well-width fluctuation. The
relevant lateral size of such a fluctuation is that of the
heterointerface roughness and is typically 100—1000
A. ' The transfer time of electrons across the lateral
distance of 100—1000 A with an energy of k8 T ( -2 meV)
is of the order of 100 fs to 1 ps, which is faster than or
comparable to the interwell tunneling time. Therefore,
the effective interwell tunneling time should be given by
(bE„,/bE, ~;, )r r(i ntrinsic)—=30vr(intrinsic) and is pre-
dicted to be less than 50 ps. This value is still far shorter
than the measured lifetime ~L of LQW on and near reso-
nance and, therefore, allows quasiequilibrium to be
reached, which agrees with our interpretation of
scattering-assisted tunneling described in the previous
section.

In order to examine how the effect of resonant cou-
pling varies with the thickness of the central barrier, we
have performed similar measurements on another double
QW (Sample III) having a thicker central barrier (=56.6
A). The interwell tunneling time just on resonance for
this sample should be determined mainly by the tunneling
oscillation process because on the exact resonance the in-
trinsic oscillation tunneling time ~'" (Appendix B) is cal-
culated to be -96 ps, which is much larger than the
scattering-assisted interlevel transition time. However,
the measured lifetime of electrons in LQW was nearly in-
dependent of the bias voltage and did not show any
significant sign of resonant coupling. Hence, the effective
interwell resonant tunneling time in Sample III is es-
timated to be significantly longer (more than —1 ns) than
the radiative lifetime (-400 ps). This fact demonstrates
that the contribution of the resonant tunneling is strongly
suppressed in this sample. This is probably because even
a small inhomogeneous broadening AE,„, of the quan-
tum levels is adequate to blur or mask the intrinsic reso-
nant effect, since the effective interwell tunneling time ~&-

is greatly enhanced by a factor of b,E,„,/b, E,„~;,( ) 100)
over its intrinsic value, where b E,p} p

is less than 0.1 meV.

B. 06'-resonant tunneling

1. Below-resonance condition ( A —B)

As shown in Fig. 1(a), the tunneling rate from the left
QW to the outside is expected to be reduced as the flat-
band condition is established, where the ground quantum
level of LQW is far below that of RQW. Indeed, the ex-
perimental value of the electron lifetime or PL decay
time, rI, of LQW is quite long (310—400 ps) in the region
between 3 and B of Fig. 4(a), and is close to the radiative
recombination lifetime ~„,. This implies that the tunnel
escape time ~z is greater than 1.4 ns if we subtract the
contribution of the recombination path by using the rela-
tion ~&= I/(I/r 1/~„„—) with ~„,-400 ps. The fact
that the tunneling escape time of LQW is greater than 1.4
ns in this region shows that neither the direct tunneling
nor the scattering-assisted tunneling process is very
effective in this case, since the penetration of the wave
function O'L to the outside through the two barriers and
RQW is small.

The lifetime rz and the PL intensity II, of RQW in

this region are very different from those of LQW, since
the former two are strongly affected by two escape pro-
cesses; one is the escape through the right barrier to the
outside and the other process is the tunneling transfer
process to LQW through the central barrier. The tunnel-

ing escape time v.z to the outside is predicted to be
110—80 ps, as mentioned earlier. The tunneling transfer
into LQW is difficult to estimate theoretically, since this
is dependent both on the scattering and on the overlap of
the relevant wave functions, as discussed earlier in con-
nection with the scattering-assisted tunneling time ~""'.
This issue will be discussed in detail later in Secs. III B2 b
and III B 2c. Here, we simply estimate this contribution
of the process to the PL decay by using the following re-
lation: 1/vz = I/~++ I/v„, +1/~&w, where rz is the
measured PL decay time (

—50 ps or less) of RQW, rz is

the simple tunneling escape time through a single barrier
to the outside (110—80 ps), and ~„, is the recombination
lifetime ( -400 ps). The interwell tunneling time r&w thus
determined is 120—200 ps and is somewhat longer than
and yet comparable with the simple escape time ~z to the
outside. This is reasonable since the observed excitation
spectrum of LQW has exhibited a structure that is associ-
ated with the exciton absorption of RQW. Under this
off-resonant condition the PL efficiency of RQW should
be given by (1 ~/„, )/(1 /r), which is less than —,

" or
13%. The observed PL efficiency of RQW shown in Fig.
4(b) is several percent and is in semiquantitative agree-
ment, though there is some discrepancy.

Note that the tunneling transfer process from RQW
into LQW for the below-resonance condition (case I) has
some similarity to the opposite transfer process from
LQW to RQW for the above-resonance condition (case
II). While the first process from RQW to LQW has a
time constant of 120—200 ps (case I), the other process
from LQW to RQW has a somewhat longer ~ of more
than several hundred picoseconds for case II, as will be
discussed in Sec. III B2. The origin of the difference be-
tween these two cases is possibly in the penetration prob-
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ability of the wave functions into the other well, in the
contribution of the interface roughness scattering, and so
on.

1000

Ph

2. Above-resonance condition (F—6 )

When the applied voltage V, gets more negative
beyond the resonance voltage and raises the ground level
of LQW above that of RQW, the tunneling rate from
RQW to LQW becomes negligible and that from LQW to
RQW is also reduced because of the breakdown of the
resonance. This mechanism is responsible for the ob-
served increase of both lifetime and PL intensity of LQW
in the region between E and I' of Fig. 4. In contrast, the
PL intensity of RQW decreases, because the density of
electrons in RQW decreases as the incoming electron flux
from LQW decreases, and also the outgoing flux or rate
from RQW to outside through the right barrier increases
due to the field-induced lowering of the rightmost barrier.
Surprisingly, the PL decay time rR of RQW increases in
this region; this is due to the small incoming electron Aux
from LQW, which decays slowly with the lifetime rL of
the electrons in LQW.

a. Direct tunnel escape process. The measured lifetime
rL of LQW in sample I increases up to -240 ps for the
above-resonance condition [Fig. 4(a)]. This indicates that
the tunneling time ~T is -460 ps, assuming a radiative
recombination lifetime ~„„of-500 ps in this region of
the electric field. Just as in the case of the resonance, the
tunneling escape process for the above-resonance condi-
tion is expected to involve both direct (coherent) tunnel-
ing and scattering-assisted tunneling processes.

To evaluate each of the two contributions, we have
performed for comparison a similar measurement of ~
and I on sample II, which has a thick (100 A) right bar-
rier. Note that the thick barrier suppresses or nearly
prevents tunneling out of the double-QW structure. Con-
sequently, the electron dynamics in sample II differs from
that in the previous sample (sample I) mainly by the ab-
sence of the coherent (direct) tunneling escape process to
the outside as long as recombination and other processes
are the same for the two samples.

Figure 9 shows the measured intensity I and decay
time r of photoluminescence from LQW in sample II.
The lifetime for the above-resonance condition was -300
ps, whereas that of sample I was -240 ps [Fig. 4(a)]. By
ascribing the difference of the decay rates ( —„', ps —,~ ps)
tentatively to the direct (coherent) tunneling process, the
direct tunneling escape time rT" from LQW to the out-
side through a 51 A QW and thin (31 A) barriers is es-
timated to be greater than —1.2 ns. Such a large value of
~T-' indicates that the penetration of the wave function
into RQW is quite small even under the above-resonance
condition, where the field-induced lowering of the poten-
tial barriers starts to play a role. This implies that anoth-
er tunneling mechanism may dominate the electron tun-
neling in sample I. We discuss electron scattering-
assisted interwell tunneling of electrons in the next sec-
tion.

b. Scattering-assisted in termelI tunneling process.
Scattering-assisted interwell tunneling processes exist
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FIG. 9. PL decay time and time-integrated PL intensity of
the left QW (LQW) as a function of bias voltage in a double QW
(sample II) with a 31,1 A central (interwell) barrier and a thick
right (outside j barrier.

both in samples I and in II equally. Hence, we should be
able to evaluate the scattering-assisted tunneling time
r'T'"' from the measured lifetime r of sample II by using
the relation 1/~=1/rz"'+1/w„, . Since ~ is -300 ps
(Fig. 9) and ~„, is —500 ps, rg"' under the above-
resonance condition is estimated to be -800 ps. Note
that r'T'"' is much larger than the tunnel escape time
( —100 ps) of electrons from the left QW to the
unconfined three-dimensional states outside through the
single thin (31 A) barrier. This indicates that the electron
tunneling from LQW to RQW for the above-resonance
condition is not dominated by the transmission of a prop-
agating wave through a single barrier but is strongly
suppressed by the presence of the second (outside) bar-
rier. The most important factor is the reduction of the
overlap integral between the two wave functions associat-
ed with the ground levels of the respective QW's under
the off-resonant condition, which has been discussed in
Sec. III A2 in connection with Fig. 8. This reduction of
the overlap integral leads to a suppression of the scatter-
ing rate between the ground states of the two QW's and
accounts for the reduction of the scattering-assisted tun-
neling rate 1/~'T'"'.

Here we note two points that need future investigation.
One should examine the reason why the estimated
scattering-assisted tunnel time r'T'"' from RQW to LQW
is substantially shorter (120-200 ps, Sec. III B 1) than
that ( —800 ps) from LQW to RQW under the above-
resonance condition. It might be related to the compli-
cated band structure in the central A1As barrier or to the
difference of dominant scattering mechanisms in the two
cases. The second point to be examined is the reason that
the characteristic time ~T" for direct tunneling is relative-
ly short ( —1.2 ns) compared with the prediction for the
above-resonance condition. Detailed analysis is needed
to account for these two points.

c. LO-phonon-assisted intermell tunneling process. As
shown by point Ph in Fig. 9, one notices that a dip struc-
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ture appears in the measured lifetime and intensity of the
PL from LQW of sample II when V, is near —0.9 V.
The lifetime is —250 ps at the minimum of the dip. This
implies that the tunneling time is 500—1000 ps if we as-
sume that other mechanisms such as radiative recom-
bination contribute in parallel to the PL decay process
with a time constant of 500—330 ps, which is the typical
lifetime value for the off-resonance condition. Note that
the difference of the bias voltage between the dip point
Ph and the resonance point Re is 600 mV. This value
corresponds to an electrostatic potential difference of 44
meV between the two QW's if we assume that uniform
electric fields are supported across the undoped region of
the sample. This is too large to be ascribed to well-width
fiuctuations. As will be described in the following, this
dip is most likely to originate from a resonant enhance-
ment of the scattering-assisted tunneling when the level
spacing becomes close to the characteristic energy of the
longitudinal-optical (LO) phonons.

Various scattering processes such as those by LO pho-
nons, LA phonons, impurities, interface roughnesses, and
electron-electron interaction may all contribute to the in-
terwell transfer. ' ' Among them, the scattering by
LO phonons can be the most important when the
energy-level spacing becomes close to the LO-phonon en-
ergy. The LO-phonon energy AmL0 is 36 meV for bulk
GaAs and 50 meV for bulk AlAs. The confinement of
optical phonons in quantum ~elis and tunnel barriers
may give rise to a series of new modes including the
interface phonon modes. Although they all have energies
different from their bulk values, their energies AcoL& all lie
in the energy range from 30 to 50 meV. Hence, the tun-
neling rate from LQW to RQW is expected to increase
when the energy of LQW becomes higher than that of
RQW by ficoLo.

To examine the validity of attributing the observed dip
to the LO-phonon-assisted tunneling, we discuss first the
energy spacing b,E„~( =Ez, E„,) betwee—n the two
ground levels of the QW's at the bias point Ph, which was

briefly discussed earlier. We tentatively assume here that
the resonance is reached at point Re, where the PL inten-
sities of the two QW's are equal, and suppose that the
field is uniformly supported. Then, since the voltage
difference 6 V, between points Ph and Re is 600 mV, the
electrostatic voltage drop between the centers of the two
wells is estimated to be 44 meV or 7.3% of the total. For
the energy spacing EEL& of the ground levels, AELz is
then calculated to be 44 meV —a, where n is a correction
term resulting from the difference in the Stark shifts of
the two QW's and also from the change in the field
screening caused by the accumulated holes mentioned
earlier. This correction term o, may be several meV.
Hence, the energy spacing hELz ( =44 meV —u) is
reasonably close to the confined LO-phonon energy (36
meV) of relatively thick GaAs quantum wells.

Next, we discuss which LO-phonon modes contribute
predominantly to the tunneling. There are three possibil-
ities: LO phonons confined in the GaAs well, those local-
ized along the GaAs/A1As interface, and those in the
A1As barrier. In order to estimate the relative magni-
tudes of the scattering rates due to these phonon modes,

we calculate the overlap integral between the two
relevant wave functions of the ground levels of each QW;
we first calculate the overlap integral I~ in the GaAs
wells and that Iz in the central AlAs barrier at a bias
condition where EEL~ is AcuLO, following a method simi-
lar to that used in Sec. III A2. The absolute squares of
I~ and I~, denoted as S~ and S~ are, respectively,
given by ', a+a ~

+ ~a+a"
~

and ~(a+a+
+a a )(@z~&PL )

~
. Note that, for Sii, the contribu-

tions from both wells are added since the phonons in each
well contribute independently.

The calculated S& is 1.3X10 for EEL~=36 meV
and 6.5X10 for AELz =50 meV. In contract, Sz is
found to be 1.3X10 both at EEL„=36 meV and 50
meV. Note that S~ is much larger than Sz by a factor of
50 or 100. This indicates that LO phonons in the A1As
barrier contribute much less than those in the GaAs well
to the phonon-assisted tunneling process at point Ph.
Hence, one can conclude that the dominant role is played
either by the confined GaAs phonons or interface pho-
nons.

Concerning this interpretation, it is worth noting the
bias dependence of the PL decay time when the bias is
more negative than that of point Ph in Fig. 9. The tun-
neling rate is reduced as the bias voltage becomes further
negative. This feature is not consistent with phonon
scattering in the A1As barrier, because the overlap in-
tegral Is in the barrier is nearly independent of bias (or
bELR ). On the contrary, this feature is more consistent
with the phonon scattering mainly in the quantum wells
since the overlap integral I~ in the well is inversely pro-
portional to GAEL~ and, therefore, should result in a
reduction of the scattering-assisted tunneling rate as the
bias is made further negative beyond point Ph. Since the
interface phonon may have a sizable amplitude in the
well region, the bias voltage dependence of the scattering
rate should be semiquantitatively similar to that of the
confined phonons in the GaAs. To unambiguously clari-
fy the relative contribution of these two phonon modes,
further study appears to be necessary.

Finally, we estimate from the experiment the charac-
teristic time rph{) of phonon scattering for the case when
two electronic states have an overlap integral of unity.
Then mph{) is deduced as the product of the measured tun-
neling time r h„„,„(500—1000 ps) and the square of the
overlap integral Sii, ( —1.3X10 ) and is found to be
70—130 fs. This value is close to the phonon scattering
time of those electrons in GaAs bulk or QW's with ener-

gy greater than optical phonon energy. Note that ~pho for
this sample is calculated to be -50 fs with an assumption
that the LO phonon is bulklike, following the work of
Price.

IV. SUMMARY

The tunneling dynamics of electrons between a wide
and a narrow QW and that from the wide well to the out-
side through the narrow QW were investigated by time-
resolved PL spectroscopy. The measured lifetimes and
PL intensities showed marked variations as the energy
spacing or the coupling of two relevant quantum levels
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was adjusted by electric fields between resonant and off-

resonant conditions.
It is found that the rates of both interwell tunneling

and tunneling escape from the wide QW to the outside
are enhanced when the two levels were near resonance.
The tunneling escape process near resonance is interpret-
ed to be dominated by a scattering-assisted process, in
which the fast ( & —50 ps) scattering-assisted interwell
tunneling processes create a quasiequilibrium distribution
of electrons between the two QW's while those electrons
escape by tunneling rather slowly ( ~ 90 ps) to the outside
electrode. Consequently, the tunneling escape time is
found to be minimized when the ground level of the wide
QW is placed slightly above resonance, where the escape
time becomes about half of that at resonance.

The intrinsic width of the resonance peak is typically 1

meV or less and far smaller than the inhomogeneous
broadening of the ground levels in narrow QW's. Hence
the effective width of the resonance peak is dominated by
inhomogeneous broadening. As a consequence the
effective interwell tunneling time is found to become
larger than the intrinsic tunneling time. For example, for

0
the case L~ =57 A, the enhancement is estimated to be
more than a factor of 10.

Under off-resonant conditions, the tunneling escape
process from the wide well to the outside is reduced and
its characteristic time is found to increase to more than
-800 ps. In addition, the interwell tunneling process as-
sisted by the LO-phonon emission process is observed
and its time constant is estimated to be 500—1000 ps for
the present case, where the square of the overlap integral
between the wave functions of the two QW's is of the or-
der of 10 . The LO phonons responsible for this pro-
cess are suggested to be those phonons in the GaAs well
region.

The study has also demonstrated that the interwell tun-
neling rate increases drastically at resonance and be-
comes far greater than the escape rate from a QW to
unconfined 3D states in the bulk. In contrast, the in-
terwell tunneling rate is suppressed substantially under
the off-resonant condition and becomes far smaller than
the escape rate from the QW to the outside. These
features in the dynamics of the interwell tunneling result
mainly from the interference of multiple rejected waves,
and differ significantly from those in double-barrier reso-
nant tunneling (RT) structures, where the tunneling es-
cape process can be described well by the tunneling of os-
cillatory (confined) waves to unconfined states through a
single barrier. This implies that if confined 2D states of
electrons are formed in the accumulation layer of the
emitter electrode of a double-barrier resonant tunneling
diode, then the carrier buildup process may be affected by
this energy-sensitive interwell tunneling process.

ACKNO%'LEDGMENTS

We wish to thank Dr. H. Akera and Professor T. Ando
for useful discussions. We also thank T. Noda for colla-
boration and Professor Y. Arakawa and Professor K.
Hirakawa for their support. This work is supported by a
Grant-in-Aid from the Ministry of Education, Science,

and Culture, and partly by the ERATO Grant for Quan-
tum Wave Project from Research and Development Cor-
poration of Japan.

APPENDIX A: WAVE FUNCTIONS
IN DOUBLE-QUANTUM-WELL STRUCTURES

In a coupled QW structure, the ground states +1,4&~

of the two wells may couple and form two eigenstates
4'+, O' . When the energies of 4z and 4z are apart,
the eigenstates 4'+, + will be mostly localized in each
well. At resonance, 4+ and 4' will be the familiar sym-
metric and antisymmetric combinations. In general
cases, 4+ and 4' can be approximately expressed as
linear combinations of unperturbed ground states 4z and

4'+=a+41 +a+4~,L R (Al)

where the coefficients a+ and a+ depend on the bias field
F. The Schrodinger equation can be written as the eigen-
value problem

EI —E+ I.a+
Ra+

=0, (A2}

APPENDIX B: TUNNELING OSCILLATION
OF ELECTRON %'AVE FUNCTIONS

As described in Appendix A, two eigenstates of a
coupled-QW structure originate mainly from the ground
states of the two wells and can be expressed as a linear
combination of the two. In contrast to the stationary sit-
uation, one can dynamically use a short laser pulse to ex-
cite a valence electron in one well to a conduction-band
state localized in the same well, even near the resonance
condition. This can be done only if the energy width of
the laser pulse or the coherence linewidth of the light (in-
verse of the coherence time} is set far greater than the en-

ergy splitting between the eigenstate energies. The laser
pulse would then excite the electron into both eigenstates
with the same amplitude and thus create a localized elec-
tron in one well. This electron would then tunnel into
the other well at some rate. After a certain period, the
electron would start to tunnel back into the original well,
if the phase coherence time of the electron wave is much
larger than the oscillation period. As a consequence, the
electron density in one well will oscillate with time,
similarly to the behavior of optical waves in a coupled
waveguide system. We analyze here this oscillation in a
coupled-QW structure sandwiched by thick barriers on
both ends as shown in the inset of Fig. 10; this system is

where EI =El"—eFd, ER =E~+eFd, u is the coupling
energy, and 2d is the distance between the center posi-
tions of each well. EI represents the unperturbed
confinement energy of the ground state of LQW with no
electric field, FR is that of RQW. The coupling energy u

is chosen to be 0.285 meV for sample I (Ls =31.1 A) to
give the correct energy splitting at resonance, which is
separately calculated by the two-band tight-binding
theory.
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W~(t) =c+%'+exp —i fi 'E+ t

(b)~ (c)~
+c 4 exp —i% 'E t (B2)
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FIG. 10. The time variation of the electron density in LQW
in the present coupled-QW structure [sample I or II:
L ~(LQW) =71 A, L a (RQW) = 51 A, La(central barrier) = 31 A]
at various bias electric fields: (a) on resonance, (b) slightly apart
( hE« = 1.14 meV), and (c) further from the resonance
(AE« =2.28 meV).

'P~(t =0)=+t =c++++c 0' (~c+ ~
+ ~c ~

=1) .

Hence, the time development of the electron state is writ-
ten as

I—
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FIG. 11. The calculated period of the tunneling oscillation
for samples I and II as a function of bias electric fields.

easier to analyze but the essence of the interwell tunnel-
ing process in this system is the same as that in sample I,
where the rightmost barrier is thinner.

The localized state in LQW prepared by a laser pulse
can be written as a linear combination of the energy
eigenstates as

E —E+=1—4 c ', c sin+
2A

'7 (B3)

where all the constants c+, c,E+, and E can be cal-
culated using the analytic equations in Appendix A.
Equation (B3) indicates that PL (t) oscillates with time in

amplitude of 4~c+
~

jc
~

and in period T„, of 2vrfi/bE,
which is shown in Fig. 10. At resonance, the period and
amplitude of the oscillation become maximal. As it devi-
ates more from the resonance, both the period and ampli-
tude decrease rapidly. Note that the period of the oscilla-
tion corresponds to the time needed to establish the
eigenstate. Note also that the relevant time constant
denoted as the oscillation tunneling time v'" is the time
in which the electron density reduces to half of the initial
value, which is —,

' of T„,. Figure 11 shows the calculated
oscillation period as a function of bias electric field.

APPENDIX C: TUNNELING ESCAPE PROCESS
ACCOMPANIED BY TUNNELING OSCILLATION

The calculation of the tunneling escape time in Sec.
III A 1 deals with the escape time of the quasibound state
4 (energy eigenstate in the total system) associated with
the ground level of LQW in the double-QW structure,
and not that of the localized state 4L (energy eigenstate
of a single QW) in LQW. However, electrons can be gen-
erated almost selectively in the localized state 4L in the
left QW of the double-QW structure, when the excitation
laser pulse is very short and its wavelength is appropri-
ately chosen. In this case, electrons experience tunneling
oscillation (as discussed in Appendix B) between the two
localized states of both QW's during the tunneling escape
process from the QW structure. Even for this case,
where the localized state is initially created in LQW, our
calculation of the tunneling escape time remains valid for
the following reason.

In sample I, the maximum period of the oscillation
that is realized at resonance is calculated to be 7 ps, as
shown in Fig. 11. The period is much shorter than the
direct tunnel escape time. This implies that the tunnel es-
cape process is not directly inAuenced by the oscillatory
nature of electron density but it is primarily determined
by the time average of electron density. The average
value of the fraction of the wave function in RQW can be
estimated from the fraction P~(+z ) of the wave function
of quasibound state O'L, where +I represents one of the
eigenstates 4'+ or 4 which belongs mainly to LQW.
Consequently, the escape rate by the direct tunneling pro-
cess should be well predicted by the theory based on the
quasibound states, even when the localized state is excit-
ed.

where F. ~ and F. are the energy of ++ and 4' states,
respectively. As a consequence, the probability of finding
electrons in the localized state of LQW is written as

P (t)=I&+, I+ (t)&~'
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