Transport properties of vanadium germanate glassy semiconductors

Aswini Ghosh

Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032, West Bengal, India (Received 5 March 1990)

Measurements are reported for the dc as well as frequency-dependent (ac) conductivities (real and imaginary parts) for various compositions of the vanadium germanate glassy semiconductors in the temperature range 80-450 K. The experimental results are analyzed with reference to various theoretical models proposed for electrical conduction in amorphous semiconductors. The analysis shows that at high temperatures the temperature dependence of the dc conductivity is consistent with Mott's model of phonon-assisted polaronic hopping conduction in the adiabatic approximation, while the variable-range-hopping mechanism dominates at lower temperatures. Schnakenberg's model predicts the temperature dependence of the observed activation energy in the intermediate temperature range. The temperature dependence of the ac conductivity is consistent with the simple quantum-mechanical tunneling model at lower temperatures, although this model cannot predict the observed temperature dependence of the frequency exponent. The overlappinglarge-polaron tunneling model can explain the temperature dependence of the frequency exponent at low temperature; however, this model predicts a temperature dependence of the ac conductivity much higher than the observed data show. On the other hand, the correlated-barrier-hopping model is consistent with the temperature dependence of both the ac conductivity and its frequency exponent over the entire temperature range of measurements.

I. INTRODUCTION

Oxide glasses containing transition-metal ions (TMI's) show semiconducting behavior due to the presence of TMI's in multivalent states in the glassy matrices^{1,2} (e.g., V^{4+} and V^{5+} in vanadate and Cu^+ and Cu^{2+} in cuprate glasses). It is generally agreed that the dc electrical conduction in these glassy semiconductors takes place by the hopping movement of small polarons between TMI sites of different valence states.¹⁻⁶ The activation energy for dc conduction is observed to be temperature dependent.¹⁻⁶ It is also observed that the frequency-dependent ac conductivity shows an approximately linear frequency dependence at low frequencies and temperatures.^{3,7-11} Several studies^{3,5-11} were performed on the dc and ac conduction in these TMI glassy semiconductors. However, fewer attempts⁶⁻¹¹ were made for comparative studies in light of various existing theories^{1,2,12,13} proposed for electrical conduction in amorphous semiconductors.

The purpose of the present work is to investigate the dc as well as the frequency-dependent (ac) complex conductivity of various compositions of vanadium germanate glassy semiconductors with the help of various existing theories over the temperature range 80-450 K. Various theoretical models proposed for the dc and ac conduction in amorphous semiconductors are briefly described in Sec. II. Section III includes the experimental procedure. The results are presented in Sec. IV and are analyzed in Sec. V with the help of the models described in Sec. II.

II. THEORY

Many different theories^{1,2,12,13} have been proposed for the dc as well as ac conduction processes in amorphous semiconductors. To compare the various theories with the experimental data, the detailed predictions of these theories need to be examined and thus each approach is discussed below briefly.

A. dc conduction

Mott¹ has investigated a conduction model for TMI glasses, in which the conduction process is considered in terms of phonon-assisted hopping of small polarons between localized states. The dc conductivity in the Mott model for the nearest-neighbor hopping in the high-temperature limit $(T > \Theta_D/2)$ is given by¹

$$\sigma = v_0 [e^2 C (1 - C) / k_B T R] \exp(-2\alpha R) \exp(-W / k_B T) , \qquad (1)$$

where v_0 is the longitudinal optical phonon frequency, R is the average site separation, α^{-1} is the spatial decay parameter for the *s*-like wave function assumed to describe the localized state at each site, C is the fraction of sites occupied by an electron (or polaron) (and therefore is the ratio of the TMI concentration in the low valence state to the total TMI concentration), and W is the activation energy for dc conduction.

Assuming that a strong electron-phonon interaction exists, the activation energy W is the result of polaron formation with binding energy W_p and an energy difference W_D which might exist between the initial and final sites due to variations in the local arrangements of ions. Austin and Mott² have shown that

$$W \simeq \begin{cases} W_H + W_D / 2 & \text{for } T > \Theta_D / 2 \\ W_D & \text{for } T < \Theta_D / 4 \end{cases}$$
(2a)

· · / · · ·

where W_H ($\simeq \frac{1}{2}W_p$) is the polaron hopping energy and Θ_D , defined by $hv_0 = k_B \Theta_D$, is the characteristic Debye temperature. It should be noted that Eq. (1) for the dc conductivity in the Mott model is for hopping of polarons in the nonadiabatic regime. However, the tunneling term $\exp(-2\alpha R)$ reduces to unity for hopping in the adiabatic limit. An estimate of polaron hopping energy W_H is also given by Mott,²

$$W_H = e^2 / 4\epsilon_p r_p , \qquad (2b)$$

where r_p is the small polaron radius and ϵ_p is an effective dielectric constant.

At lower temperatures $(T < \Theta_D/4)$, where polaron binding energy is small and the disorder energy (here W_D) plays a dominant role in the conduction mechanism, Mott^{14,15} has proposed that hop may occur preferentially beyond nearest neighbors. The conductivity for the socalled "variable range hopping" is predicted to be

$$\sigma = A \exp(-B/T^{1/4}) , \qquad (3a)$$

where A and B are constants and B is given by

$$B = 2.1 \left[\alpha^3 / k_B N(E_F) \right]^{1/4}, \qquad (3b)$$

where $N(E_F)$ is the density of states at the Fermi level. Thus the variable-range-hopping model predicts a $T^{-1/4}$

$$J \begin{cases} > \\ < \end{cases} (2k_B T W_H / \pi)^{1/4} (h v_0 / \pi)^{1/2} \begin{cases} \text{for adiabatic hopping} \\ \text{for nonadiabatic hopping} \end{cases}$$

with the condition for the existence of a small polaron being $J \leq W_H/3$.

Schnakenberg²⁰ has considered a more-general polaron hopping model where $W_D \neq 0$. In his model, optical multiphonon process determines the dc conductivity at high temperatures, while at low temperatures charge-carrier transport is an acoustical one-phonon-assisted hopping process. The temperature dependence of the dc conductivity in the Schnakenberg model has the form

$$\sigma \sim T^{-1} [\sinh(h\nu_0/k_B T)]^{1/2}$$

$$\times \exp[-(4W_H/h\nu_0)$$

$$\times \tanh(h\nu_0/4k_B T)] \exp(-W_D/k_B T) . (7a)$$

It is noted that Eq. (7a) predicts a temperature-dependent hopping energy given by

$$W'_{H} = W_{H} [\tanh(h v_{0}/4k_{B}T)]/(h v_{0}/4k_{B}T) .$$
 (7b)

Equation (7b) shows a decrease of activation energy with decrease of temperature.

Killias²¹ has proposed a polaron model in which the variation of activation energy is considered to be due to thermally activated hopping in a system which has a distribution of hopping distances. Assuming a Gaussian distribution for the hopping distances centered around a median value R_0 , Killias has obtained the following expression for the dc conductivity:

$$\sigma = A \exp\left[-W(R_0)/k_B T - (a/2\beta k_B T)^2\right] \\ \times \left[1 - \frac{1}{2} \operatorname{erfc}(\beta R_0 - a/2\beta k_B T)\right], \qquad (8)$$

dependence of the logarithmic dc conductivity at low temperatures. Similar temperature dependence of the dc

conductivity at low temperatures was also obtained by

Ambegaokar and co-workers¹⁶ on the basis of percolation

For the case $W_D = 0$, a generalized polaron model has been investigated in detail by Holstein,¹⁷ Emin and Hol-

stein,¹⁸ and Friedman and Holstein¹⁹ covering both the

adiabatic and nonadiabatic hopping processes. On the basis of molecular crystal model, Friedman and Holstein¹⁹ have derived an expression for the dc conductivi-

 $\sigma = \frac{3}{2} (e^2 N R^2 J^2 / k_B T) (\pi / k_B T W_H)^{1/2} \exp(-W_H / k_B T)$

for the case of nonadiabatic hopping, while Emin and

Holstein¹⁸ have shown that in the case of adiabatic re-

where N is the site concentration and J is a polaron bandwidth related to electron wave-function overlap on adja-

cent sites. The condition for the nature of hopping has

also been proposed and is expressed by¹⁷

 $\sigma = \frac{8\pi}{3} (Ne^2 R^2 v_0 / k_B T) \exp[-(W_H - J) / k_B T], \quad (5)$

where A is a constant, a = dW/dR, and β^{-1} is proportional to the width of the Gaussian distribution. Equation (8) predicts a nonlinear behavior of the dc conductivity which may be described most conveniently by a temperature-dependent activation energy²¹ given by

$$W(T) = W_0(1 - \Theta_R / T)$$
, (9a)

where W_0 and Θ_R are constants and Θ_R is given by

$$\Theta_R \simeq a^2 / 4\beta k_B W_0 . \tag{9b}$$

B. ac conduction

A frequency-dependent ac conductivity $\sigma(\omega)$ has been observed in many amorphous semiconductors and insulators¹⁵ (both inorganic and polymeric organic materials), and invariably has the form

$$\sigma(\omega) = A \, \omega^s \,, \tag{10}$$

where A is a constant dependent on temperature, ω is the (circular) frequency, and the exponent s is generally less than or equal to unity. All that is required to show this behavior is that the loss mechanism should have a very wide range of possible relaxation times, τ . In particular,

model.

ty,

gime,

(4)

an approximately linear frequency dependence of $\sigma(\omega)$ is predicted if the distribution of relaxation times, $n(\tau)$, is inversely proportional to τ , which results if $\tau = \tau_0 \exp(\zeta)$, where ζ is a random variable and τ_0 a characteristic relaxation time, often taken to be an inverse phonon frequency, v_0^{-1} . Any departures from linearity carry information on the particular type of loss mechanism involved. It should be noted that what is measured in a given ac experiment is the total conductivity $\sigma_{tot}(\omega)$ of the sample at a particular frequency and temperature. In general, this can be written as

$$\sigma_{\text{tot}}(\omega) = \sigma(\omega) + \sigma , \qquad (11)$$

where σ is, as before, the dc conductivity, and it is tacitly assumed that the dc and ac conductivities are due to completely different processes. However, when the dc and ac conductivities arise due to the same process and σ is simply $\sigma(\omega)$ in the limit $\omega \rightarrow 0$, then the separation given in Eq. (11) is no longer valid.

Various theories^{12,13} for ac conduction in amorphous semiconductors have been proposed. It is commonly assumed that the pair approximation holds, namely the dielectric loss occurs due to the carrier motion considered to be localized within pairs of sites. In essence, two distinct processes have been proposed for the relaxation mechanism, namely quantum-mechanical tunneling and classical hopping over a barrier, or some combination or variant of the two, and it has been variously assumed that electrons (or polarons) or atoms are the carriers responsible.

For the quantum-mechanical tunneling (QMT) model, the random variable is $\zeta = 2\alpha R$, where α and R have the same meaning as before and it is commonly assumed that α is constant for all sites. Several authors^{2,13,22-25} have evaluated, within the pair approximation, the real part [denoted by $\sigma_1(\omega)$] of the ac conductivity for single electron motion undergoing QMT and obtained the expression

$$\sigma_1(\omega) = C^1 e^2 k_B T \alpha^{-1} [N(E_F)]^2 \omega R_{\omega}^4 , \qquad (12)$$

where C^1 is a numerical constant that varies slightly according to different authors, but may be taken as $\pi^4/24$ (cf., Ref. 13, 23, and 25). R_{ω} is the hopping distance at a particular frequency ω , given by

$$R_{\omega} = (2\alpha)^{-1} \ln(1/\omega\tau_0) .$$
 (13)

The frequency dependence of $\sigma_1(\omega)$ in the form of Eq. (10) can be deduced using the relation

$$s = d \ln \sigma_1(\omega) / d \ln \omega \tag{14}$$

and for the QMT model [Eq. (12)] this gives

$$s = 1 - 4/\ln(1/\omega\tau_0)$$
 (15)

The above results are obtained in a wide band limit, i.e., for $\Delta_0 \gg k_B T$, where Δ_0 is the bandwidth. Thus, for the QMT model the frequency exponent s is temperature independent but frequency dependent, and for typical values of the parameters, namely, $\tau_0 \simeq 10^{-13}$ s and $\omega = 10^4$ s⁻¹, a value of $s \simeq 0.81$ is deduced from Eq. (15). A temperature-dependent frequency exponent can be obtained within the framework of the QMT model in the pair approximation by assuming that the carriers form nonoverlapping small polarons. Transport of an electron between degenerate sites having a random distribution of separations will, therefore, generally involve an activation energy, the polaron hopping energy $W_H \simeq W_p/2$. In this case the frequency exponent becomes¹²

$$s = 1 - 4 / [\ln(1/\omega\tau_0) - W_H / k_B T] .$$
(16)

Now it is noted that s is temperature dependent, increasing with increasing temperature. It should also be noted that a temperature-dependent frequency exponent can arise from the simple QMT model if pair approximation breaks down, i.e., when the carrier motion occurs within clusters.²⁶ The tunneling distance R_{ω} is the nonoverlapping small polaron (NSPT) model becomes

$$R_{\omega} = (2\alpha)^{-1} [\ln(1/\omega\tau_0) - W_H/k_B T]$$
(17)

and the ac conductivity in the NSPT model is given by Eq. (12) with the above expression [Eq. (17)] for R_{ω} . The behavior of this model might, at first sight, appear to be pathological in that s can apparently become infinity at sufficiently high frequency and/or low temperatures due to the hopping length $R_{\omega} \rightarrow 0$, when the term in the square bracket in the above expression [Eq. (17)] for R_{ω} tends to zero. In practice, of course, the minimum value of R_{ω} is equal to the interatomic spacing; for higher frequencies or temperatures lower than those given by the critical conditions, the contribution to the overall ac conductivity due to small polaron tunneling mechanism tends toward zero.

Long¹³ has proposed a mechanism for the polaron tunneling model where the large polaron wells of the two sites overlap, thereby reducing the value of polaron hopping energy,^{2,26} i.e.,

$$W_H = W_{\rm HO}(1 - r_0 / R)$$
, (18)

where r_0 is the overlapping large polaron radius. It is assumed that W_{HO} is constant for all sites, whereas intersite separation R is a random variable. The real part of the ac conductivity for the overlapping-large-polaron tunneling (OLPT) model¹³ is given by

$$\sigma_{1}(\omega) = \frac{\pi^{4}}{12} \frac{e^{2} (k_{B}T)^{2} [N(E_{F})]^{2} \omega R_{\omega}^{4}}{2\alpha k_{B}T + W_{\rm HO}r_{0}/R_{\omega}^{2}}, \qquad (19)$$

where the hopping length R_{ω} is determined by the quadratic equation

$$(R'_{\omega})^{2} + [(W_{\rm HO}/k_{B}T) + \ln(\omega\tau_{0})]R'_{\omega} - W_{\rm HO}r'_{0}/k_{B}T = 0,$$
(20)

where

$$R'_{\omega} = 2\alpha R_{\omega}$$
 and $r'_{0} = 2\alpha r_{0}$.

The frequency exponent of $\sigma_1(\omega)$ in this model can be evaluated as

ASWINI GHOSH

$$s = 1 - \frac{8\alpha R_{\omega} + 6W_{\rm HO}r_0/R_{\omega}k_BT}{(2\alpha R_{\omega} + W_{\rm HO}r_0/R_{\omega}k_BT)^2} . \tag{21}$$

Thus the OLPT model predicts that s should be both temperature and frequency dependent. It can also be seen from Eq. (21) that s decreases from unity with increasing temperature. For large values of r'_0 , s continues to decrease with increasing temperature, eventually tending to the value of s predicted by the simple QMT model, whereas for small values of r'_0 , s exhibits a minimum¹³ at a certain temperature and subsequently increases with increasing temperature in a similar fashion to the case of NSPT model.

The other type of process, which has been proposed for the relaxation mechanism, is the classical hopping over a barrier (HOB), where the random variable is $\zeta = W/k_B T$. For the case of atomic motion the following expression is obtained^{13,27} for the ac conductivity:

$$\sigma_1(\omega) = \frac{\pi}{3} \eta (Np^2 k_B T / W_0 \Delta_0) \omega \tanh(\Delta_0 / 2k_B T) , \qquad (22)$$

where η is a meanfield correction term, N is the number of pair states per unit volume, p is the dipole moment associated with the transition, and it is assumed that the energy difference between sites, Δ , is randomly distributed in the range $0 < \Delta < \Delta_0$ and the barrier height is also randomly distributed in the range $0 < W < W_0$. It is noted from Eq. (22) that for this simple HOB model the frequency exponent of $\sigma_1(\omega)$ is predicted to be unity and is independent of temperature and frequency. It might be mentioned here that for the case of atomic tunneling, an expression similar to Eq. (22) is obtained²⁸ again with s = 1, if the dipole moment is uncorrelated with the hopping distance.¹³

A model for the ac conduction, which correlates the relaxation variable W with the intersite separation R, has been developed initially by Pike²⁹ for single electron hopping and extended by Elliott^{12,30} for two electrons hopping simultaneously. For neighboring sites at a separation R, the Coulomb wells overlap, resulting in a lowering of the effective barrier height from W_M to a value W, which for the case of one electron transition is given by²⁹

$$W = W_M - e^2 / \pi \epsilon \epsilon_0 R \quad , \tag{23}$$

where ϵ is the dielectric constant of the material and ϵ_0 that of free space. The ac conductivity (real part) in this model, called the "correlated barrier hopping" (CBH) model, in the narrow band limit ($\Delta_0 \ll k_B T$) is expressed by

$$\sigma_1(\omega) = \frac{\pi^3}{24} N^2 \epsilon \epsilon_0 \omega R^6_{\ \omega} , \qquad (24)$$

where N is the concentration of pair sites and R_{ω} is the hopping distance given by

$$R_{\omega} = e^2 / \pi \epsilon \epsilon_0 [W_M + k_B T \ln(\omega \tau_0)] . \qquad (25)$$

The frequency exponent s for this model is evaluated as¹²

S

$$s = 1 - 6k_B T / [W_M + k_B T \ln(\omega \tau_0)] .$$
(26)

Thus, in the CBH model a temperature-dependent exponent is predicted, with *s* increasing towards unity as *T* tends to zero, in marked contrast to the QMT or simple HOB mechanism. In the broad-band, i.e., low-temperature limit $(\Delta_0 \gg k_B T)$, *N* in Eq. (24) is replaced by $Nk_B T/\Delta_0$ and so an additional T^2 dependence of $\sigma_1(\omega)$ is introduced.¹³ It should be noted that for the two-electron CBH model,^{12,30} expressions (24) and (25) for $\sigma_1(\omega)$ and R_{ω} , respectively, are multiplied by 2, but the expression (26), for *s*, however, remains unaltered.

It might appear that the behavior of the CBH model is also pathological in the same sense as discussed previously for the NSPT model. In this case, however, when the denominator of Eq. (25) tends to zero, R_{ω} tends to infinity. However, long before this can occur, the pair approximation breaks down and the dc percolation limit is reached with the result that the CBH model is no longer valid.¹²

Several developments^{31,32} of this theory have been made. The assumption of randomly distributed centers used in the derivation of Eq. (24) has been relaxed for the case of melt-quenched chalcogenide glasses where pairing of charged defects may occur. The result of this is an enhancement of the frequency exponent s [Eq. (26)] by an additional term $T/8T_g$, where T_g is the glass transition temperature.

Thus far, the real part $[\sigma_1(\omega)]$ of the ac conductivity has been discussed only, neglecting the imaginary part [denoted by $\sigma_2(\omega)$] of the ac conductivity, which is related to the dielectric constant. Although the real and imaginary parts of the conductivity are related via the Kramers-Kronig relation, valuable information can be lost if $\sigma_2(\omega)$ is neglected, because the models for ac conduction also make specific predictions concerning the dielectric constant, and the comparison of theory and experiment is straightforward, since the capacitance measurements are inherently much more accurate than conductance measurements when made using a conventional bridge technique.

It has been shown¹³ that the ratio of the imaginary to the real part of the ac conductivity has a characteristically different functional form for the various mechanism of dielectric relaxation described above. For the simple QMT model, it is predicted that

$$\sigma_2(\omega)/\sigma_1(\omega) = -(2/5\pi)\ln(\omega\tau_0) , \qquad (27)$$

while for the NSPT model,

$$\sigma_2(\omega)/\sigma_1(\omega) = -(2/5\pi)\ln(\omega\tau_0)$$
$$\times [1 + W_H/k_B T \ln(\omega\tau_0)] . \qquad (28)$$

The CBH model¹³ predicts to a first approximation (i.e., for small $k_B T / W_M$)

$$\sigma_2(\omega)/\sigma_1(\omega) = -(2/\pi)\ln(\omega\tau_0)$$
$$\times [1 + (3k_B T/W_M)\ln(\omega\tau_0)] .$$
(29)

It may be noted that Eqs. (29) and (28) predict a temperature dependence for $\sigma_2(\omega)/\sigma_1(\omega)$, while Eq. (27) does not. For the OLPT model, $\sigma_2(\omega)/\sigma_1(\omega)$ behaves like that for the simple QMT model at high temperatures, whereas at low temperatures the behavior is similar to that exhibited by the CBH model.

III. EXPERIMENTAL PROCEDURE

The glassy samples (Table I) were prepared by melting the reagent-grade V_2O_5 and GeO_2 in alumina crucibles at 1273 K for 2 h in air atmosphere. The melt was quenched between two polished brass plates held at room temperature.

The amorphous nature of the samples was confirmed by x-ray-diffraction (Philips, model PW 1050) and scanning electron microscopy (Hitachi, model S-415A) studies. The scanning electron micrographs also showed homogeneous character of the samples.

The final sample composition and the concentrations of total vanadium ions $([V^{5+}]+[V^{4+}])$ were determined by atomic absorption spectroscopy (Varian, model AA 1745). The concentrations of the reduced vanadium ions $([V^{4+}])$ were estimated from ESR spectra obtained using a Varian E-12 X-band spectrometer. A spectrum of a single crystal of CuSO₄·5H₂O was used as a standard. The density of the samples was determined by Archimedes' principle. The average intersite separation (R) was obtained from the final composition and density. The final sample compositions, the ratio $C = [V^{4+}]/([V^{5+}]) + [V^{4+}])$, and other physical parameters are shown in Table I.

For electrical measurements, disk-shaped samples of diameter $\sim 8-10$ mm and thickness 0.5-1.0 mm were cut and polished. The dc conductivity of the samples was measured using a Keithley 617 electrometer. Before measurements, Ohmic behavior at the contacts was ascertained from the linearity of the I-V characteristics. The ac measurements were carried out in a General Radio (model GR-1615A) capacitance bridge, which measures equivalent parallel conductance and capacitance of a sample for frequencies ($\omega/2\pi$) between 20 and 10⁵ Hz in a three-terminal arrangement. Evaporated gold electrode was used for both the dc and ac measurements. An evacuable chamber was employed as a sample cell and was inserted inside a cryostat for low-temperature measurements. Measurements were made in the temperature range 80–450 K with a stability of \pm 0.5 K.

IV. RESULTS

The dc conductivity σ of the various sample compositions is shown in Fig. 1 as a function of reciprocal tem-

FIG. 1. The dc conductivity shown as a function of reciprocal temperature for three sample compositions shown. The solid lines are fits to Eq. (1) predicted by Mott's model. The dashed curves are drawn through the data.

perature. It is clear from Fig. 1 that the dc conductivity shows an activated behavior above ~ 200 K. However, below 200 K the behavior of the dc conductivity is nonlinear, indicating a temperature-dependent activation energy. The activation energy decreases with decreasing temperature.

Figure 2 shows the measured total conductivity $\sigma_{tot}(\omega)$ as a function of reciprocal temperature at various frequencies for one glass composition, along with the dc conductivity σ . It is evident that the temperature dependence of $\sigma_{tot}(\omega)$ is much less than that of σ at low temperatures and is not activated in behavior. However, at higher temperatures the temperature dependence of $\sigma_{tot}(\omega)$ becomes strong and its frequency dependence becomes small. Other sample compositions also showed similar behavior.

The measured total conductivity $\sigma_{tot}(\omega)$ as a function of frequency at various temperatures is shown in Fig. 3(a) for the same sample composition as in Fig. 2. It is also

TABLE I. Analyzed sample compositions, concentrations of the total and reduced vanadium ions, their ratios, and average intersite separation for the vanadium germanate glassy semiconductors.

Analy compos	zed sitions					
(mol %)	GeO	Density $(a \ cm^{-3})$	$[V^{5+}]+[V^{4+}]$	$[V^{4+}]$	C	R
• 205	0002	(g cm)	(CIII)	(cm ⁻)	<u> </u>	(A)
80.2	19.9	3.08	1.65×10^{22}	1.32×10^{21}	0.08	3.93
70.2	29.8	2.95	1.52×10^{22}	1.52×10^{21}	0.10	4.04
60.5	39.5	2.80	1.39×10^{22}	2.08×10^{21}	0.15	4.16

FIG. 2. Measured total conductivity for the sample composition 80.2 mol % V_2O_5 -19.8mol % GeO₂ shown as a function of reciprocal temperature at four frequencies (shown). The measured dc conductivity is also shown for comparison.

observed that the dc contribution is significant at low frequencies and high temperatures, while the frequencydependent term dominates at high frequencies and low temperatures. Figure 3(b) shows the frequencydependent (ac) conductivity, $\sigma_1(\omega)$ (real part), obtained by subtracting the dc conductivity from the measured conductivity in accordance with Eq. (11), as a function of frequency at the same temperatures and for the same sample composition as in Fig. 3(a). The solid lines in Fig. 3(b) are the straight-line fits obtained by the leastsquares-fitting procedure. The frequency exponent s was also computed from the least-squares fit. Figure 4 depicts the temperature dependence of the frequency exponent s for various sample compositions. From this figure it is clear that the frequency exponent decreases smoothly with increasing temperature, and also with the increase of vanadium ion concentration in the glass. In the investigated frequency range, frequency dependence of the frequency exponent s was not observed, even at high temperatures [Fig. 3(b)].

V. DISCUSSION

A. dc conductivity

The Mott model for the phonon-assisted hopping of small polarons [Eq. (1)] is consistent with the dc conductivity data presented in Fig. 1 in the high-temperature region. Equation (1) predicted by the Mott model is fitted in Fig. 1 with the experimental data in the hightemperature region, using v_0 , α , and W as variable parameters. The best fits are obtained above 200 K for those values of v_0 , α , and W shown in Table II. The values of α are reasonable for localized states and indicate strong localization in the vanadium germanate

TABLE II. Parameters obtained by fitting the high-temperature dc data to the Mott model.

Compositions (mol %) V ₂ O ₅	<i>W</i> (eV)	$\frac{v_0}{(s^{-1})}$	$({\bf \mathring{A}}^{-1})$
80.2	0.32	11×10 ¹²	1.11
70.2	0.39	10×10^{12}	1.07
60.5	0.44	8×10 ¹²	1.04

FIG. 3. (a) Frequency dependence of the measured total conductivity for the sample composition $80.2 \text{ mol } \% \text{ V}_2 \text{O}_5 - 19.8 \text{ mol } \% \text{ GeO}_2$ at several temperatures shown. The solid curves in the figures are fits made using the ac conductivity from the CBH model [Eq. (24)] and the measured value of the dc conductivity. (b) The frequency-dependent conductivity (real part) obtained by subtracting the dc conductivity from the data shown in (a). The solid lines are the straight-line fits obtained by a least-squares-fitting procedure.

FIG. 4. Temperature dependence of the frequency exponent s for three sample compositions (shown), obtained by the fitting procedure as in Fig. 3(b). The solid curves in the figure are calculated using the CBH model [Eq. (26)] with the parameters given in Table VIII, assuming a fixed frequency $\omega = 10^4 \text{ s}^{-1}$.

glassy semiconductors.¹⁵ The values of the phonon frequency v_0 are also reasonable and do not differ appreciably for different glass compositions. These values of v_0 are also consistent with the estimate of v_0 from infrared studies.³³ The infrared spectra of the various compositions of the vanadium germanate glass³³ are very similar, suggesting that the optical phonon distribution does not differ appreciably between various glass compositions. From these infrared spectra, the characteristic phonon frequency is estimated to be $\sim 1.1 \times 10^{13} \text{ s}^{-1}$.

An experimental estimate² of the polaron radius r_p may be obtained within the framework of the Mott model from Eq. (2b), taking $W \simeq W_H$ and assuming $W_H >> J$. The values obtained are indicated in Table III. The values of ϵ_p used in the calculation were obtained from the Cole-Cole plot of complex dielectric constants. Bogomolov *et al.*³⁴ have shown theoretically that for the case of a nondispersive system of frequency v_0 the polaron radius is given by

$$r_p = \frac{1}{2} \left(\frac{\pi}{6} \right)^{1/3} R \quad , \tag{30}$$

where R is the site separation. Equation (30) is obviously oversimplified for a complex system, but the infrared spectra of the vanadium germanate system³³ suggest that this approximation may fit the vanadate system fairly well. The values of the polaron radius calculated from

TABLE III. Effective dielectric constant and polaron radii calculated from Eqs. (2b) and (30) for various glass compositions.

Composition mol % V ₂ O ₅	ϵ_p^{a}	r_p (Å) from Eq. (2b)	r_p (Å) from Eq. (30)
80.2	5.7	1.93	1.58
70.2	4.6	1.96	1.63
60.5	3.9	2.05	1.68

^aFrom Cole-Cole plot of the complex dielectric constants.

Eq. (30) using average vanadium ion separation as an estimate for R are shown in Table III, which shows that the experimental and theoretical values of r_p are comparable.

The low-temperature dc conductivity data can be well fitted to Mott's variable-range-hopping conductivity [Eq. (3)]. A semilogarithmic plot of the dc conductivity, σ , versus $T^{-1/4}$ is shown in Fig. 5 for the vanadium germanate glass in the low-temperature region. The solid lines in Fig. 5 are the best fits of Eq. (3) to the experimental data. In the fitting procedure, α and $N(E_F)$ are used as variable parameters. It is noted that the fits are reasonable below ~150 K. The values of α and $N(E_F)$ obtained from the best fits are shown in Table IV. It should be noted that the values of α are consistent with the previous estimate of α from the high-temperature electrical data. The values of $N(E_F)$ are also reasonable for localized states.¹⁵

However, the temperature dependence of the dc conductivity in the intermediate temperature range cannot be met in the Mott model. The temperature dependence of the dc conductivity, similar to the Mott model, is also predicted by the Holstein model [Eq. (5)] in the hightemperature region for the adiabatic hopping limit. An independent check of the nature of hopping is also provided by this model [Eq. (6)]. The limiting value of J estimated from the right-hand side of (6), using the value of v_0 and $W_H \simeq W$ from Table II, at 400 K is in the range 0.033-0.036 eV for all compositions. An unambiguous decision as to whether the polaron hopping is in the adiabatic or nonadiabatic regime requires an estimate of J.

FIG. 5. The dc conductivity shown as a function of $T^{-1/4}$ for three sample compositions (shown). The solid lines in the figure are fits to the variable-range-hopping model [Eq. (13)] for the values of the parameters shown in Table IV.

10

10

TABLE IV. Parameters obtained from the variable-rangehopping model at low temperatures for various sample compositions.

$({\bf \mathring{A}}^{-1})$	$\frac{N(E_F)}{(\mathrm{eV}^{-1}\mathrm{cm}^{-3})}$
1.14	1.0×10^{21}
1.08	2.5×10^{21}
1.03	3.4×10^{21}
	$ \begin{array}{c} \alpha \\ (\text{Å}^{-1}) \\ 1.14 \\ 1.08 \\ 1.03 \end{array} $

An upper limit can be deduced by assuming that the entire concentration dependence of the activation energy is due to the variation in J. For the present studies, this corresponds to a change in W from 0.32 to 0.44 eV (Table II), a possible variation in J being 0.12 eV. However, since W is likely to change with compositions, the true value is probably smaller than this. An independent estimate of J can also be made from the following expression:¹⁵

$$J \sim e^{3} [N(E_{F})/\epsilon_{p}^{3}]^{1/2} .$$
(31)

Using the previous estimate of $N(E_F)$ (Table IV), Eq. (31) yields $J \sim 0.1$ eV. Thus the adiabatic hopping theory may be the most appropriate to describe the polaronic conduction in the vanadium germanate glassy semiconductors.

The Schnakenberg model [Eq. (7)] predicts a temperature-dependent activation energy and Fig. 1 also shows temperature-dependent activation energy which decreases with decrease in temperature. Thus it appears that the Schnakenberg model might be appropriate for the vanadium germanate system. In Fig. 6, $\log_{10}(\sigma T)$ is plotted as a function of reciprocal temperature. The theoretical curves given by Eq. (7) are also drawn in this figure, using v_0 , W_H , and W_D as variable parameters. The best fit to the experimental points, above the temperature of ~ 120 K, has been observed for those values of the parameters shown in Table V. It may be noted that the value of v_0 shows a little dispersion and is close to the value obtained from the infrared data.³³ As expected, the value of the hopping energy W_H is less than the hightemperature activation energy W (Table II). It should be noted that the values of W_D are close to the estimates of W_D from the Miller-Abrahams theory³⁵ for vanadate glasses. It might also be noted that the value of $W_H + W_D/2$ is approximately equal to W in accordance with the prediction of the Mott model [Eq. (2a)]. However, the Schnakenberg model is not consistent with the dc conductivity data below 120 K.

Another model which accounts for the decrease of activation energy with decreasing temperature is due to Killias [Eqs. (8) and (9)]. In this model, the temperaturedependent activation energy [Eq. (9)] arises due to the dependence of the activation energy on the hopping distance.²¹ Equation (9) predicted by this model indicates that the activation energy, W(T) is linearly dependent on the inverse temperature. However, the experimental activation energy estimated from Fig. 1 does not show in-

 $\begin{array}{c} \begin{array}{c} 10^{-6} \\ \begin{array}{c} 10^{-6} \\ \\ \end{array} \\ 10^{-10} \\ 10^{-12} \\ 10^{-14} \\ \end{array} \\ \begin{array}{c} 2.0 \\ \end{array} \\ \begin{array}{c} 4.0 \\ \end{array} \\ \begin{array}{c} 6.0 \\ 6.0 \\ \end{array} \\ \begin{array}{c} 8.0 \\ 10.0 \\ \end{array} \\ \begin{array}{c} 10^{-12} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array}

FIG. 6. Product of the dc conductivity and temperature (σT) shown as a function of reciprocal temperature. The solid curves are fits to Eq. (7) predicted by the Schnakenberg polaron model for the values of the parameters given in Table V.

verse temperature dependence, but rather follows Eq. (7) predicted by the Holstein model (Fig. 3).

B. ac conductivity

1. Quantum-mechanical tunneling (QMT) model

The QMT model has been applied previously to the ac conductivity data for many amorphous semiconductors without much success, and it turns out the behavior of the vanadium germanate system reported here cannot be reconciled with this theory. The most obvious discrepancy between theory and experiment concerns the temperature dependence of the frequency exponent, s of the ac conductivity. From Eq. (15), the QMT model is seen, in its simplest form, to predict a value for s of ~0.81 (for typical values of ω and v_0), which is temperature independent. However, it can be clearly seen from Fig. 4 that the

TABLE V. Parameters obtained by fitting the dc data to the Schnakenberg model for various sample compositions.

Glass composition mol % V ₂ O ₅	W_H (eV)	W_D (eV)	v_0 (s ⁻¹)
80.2	0.30	0.06	9.6×10 ¹²
70.2	0.34	0.08	8.4×10^{12}
60.5	0.39	0.11	7.2×10^{12}

V₂ O₅ 80.2

D 70.2

frequency exponent s decreases with increasing temperature, thereby conflicting with the prediction of the simple QMT model. For the QMT model of nonoverlapping small polaron, i.e., for the NSPT model a temperature dependence of s is predicted, but it is of opposite sign [Eq. (16)]. The simple QMT model also predicts that s should decrease appreciably with increasing frequency.¹² No such variation is observed for the present glass system in the investigated frequency range $(10^2 - 10^5 \text{ Hz})$ [Fig. 3(b)].

Nevertheless, the QMT model [Eq. (12)] suggests the temperature dependence of the ac conductivity in the form $\sigma_1(\omega) \propto T^n$, with n = 1. From the plot of $\log_{10} \sigma_1(\omega)$ versus $\log_{10}T$ (Fig. 7) for the germanate glass, it is observed that the ac conductivity increases linearly with temperature [i.e., $\sigma_1(\omega) \propto T^n$, with n = 1] over a considerable range of low temperature. However, at higher temperatures the ac conductivity starts to deviate from linearity, and the temperature at which deviation from linearity starts increases with increasing frequency. Fits to the experimental values of $\sigma_1(\omega)$ made using Eq. (12) as a function of temperature are shown in Fig. 7 for lower temperatures. The values of the parameters obtained from the best fit are shown in Table VI. In the fitting procedure a fixed frequency ($\omega = 10^4 \text{ s}^{-1}$) and a fixed value of the decay parameter ($\alpha = 1.0 \text{ Å}^{-1}$) were assumed. It might be noted that the values of τ_0 obtained from the fitting procedure are approximately equal to the inverse phonon frequency v_0^{-1} estimated from the dc data (Table II). The values of $N(E_F)$, however, are lower by 1 order of magnitude than the estimates from the variablerange-hopping analysis (Table IV).

2. Overlapping-large-polaron tunneling (OLPT) model

The OLPT model predicts that $\sigma_1(\omega)$ should have a negative temperature dependence of the frequency ex-

FIG. 7. Temperature dependence of the frequency-dependent conductivity (real part) obtained by the subtraction procedure as in Fig. 3(b) for the sample composition 80.2 mol% V_2O_5 -19.8 mol% GeO₂ plotted double logarithmically. The solid lines are the fits made using the QMT model [Eq. (12)].

TABLE VI. Parameters for various sample compositions, obtained by fitting low temperature ac data to the QMT model.

Sample composition mol % V ₂ O ₅	$ au_{0}$ (s)	$\frac{N(E_F)}{(\mathrm{eV}^{-1}\mathrm{cm}^{-3})}$
80.2	1.0×10^{-13}	5.4×10^{20}
70.2	1.7×10^{-13}	2.3×10^{20}
65.5	2.0×10^{-13}	1.0×10^{20}

ponent s, at least at lower temperatures [Eq. (21)], and thus at first sight it appears that this model might be a possible contending theory to explain the data presented here. The theoretical curves for s predicted by the OLPT model [Eq. (21)] are drawn in Fig. 8 as a function of $k_B T / W_{HO}$ for various values of the normalized polaron radius r'_0 . These curves are universal in the sense that they are plotted versus reduced temperature, $k_B T / W_{HO}$, or put another way, changes in $W_{\rm HO}$ result in a rescaling of the temperature axis. The experimental data for s are fitted in Fig. 8, using W_{HO} as a variable parameter. The best fit to the experimental points is observed for the values of W_{HO} shown in Table VII. As is seen from Fig. 8, the experimental data for s lie between the theoretical curves for $r'_0 = 1.0$ to 2.0 at low temperatures. However, at higher temperatures the experimental points neither reside between theoretical curves nor show minima as predicted by the OLPT model.¹³

Equation (18) can be used to estimate the large polaron radius r_0 from the known values of the intersite separation R (Table I) and the previous estimate of the polaron hopping energy W_H (Table V). The estimated values of r_0 (Table VII) are smaller than the average vanadium site separation and thus appear to be inconsistent with the basic premise of the overlapping large polarons.

FIG. 8. The frequency exponent s for various sample compositions shown as a function of $k_B T/W_{\rm HO}$. The solid curves are calculated from the OLPT model [Eq. (21)] for a fixed frequency $\omega = 10^4$ s⁻¹ and relaxation time $\tau_0 = 10^{-13}$ s and for various values of the normalized polaron radius r'_0 (shown).

 TABLE VII. Parameters obtained by fitting with the OLPT

 model at low temperatures for various sample compositions.

Sample composition mol % V ₂ O ₅	r ' ₀	W _{HO} (eV)	<i>r</i> ₀ (Å)
80.2	1.0	1.02	2.70
70.2	1.5	1.17	2.87
60.5	2.0	1.31	2.92

The OLPT model [Eq. (21)] also predicts the frequency dependence of s. A detailed analysis shows that in the low-temperature region $(k_BT/W_{HO} < 0.04-0.05)$, s should increase with frequency. An opposite and more significant behavior should be observed in the high-temperature region $(k_BT/W_{HO} > 0.05)$. In the present work, the change in frequency did not exceed 3 orders of magnitude and the frequency dependence of s was not observed.

The OLPT model [Eq. (19)] predicts a considerably stronger temperature dependence of the ac conductivity in the temperature region where the frequency exponent s is a decreasing function of temperature. The functional form of the temperature dependence of $\sigma_1(\omega)$ predicted by this model [Eq. (19)] is complicated and cannot be expressed simply as $\sigma_1(\omega) \propto T^n$ with n constant over a considerable temperature range. Nevertheless, at low temperatures $(k_B T/W_{\rm HO} < 0.04 - 0.05)$ the hopping length R_{ω} has nearly constant temperature dependence, $R_{\omega} \sim T^{1.25}$ (for $r'_0 = 2.5$) and consequently $\sigma_1(\omega) \propto T^6$ for the uncorrelated case, and also $\sigma_1(\omega) \propto T^4$ for the correlated form of the OLPT model.¹³ This is obviously at variance with the much weaker temperature dependence exhibited by the low-temperature data of the present work (Fig. 7).

3. Correlated barrier hopping (CBH) model

The CBH model [Eqs. (24) and (26)] predicts that $\sigma_1(\omega)$ should behave, in some respects, in a similar manner to the OLPT model, namely it should have negative temperature dependence of the frequency exponent s and therefore it might be a possible candidate theory for the ac conduction in the present glass system.

A critical test for the CBH model comes from the temperature dependence of the ac conductivity and its frequency exponent s. Fits to the experimental values of s as a function of temperature made using Eq. (26) are shown in Fig. 4. The values of the parameters used in calculating the curves are those given in Table VIII. A fixed frequency ($\omega = 10^4 \text{ s}^{-1}$) has been assumed in all cases. From Fig. 4, it is observed that the fit appears to be reasonable over the entire temperature range measured. In Fig. 3(a), the measured total conductivity $\sigma_{tot}(\omega)$ is fitted to the measured values of the dc conductivity plus the ac conductivity calculated from Eq. (24) predicted by the CBH model, using W_M and τ_0 as variable parameters. The calculated curves are scaled so as to fit the value of $\sigma_{tot}(\omega)$ at $\omega = 10^5 \text{ s}^{-1}$ for the lowest temperature [i.e., thereby effectively fixing N (Table III)]. The values of W_M and τ_0

TABLE VIII. Parameters obtained by fitting with the CBH model for various sample compositions.

Sample composition	$ au_0$	W _M	N
$mol \% V_2O_5$	(s)	(eV)	(cm^{-3})
80.2	1.0×10^{-12}	0.95	1.61×10^{21}
70.2	3.1×10^{-12}	1.13	1.87×10^{21}
60.5	4.2×10^{-12}	1.29	2.23×10^{21}

obtained by the fitting procedure for various sample compositions are collected in Table VIII. The values of W_M are, as expected, higher than the high-temperature activation energy for dc conduction. However, the values of the relaxation time τ_0 are higher than those that would be expected for typical inverse phonon frequency, although such a discrepancy is not unexpected when lattice relaxation effects are important.¹² It is also noted from Table VIII that the values of N obtained from this analysis are close to the concentrations of reduced vanadium ions estimated from ESR (Table I).

C. Imaginary parts of the ac conductivity

The total measured capacitance $C_{tot}(\omega)$, like the conductance, can be decomposed into two components: a dispersive term $C(\omega)$, which arises due to loss mechanism, and a nondispersive term C_{∞} , which is determined by the high-frequency atomic and dipolar vibrational transitions, viz.,

$$C_{\rm tot}(\omega) = C(\omega) + C_{\infty} \quad . \tag{32}$$

Several methods¹³ for eliminating the nondispersive component exist, namely the numerical differentiation of the capacitance data, whereupon the constant term C_{∞} drops out. Thus, if the dispersive part of the capacitance obeys the power law

$$C(\omega) \propto \omega^{s^{1}-1}$$
, (33)

(where s^1 is different from s) a plot of $\log_{10}[-dC(\omega)/d \ln(\omega)]$ versus $\log_{10}\omega$ should yield a straight line of slope s^1-1 . This differentiation technique has been employed in the present work to determine $C(\omega)$. The ratio of the imaginary to the real part of the conductivity is then calculated from the relation

$$\sigma_2(\omega)/\sigma_1(\omega) = \omega C(\omega)/G(\omega) , \qquad (34)$$

where $G(\omega)$ is the conductance at frequency ω .

In Fig. 9, the experimental data for $\sigma_2(\omega)/\sigma_1(\omega)$ [calculated from Eq. (34)] are plotted versus $\log_{10}(\omega)$ for one glass composition at two temperatures. It is observed that $\sigma_2(\omega)/\sigma_1(\omega)$ is temperature dependent. The QMT model [Eq. (27)] predicts a temperature-independent value for $\sigma_2(\omega)/\sigma_1(\omega)$ and hence is not applicable to the data presented in Fig. 9. The temperature dependence of $\sigma_2(\omega)/\sigma_1(\omega)$ predicted by the NSPT model [Eq. (28)] is also much weaker than the observed data shown (Fig. 9). On the other hand, the CBH model [Eq. (29)] predicts a stronger temperature dependence of $\sigma_2(\omega)/\sigma_1(\omega)$. In

FIG. 9. Ratio of the imaginary to the real parts of the ac conductivity $[\sigma_2(\omega)/\sigma_1(\omega)]$ for the sample composition 80.2 mol % $V_2O_5-19.8$ mol % GeO₂ at two temperatures shown as a function of frequency. The solid curves represents the behavior of the CBH model [Eq. (29)].

Fig. 9, the curves are shown corresponding to the predictions of the CBH model [Eq. (29)], using the same values of the parameters W_M and τ_0 (Table VIII) already deduced from the fitting of the real part of the conductivity to the CBH model [Eq. (24)]. The fit between theory and experiment may be regarded as good, bearing in mind that no extra parameters are used in the calculation of $\sigma_2(\omega)/\sigma_1(\omega)$ from Eq. (29). The discrepancy is ascribed to the fact that Eq. (29) is only approximate; higher-order terms become important at high temperatures. It should be noted that the fits to $\sigma_2(\omega)/\sigma_1(\omega)$ are very sensitive to the values of the parameters used (e.g., W_M and τ_0) and

- ¹N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968).
- ²I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).
- ³M. Sayer and A. Mansingh, Phys. Rev. B 6, 4629 (1972).
- ⁴C. H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids **42**, 151 (1980).
- ⁵A. E. Owen, J. Non-Cryst. Solids **25**, 370 (1977).
- ⁶A. Ghosh, J. Phys. Condens. Matter 1, 7819 (1989), Philos. Mag. B 61, 87 (1990).
- ⁷A. Ghosh and D. Chakravorty, J. Phys. Condens. Matter 2, 931 (1990).
- ⁸A. Mansingh, R. P. Tandon, and J. K. Valid, Phys. Rev. B 21, 4829 (1980).
- ⁹L. Murawski, Philos. Mag. B 50, L69 (1984).
- ¹⁰A. Mansingh and V. K. Dhawan, J. Phys. C 16, 1675 (1983).
- ¹¹A. Ghosh, Phys. Rev B **41**, 1479 (1990).
- ¹²S. R. Elliott, Adv. Phys. 36, 135 (1987).
- ¹³A. R. Long, Adv. Phys. **31**, 553 (1982).
- ¹⁴N. F. Mott, Philos. Mag. 19, 835 (1969).
- ¹⁵N. F. Mott and E. A. Davis, *Electronic Processes in Non-Crystalline Materials*, 2nd ed. (Clarendon, Oxford, 1979), p.

are more sensitive than the fits made to just the real part of the ac conductivity.

VI. CONCLUSIONS

The dc conductivity as well as the real and imaginary parts of the ac conductivity for the vanadium germanate glassy semiconductors have been presented for the first time, in the temperature range 80-450 K and the frequency range 10^2-10^5 Hz. Analysis of the observed dc data shows that at higher temperatures the dc conductivity is consistent with the predictions of the phononassisted hopping conduction model in the adiabatic approximation, while at low temperature the variablerange-hopping model is valid.

Of the various theoretical models for ac conduction in amorphous semiconductors (Sec. II), the CBH model is consistent with all aspects of the loss data, namely the temperature dependence of the ac conductivity and its frequency exponent. Fits using this model are in good agreement with the experimental data for all temperatures and frequencies measured. The other models, such as the QMT model, fail to predict the temperature dependence of the frequency exponent, although this model seems to be consistent with the low-temperature ac conductivity. The temperature dependence of the frequency exponent is in agreement with the predictions of the OLPT model in the low-temperature range, however, this model predicts a temperature dependence of the ac conductivity that is much stronger than the experimental data indicate.

Finally it should be remarked that fits to the ratio of the imaginary to the real parts of the conductivity are much more sensitive than fits to the real part of the conductivity alone.

ACKNOWLEDGMENTS

The author is highly grateful to Professor D. Chakravorty, Indian Association for the Cultivation of Science, for helpful suggestions.

- 225.
- ¹⁶V. Ambegaokar, S. Cochran, and J. Kurkijarvi, Phys. Rev. B 8, 3682 (1973).
- ¹⁷T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).
- ¹⁸D. Emin and T. Holstein, Ann. Phys. (N.Y.) 53, 439 (1969).
- ¹⁹L. Friedman and T. Holstein, Ann. Phys. (N.Y.) **21**, 494 (1963).
- ²⁰J. Schnakenberg, Phys. Status Solidi 28, 623 (1968).
- ²¹H. R. Killias, Phys. Lett. **20**, 5 (1966).
- ²²M. Pollak, Philos. Mag. 23, 519 (1971).
- ²³H. Bottger and V. V. Bryskin, Phys. Status Solidi B 78, 415 (1976).
- ²⁴P. N. Butcher and K. J. Hyden, in *Proceedings of the 7th In*ternational Conference on Amorphous and Liquid Semiconductors, edited by W. E. Spear (Centre for Industrial Consultancy and Liaison, University of Edinburgh, 1977), p.234.
- ²⁵A. L. Efros, Philos. Mag. B 43, 829 (1981).
- ²⁶M. Pollak, Phys. Rev. 138, A1822 (1965).
- ²⁷M. Pollak and G. E. Pike, Phys. Rev. Lett. 28, 1449 (1972).
- ²⁸G. Frössate, R. Maynard, R. Rummal, and D. Thoulouse, J.

- ²⁹G. E. Pike, Phys. Rev. B 6, 1572 (1972).
- ³⁰S. R. Elliott, Philos. Mag. 36, 1291 (1977).
- ³¹S. R. Elliott, Philos. Mag. B 37, 553 (1978).
- ³²S. R. Elliott, Philos. Mag. B 40, 507 (1979); J. Non-Cryst. Solids 35-36, 855 (1980).
- ³³Bh. V. Janakirama-Rao, J. Am. Ceram. Soc. 48, 311 (1965).
- ³⁴V. N. Bogomolov, E. K. Kudinov, and Yu. A. Firsov, Fiz. Tverd. Tela (Leningrad) 9, 3175 (1967) [Sov. Phys.—Solid State 9, 2502 (1968)].
- ³⁵A. Miller and S. Abrahams, Phys. Rev. **120**, 745 (1960).