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Transport properties of vanadium germanate glassy semiconductors

Aswini Ghosh
Indian Association for the Cultivation ofScience, Jadavpur, Calcutta 700032, West Bengal, India

(Received 5 March 1990)

Measurements are reported for the dc as well as frequency-dependent (ac) conductivities (real and

imaginary parts) for various compositions of the vanadium germanate glassy semiconductors in the
temperature range 80—450 K. The experimenta1 results are analyzed with reference to various
theoretical models proposed for electrical conduction in amorphous semiconductors. The analysis
shows that at high temperatures the temperature dependence of the dc conductivity is consistent
with Mott s model of phonon-assisted polaronic hopping conduction in the adiabatic approxima-
tion, while the variable-range-hopping mechanism dominates at lower temperatures.
Schnakenberg's model predicts the temperature dependence of the observed activation energy in the
intermediate temperature range. The temperature dependence of the ac conductivity is consistent
with the simple quantum-mechanical tunneling model at lower temperatures, although this model
cannot predict the observed temperature dependence of the frequency exponent. The overlapping-
large-polaron tunneling model can explain the temperature dependence of the frequency exponent
at low temperature; however, this model predicts a temperature dependence of the ac conductivity
much higher than the observed data show. On the other hand, the correlated-barrier-hopping mod-

el is consistent with the temperature dependence of both the ac conductivity and its frequency ex-

ponent over the entire temperature range of measurements.

I. INTRODUCTION

Oxide glasses containing transition-metal ions (TMI s)
show semiconducting behavior due to the presence of
TMI's in multivalent states in the glassy matrices' (e.g.,
V + and V + in vanadate and Cu+ and Cu + in cuprate
glasses). It is generally agreed that the dc electrical con-
.duction in these glassy semiconductors takes place by the
hopping movement of small polarons between TMI sites
of different valence states. ' The activation energy for
dc conduction is observed to be temperature depen-
dent. ' It is also observed that the frequency-dependent
ac conductivity shows an approximately linear frequency
dependence at low frequencies and temperatures. '

Several studies ' " were performed on the dc and ac
conduction in these TMI glassy semiconductors. Howev-
er, fewer attempts "were made for comparative studies
in light of various existing theories' ' ' proposed for
electrical conduction in amorphous semiconductors.

The purpose of the present work is to investigate the
dc as well as the frequency-dependent (ac) complex con-
ductivity of various compositions of vanadium germanate
glassy semiconductors with the help of various existing
theories over the temperature range 80—4SO K. Various
theoretical models proposed for the dc and ac conduction
in amorphous semiconductors are briefly described in
Sec. II. Section III includes the experimental procedure.
The results are presented in Sec. IV and are analyzed in
Sec. V with the help of the models described in Sec. II.

II. THEORY

semiconductors. To compare the various theories with
the experimental data, the detailed predictions of these
theories need to be examined and thus each approach is
discussed below briefly.

A. dc conduction

Mott' has investigated a conduction model for TMI
glasses, in which the conduction process is considered in
terms of phonon-assisted hopping of small polarons be-
tween localized states. The dc conductivity in the Mott
model for the nearest-neighbor hopping in the high-
temperature limit ( T )SD l2) is given by'

o =vo[e C( l —C)iktt TR ]exp( —2aR)exp( —W/ktt T),

where vo is the longitudinal optical phonon frequency, R
is the average site separation, cz is the spatial decay pa-
rameter for the s-like wave function assumed to describe
the localized state at each site, C is the fraction of sites
occupied by an electron (or polaron) (and therefore is the
ratio of the TMI concentration in the low valence state to
the total TMI concentration), and W is the activation en-
ergy for dc conduction.

Assuming that a strong electron-phonon interaction
exists, the activation energy W is the result of polaron
formation with binding energy W and an energy
difference WD which might exist between the initial and
fina sites due to variations in the local arrangements of
ions. Austin and Mott have shown that

Many different theories' ' ' have been proposed for
the dc as well as ac conduction processes in amorphous

WH+ Wg/2 for T) OD/2
W= '

WD f« ~&OD/4 (2a)
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WH=e /4e r (2b)

where r is the small polaron radius and e is an effective
dielectric constant.

At lower temperatures (T (8D/4), where polaron
binding energy is small and the disorder energy (here
WD) plays a dominant role in the conduction mechanism,
Mott' ' has proposed that hop may occur preferentially
beyond nearest neighbors. The conductivity for the so-
called "variable range hopping" is predicted to be

where WH ( = —,
' W ) is the polaron hopping energy and

8D, defined by hvo=k~8D, is the characteristic Debye
temperature. It should be noted that Eq. (1) for the dc
conductivity in the Mott model is for hopping of pola-
rons in the nonadiabatic regime. However, the tunneling
term exp( —2aR ) reduces to unity for hopping in the adi-
abatic limit. An estimate of polaron hopping energy WH
is also given by Mott,

dependence of the logarithmic dc conductivity at low

temperatures. Similar temperature dependence of the dc
conductivity at low temperatures was also obtained by
Arnbegaokar and co-workers' on the basis of percolation
model.

For the case WD =0, a generalized polaron model has
been investigated in detail by Holstein, ' Ernin and Hol-
stein, ' and Friedrnan and Holstein' covering both the
adiabatic and nonadiabatic hopping processes. On the
basis of molecular crystal model, Friedman and Hol-
stein' have derived an expression for the dc conductivi-
ty,

0 = ,'(e N—R J /k~T)(n/k~T. WH)'~ exp( —WH/k~T)

(4)

for the case of nonadiabatic hopping, while Emin and
Holstein' have shown that in the case of adiabatic re-
gime,

cr = 2 exp( B/T' —),
where A and 8 are constants and 8 is given by

(3a)
(Ne R vo/k~T)exp[ —(WH J)/k+T—], (5)

B =2. 1[a /k&N(EF)]' ", (3b)

where N(EF) is the density of states at the Fermi level.
Thus the variable-range-hopping model predicts a T

where N is the site concentration and J is a polaron band-
width related to electron wave-function overlap on adja-
cent sites. The condition for the nature of hopping has
also been proposed and is expressed by'

) for adiabatic hopping
2k TW /~1'4hv/~ '"

for nonadiabatic hopping

with the condition for the existence of a small polaron be-
ing J WH/3.

Schnakenberg has considered a more-general polaron
hopping model where WDAO. In his model, optical mul-
tiphonon process determines the dc conductivity at high
temperatures, while at low temperatures charge-carrier
transport is an acoustical one-phonon-assisted hopping
process. The temperature dependence of the dc conduc-
tivity in the Schnakenberg model has the form

0 —T '[sinh(h vo/k~ T)]'

X exp[ —(4 WH /h vo)

W( T) = Wo(1 —8~ /T),
where Wo and 8& are constants and 8& is given by

(9a)

o = A exp [—W ( R 0 ) /kz T (a /2Pkz T)—]

X [1—
—,
' erfc(PRO —a /2Pk~ T)],

where 3 is a constant, a =dW/dR, and p ' is propor-
tional to the width of the Gaussian distribution. Equa-
tion (8) predicts a nonlinear behavior of the dc conduc-
tivity which may be described most conveniently by a
temperature-dependent activation energy ' given by

X tanh(h vo/4k~ T)]exp( —
WD /kz T) (7a)

It is noted that Eq. (7a) predicts a temperature-dependent
hopping energy given by

8~ —-a /4pk~ Wo .

B. ac conduction

(9b)

WH = WH [tanh(h vo/4k& T)]/(h vo/4k& T) . (7b)

Equation (7b) shows a decrease of activation energy with
decrease of temperature.

Killias ' has proposed a polaron model in which the
variation of activation energy is considered to be due to
thermally activated hopping in a system which has a dis-
tribution of hopping distances. Assuming a Gaussian dis-
tribution for the hopping distances centered around a
median value Ro, Killias has obtained the following ex-
pression for the dc conductivity:

o(co)= Are', (10)

where A is a constant dependent on temperature, co is the
(circular) frequency, and the exponent s is generally less
than or equal to unity. All that is required to show this
behavior is that the loss mechanism should have a very
wide range of possible relaxation times, ~. In particular,

A frequency-dependent ac conductivity o(co) has been
observed in many amorphous semiconductors and insula-
tors' (both inorganic and polymeric organic materials),
and invariably has the form
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o~(co)=C'e k&Ta '[N(EF)] coR (12)

where C' is a numerical constant that varies slightly ac-
cording to diff'erent authors, but may be taken as n /24
(cf., Ref. 13, 23, and 25). R is the hopping distance at a
particular frequency ~, given by

an approximately linear frequency dependence of cr(co) is

predicted if the distribution of relaxation times, n (r), is
inversely proportional to w, which results if r = roexp(g),
where g is a random variable and ro a characteristic re-
laxation time, often taken to be an inverse phonon fre-
quency, vo '. Any departures from linearity carry infor-
mation on the particular type of loss mechanism in-
volved. It should be noted that what is measured in a
given ac experiment is the total conductivity oto, (co) of
the sample at a particular frequency and temperature. In
general, this can be written as

o to, (co) =cr(co)+ o,
where 0. is, as before, the dc conductivity, and it is tacitly
assumed that the dc and ac conductivities are due to
completely different processes. However, when the dc
and ac conductivities arise due to the same process and 0.

is simply o(co) in the limit co~0, then the separation
given in Eq. (11) is no longer valid.

Various theories' ' for ac conduction in amorphous
semiconductors have been proposed. It is commonly as-
sumed that the pair approximation holds, namely the
dielectric loss occurs due to the carrier motion con-
sidered to be localized within pairs of sites. In essence,
two distinct processes have been proposed for the relaxa-
tion mechanism, namely quantum-mechanical tunneling
and classical hopping over a barrier, or some combina-
tion or variant of the two, and it has been variously as-
sumed that electrons (or polarons) or atoms are the car-
riers responsible.

For the quantum-mechanical tunneling (QMT) model,
the random variable is (=2aR, where a and R have the
same meaning as before and it is commonly assumed that
a is constant for all sites. Several authors ' ' have
evaluated, within the pair approximation, the real part
[denoted by cr, (co)] of the ac conductivity for single elec-
tron motion undergoing QMT and obtained the expres-
sion

s =1—4/[ln(1/coro) —WH/k~T] . (16)

Now it is noted that s is temperature dependent, increas-
ing with increasing temperature. It should also be noted
that a temperature-dependent frequency exponent can
arise from the simple QMT model if pair approximation
breaks down, i.e., when the carrier motion occurs within
clusters. The tunneling distance R is the nonoverlap-
ping small polaron (NSPT) model becomes

R =(2a) '[in(1/co~&) —WH/k&T] (17)

and the ac conductivity in the NSPT mode1 is given by
Eq. (12) with the above expression [Eq. (17)] for R„. The
behavior of this model might, at first sight, appear to be
pathological in that s can apparently become infinity at
sufficiently high frequency and/or low temperatures due
to the hopping length R„~O, when the term in the
square bracket in the above expression [Eq. (17)] for R
tends to zero. In practice, of course, the minimum value
of R„ is equal to the interatomic spacing; for higher fre-
quencies or temperatures lower than those given by the
critical conditions, the contribution to the overall ac con-
ductivity due to small polaron tunneling mechanism
tends toward zero.

Long" has proposed a mechanism for the polaron tun-
neling model where the large polaron wells of the two
sites overlap, thereby reducing the value of polaron hop-
ping energy, ' i.e.,

WH = WHo(1 &0/R) (18)

where ro is the overlapping large polaron radius. It is as-
sumed that 8'Ho is constant for all sites, whereas inter-
site separation R is a random variable. The real part of
the ac conductivity for the overlapping-large-polaron
tunneling (OLPT) model' is given by

A temperature-dependent frequency exponent can be
obtained within the framework of the QMT model in the
pair approximation by assuming that the carriers form
nonoverlapping small polarons. Transport of an electron
between degenerate sites having a random distribution of
separations will, therefore, generally involve an activation
energy, the polaron hopping energy WH = W /2. In this
case the frequency exponent becomes'

R =(2a) 'ln(1/coro) . (13)

The frequency dependence of o &(co) in the form of Eq.
(10) can be deduced using the relation

~4 e'(k~T) [N(EF)] coR„
r, (ceo) =

12 2O.'kz T+ 8 Horo/R
(19)

s =d 1no, (co ) /d inc@

and for the QMT model [Eq. (12)] this gives

s =1—4/ln(1/coro) .

(14)

(15)

where the hopping length R„ is determined by the quad-
ratic equation

(R „') + [( WHo Iks T)+in(coro)]R ' —WHoro Ik~ T=O,

(20)
The above results are obtained in a wide band limit,

i.e., for Ao)) kz T, where ho is the bandwidth. Thus, for
the QMT model the frequency exponent s is temperature
independent but frequency dependent, and for typical
values of the parameters, namely, ~o-—10 ' s and m=10
s ', a value of s =0.81 is deduced from Eq. (15).

where

R „' =2aR „and r o
=2aro .

The frequency exponent of o, (co) in this model can be
evaluated as
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8aR +6W~oro/R ks Ts=1—
(2aR + W„oro/R ksT)

(21)

o')(co) = rl(Np —ks T/Wobo)co tanh(bo/2ks T), (22)

where q is a meanfield correction term, X is the number
of pair states per unit volume, p is the dipole moment as-
sociated with the transition, and it is assumed that the
energy difference between sites, 5, is randomly distribut-
ed in the range 0 & 5 & 60 and the barrier height is also

randomly distributed in the range 0 & 8'& 8'o. It is not-
ed from Eq. (22) that for this simple HOB model the fre-
quency exponent of cr, (co) is predicted to be unity and is
independent of temperature and frequency. It might be
mentioned here that for the case of atomic tunneling, an
expression similar to Eq. (22) is obtained again with
s = 1, if the dipole moment is uncorrelated with the hop-
ping distance. '

A model for the ac conduction, which correlates the
relaxation variable 8'with the intersite separation R, has
been developed initially by Pike for single electron hop-
ping and extended by Elliott' ' for two electrons hop-
ping simultaneously. For neighboring sites at a separa-
tion R, the Coulomb wells overlap, resulting in a lower-
ing of the effective barrier height from 8'M to a value 8',
which for the case of one electron transition is given by

W = WM e ln eeoR—, (23)

Thus the OLPT model predicts that s should be both
temperature and frequency dependent. It can also be
seen from Eq. (21) that s decreases from unity with in-
creasing temperature. For large values of ro, s continues
to decrease with increasing temperature, eventually tend-
ing to the value of s predicted by the simple QMT model,
whereas for small values of ro, s exhibits a minimum' at
a certain temperature and subsequently increases with in-
creasing temperature in a similar fashion to the case of
NSPT model.

The other type of process, which has been proposed for
the relaxation mechanism, is the classical hopping over a
barrier (HOB), where the random variable is g= W/k~ T.
For the case of atomic motion the following expression is
obtained' ' for the ac conductivity:

Thus, in the CBH model a temperature-dependent ex-
ponent is predicted, with s increasing towards unity as T
tends to zero, in marked contrast to the QMT or simple
HOB mechanism. In the broad-band, i.e., low-
temperature limit (60)&ks T), N in Eq. {24) is replaced
by %kg T/5p and so an additional T dependence of
0,(co) is introduced. ' lt should be noted that for the
two-electron CBH model, ' expressions (24) and (25)
for o &(co) and R„, respectively, are multiplied by 2, but
the expression (26), for s, however, remains unaltered.

It might appear that the behavior of the CBH model is
also pathological in the same sense as discussed previous-
ly for the NSPT model. In this case, however, when the
denominator of Eq. (25) tends to zero, R tends to
infinity. However, long before this can occur, the pair
approximation breaks down and the dc percolation limit
is reached with the result that the CBH model is no
longer valid. '

Several developments ' of this theory have been
made. The assumption of randomly distributed centers
used in the derivation of Eq. (24) has been relaxed for the
case of melt-quenched chalcogenide glasses where pairing
of charged defects may occur. The result of this is an
enhancement of the frequency exponent s [Eq. (26)] by an
additional term T/8Tg, where T is the glass transition
temperature.

Thus far, the real part [o,(co)] of the ac conductivity
has been discussed only, neglecting the imaginary part
[denoted by o 2(co)] of the ac conductivity, which is relat-
ed to the dielectric constant. Although the real and
imaginary parts of the conductivity are related via the
Kramers-Kronig relation, valuable information can be
lost if rr2(co) is neglected, because the models for ac con-
duction also make specific predictions concerning the
dielectric constant, and the comparison of theory and ex-
periment is straightforward, since the capacitance mea-
surements are inherently much more accurate than con-
ductance measurements when made using a conventional
bridge technique.

It has been shown' that the ratio of the imaginary to
the real part of the ac conductivity has a characteristical-
ly different functional form for the various mechanism of
dielectric relaxation described above. For the simple
QMT model, it is predicted that

where e is the dielectric constant of the material and eo
that of free space. The ac conductivity (real part) in this
model, called the "correlated barrier hopping" {CBH)
model, in the narrow band limit (b,o «ks T) is expressed
by

0 ~(co)/0, (co) = —(2/5m. )ln(coro),

while for the NSPT model,

cr, (co)/cr, (co)= —(2/5m. )ln(a)ro)

(27)

2 6o, (co)= N EeocoR (24)
X [1+W~/ks T 1n(coro)] . (28)

The CBH model" predicts to a first approximation (i.e.,
for small k&T/W~)

where X is the concentration of pair sites and 8 is the
hopping distance given by

o 2(co)/cr, (~)= —(2/~)ln(coro)

R„=e2/~eeo[ W~+kz T 1n(argo)] . (25) X [1+(3k+ T/WM )ln(coro)] . (29)

The frequency exponent s for this model is evaluated as'

s =1—6k~ T/[ W~+k~ T 1n(coro)] .

It may be noted that Eqs. (29) and (28) predict a tempera-
ture dependence for oz(co)/o &(co), while Eq. (27) does
not. For the OLPT model, cr2(co)/o&(m) behaves like
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that for the simple QMT model at high temperatures,
whereas at low temperatures the behavior is similar to
that exhibited by the CBH model.

III. EXPERIMENTAL PROCEDURE

The glassy samples (Table I) were prepared by melting
the reagent-grade VzO~ and GeOz in alumina crucibles at
1273 K for 2 h in air atmosphere. The melt was
quenched between two polished brass plates held at room
temperature.

The amorphous nature of the samples was confirmed
by x-ray-diffraction (Philips, model PW 1050) and scan-
ning electron microscopy (Hitachi, model S-415A) stud-
ies. The scanning electron micrographs also showed
homogeneous character of the samples.

The final sample composition and the concentrations of
total vanadium ions ([V +]+[V +]) were determined by
atomic absorption spectroscopy (Varian, model AA
1745). The concentrations of the reduced vanadium ions
([V +]) were estimated from ESR spectra obtained using
a Varian E-12 J-band spectrometer. A spectrum of a sin-
gle crystal of CuSO4 5HzO was used as a standard. The
density of the samples was determined by Archimedes'
principle. The average intersite separation (R) was ob-
tained from the final composition and density. The final
sample compositions, the ratio C = [V ]/([V +

]
+[V +]), and other physical parameters are shown in
Table I.

For electrical measurements, disk-shaped samples of
diameter -8—10 mm and thickness 0.5 —1.0 mm were cut
and polished. The dc conductivity of the samples was
measured using a Keithley 617 electrometer. Before mea-
surements, Ohmic behavior at the contacts was ascer-
tained from the linearity of the I-V characteristics. The
ac measurements were carried out in a General Radio
(model GR-1615A) capacitance bridge, which measures
equivalent parallel conductance and capacitance of a
sample for frequencies (co/2m) between 20 and 10 Hz in
a three-terminal arrangement. Evaporated gold electrode
was used for both the dc and ac measurements. An eva-
cuable chamber was employed as a sample cell and was
inserted inside a cryostat for low-temperature measure-
ments. Measurements were made in the temperature
range 80—450 K with a stability of + 0.5 K.

IV. RESULTS

The dc conductivity o. of the various sample composi-
tions is shown in Fig. 1 as a function of reciprocal tem-
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FIG. 1. The dc conductivity shown as a function of recipro-
cal temperature for three sample compositions shown. The
solid lines are fits to Eq. (1) predicted by Mott's model. The
dashed curves are drawn through the data.

perature. It is clear from Fig. 1 that the dc conductivity
shows an activated behavior above -200 K. However,
below 200 K the behavior of the dc conductivity is non-
linear, indicating a temperature-dependent activation en-
ergy. The activation energy decreases with decreasing
temperature.

Figure 2 shows the measured total conductivity crto, (co)
as a function of reciprocal temperature at various fre-
quencies for one glass composition, along with the dc
conductivity cr. It is evident that the temperature depen-
dence of o„,(co) is much less than that of o at low tem-
peratures and is not activated in behavior. However, at
higher temperatures the temperature dependence of
o „,(co) becomes strong and its frequency dependence be-
comes small. Other sample compositions also showed
similar behavior.

The measured total conductivity cr„,(co} as a function
of frequency at various temperatures is shown in Fig. 3(a}
for the same sample composition as in Fig. 2. It is also

TABLE I. Analyzed sample compositions, concentrations of the total and reduced vanadium ions,
their ratios, and average intersite separation for the vanadium germanate glassy semiconductors.

GeO&

Analyzed
compositions

(mol %%uo)

VzOs
Density
(g cm ')

[v'+]+ [v'+]
(cm ')

[v4+]
(cm ')

R
(A)

80.2
70.2
60.5

19.9
29.8
39.5

3.08
2.95
2.80

1.65 X 10
1.52x10"
1.39x10"

1.32x10"
1.52x10"
2.08 x10"

0.08
0.10
0.15

3.93
4.04
4.16
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TABLE II. Parameters obtained by fitting the high-
temperature dc data to the Mott model.

10

I E10'

Compositions
(mol %%uo)

V20s

80.2
70.2
60.5

W
(eV)

0.32
0.39
0.44

Vp

(s ')

11X10"
10X10"
8X 10'

a
(A )

1.11
1.07
1.04

10

b

10
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2.0 4.0 6.0 8-0 10.0

~/T (10'K")

12 ' 0

FIG. 2. Measured total conductivity for the sample composi-
tion 80.2 mol%%uo V20s —19.8rnol% Ge02 shown as a function of
reciprocal temperature at four frequencies (shown). The mea-
sured dc conductivity is also shown for comparison.

10

Eo
10

3
o 10

observed that the dc contribution is significant at low fre-
quencies and high temperatures, while the frequency-
dependent term dominates at high frequencies and low
temperatures. Figure 3(b) shows the frequency-
dependent (ac) conductivity, o t(co) (real part), obtained
by subtracting the dc conductivity from the measured
conductivity in accordance with Eq. (11), as a function of
frequency at the same temperatures and for the same
sample composition as in Fig. 3(a). The solid lines in Fig.
3(b) are the straight-line fits obtained by the least-
squares-fitting procedure. The frequency exponent s was
also computed from the least-squares fit. Figure 4 depicts
the temperature dependence of the frequency exponent s
for various sample compositions. From this figure it is
clear that the frequency exponent decreases smoothly
with increasing temperature, and also with the increase of
vanadium ion concentration in the glass. In the investi-
gated frequency range, frequency dependence of the fre-
quency exponent s was not observed, even at high tem-
peratures [Fig. 3(b)].
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V. DISCUSSION

A. dc conductivity

The Mott model for the phonon-assisted hopping of
small polarons [Eq. (1)] is consistent with the dc conduc-
tivity data presented in Fig. 1 in the high-temperature re-
gion. Equation (1) predicted by the Mott model is fitted
in Fig. l with the experimental data in the high-
temperature region, using vo, o., and 8' as variable pa-
rameters. The best fits are obtained above 200 K for
those values of vo, e, and 8' shown in Table II. The
values of a are reasonable for localized states and indi-
cate strong localization in the vanadium germanate

10
10 10 10

u(s ')
10 10

FIG. 3. (a) Frequency dependence of the measured total con-
ductivity for the sample composition 80.2 mol%%uo V20s-19. 8
mol'Fo GeO& at several temperatures shown. The solid curves
in the figures are fits made using the ac conductivity from the
CBH model [Eq. (24}]and the measured value of the dc conduc-
tivity. (b) The frequency-dependent conductivity (real part) ob-
tained by subtracting the dc conductivity from the data shown
in (a). The solid lines are the straight-line fits obtained by a
least-squares-fitting procedure.
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FIG. 4. Temperature dependence of the frequency exponent s
for three sample compositions (shown), obtained by the fitting
procedure as in Fig. 3(b). The solid curves in the figure are cal-
culated using the CBH model [Eq. (26)] with the parameters
given in Table VIII, assuming a fixed frequency ~= 10 s

glassy semiconductors. ' The values of the phonon fre-
quency vo are also reasonable and do not differ appreci-
ably for different glass compositions. These values of vo
are also consistent with the estimate of vo from infrared
studies. The infrared spectra of the various composi-
tions of the vanadium germanate glass are very similar,
suggesting that the optical phonon distribution does not
differ appreciably between various glass compositions.
From these infrared spectra, the characteristic phonon
frequency is estimated to be —1.1X10' s

An experimental estimate of the polaron radius ip
may be obtained within the framework of the Mott model
from Eq. (2b), taking W= WH and assuming WH &)J.
The values obtained are indicated in Table III. The
values of e used in the calculation were obtained from
the Cole-Cole plot of complex dielectric constants. Bo-
gomolov et al. have shown theoretically that for the
case of a nondispersive system of frequency vo the pola-
ron radius is given by

1/3
1 m

T (30)
2

R,

where R is the site separation. Equation (30) is obviously
oversimplified for a complex system, but the infrared
spectra of the vanadium germanate system suggest that
this approximation may fit the vanadate system fairly
well. The values of the polaron radius calculated from

T( K)

218.8 162.7 123.4 95.4 84.3

10

10
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E
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~~0

mol% V20g

0 80.2
70.2

A, 605

(0

Q

10

Eq. (30) using average vanadium ion separation as an esti-
mate for R are shown in Table III, which shows that the
experimental and theoretical values of r are comparable.

The low-temperature dc conductivity data can be well
fitted to Mott's variable-range-hopping conductivity [Eq.
(3)]. A semilogarithmic plot of the dc conductivity, o,
versus T ' is shown in Fig. 5 for the vanadium ger-
manate glass in the low-temperature region. The solid
lines in Fig. 5 are the best fits of Eq. (3) to the experimen-
tal data. In the fitting procedure, a and N(EF) are used
as variable parameters. It is noted that the fits are
reasonable below —150 K. The values of a and N(EF)
obtained from the best fits are shown in Table IV. It
should be noted that the values of cz are consistent with
the previous estimate of e from the high-temperature
electrical data. The values of N(EF) are also reasonable
for localized states. '

However, the temperature dependence of the dc con-
ductivity in the intermediate temperature range cannot
be met in the Mott model. The temperature dependence
of the de conductivity, similar to the Mott model, is also
predicted by the Holstein model [Eq. (5)] in the high-
temperature region for the adiabatic hopping limit. An
independent check of the nature of hopping is also pro-
vided by this model [Eq. (6)]. The limiting value of J es-
timated from the right-hand side of (6), using the value of
vo and WH-—8' from Table II, at 400 K is in the range
0.033—0.036 eV for all compositions. An unambiguous
decision as to whether the polaron hopping is in the adia-
batic or nonadiabatic regime requires an estimate of J.

TABLE III. Effective dielectric constant and polaron radii
calculated from Eqs. (2b) and (30) for various glass composi-
tions.

10

Composition
mol%%uo V20~

rp (A)
from Eq. (2b)

rp (A)
from Eq. (30)

10
0.24 0,26 0-28 0.30

T "(K")
0.32 0.34

80.2
70.2
60.5

5.7
4.6
3.9

1.93
1.96
2.05

1.58
1.63
1.68

'From Cole-Cole plot of the complex dielectric constants.

FIG. 5. The dc conductivity shown as a function of T '~ for
three sample compositions (shown). The solid lines in the figure
are fits to the variable-range-hopping model [Eq. (13)] for the
values of the parameters shown in Table IV.
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TABLE IV. Parameters obtained from the variable-range-

hopping model at low temperatures for various sample composi-
tions.

Sample
composition
mol%%uo V20& (A )

X(EF )

(eV 'cm ')

10

80.2
70.2
60.5

1.14
1.08
1.03

1.0x 10"
2.5 x10"
3.4X10 '

An upper limit can be deduced by assuming that the en-
tire concentration dependence of the activation energy is
due to the variation in J. For the present studies, this
corresponds to a change in W from 0.32 to 0.44 eV (Table
II), a possible variation in J being 0.12 eV. However,
since 8' is likely to change with compositions, the true
value is probably smaller than this. An independent esti-
mate of J can also be made from the following expres-
sion

-6
10

10

10

J-e [N(EF)ls ]' (31) 10

Using the previous estimate of N (EF ) (Table IV), Eq. (31)
yields J-0.1 eV. Thus the adiabatic hopping theory
may be the most appropriate to describe the polaronic
conduction in the vanadium germanate glassy sernicon-
ductors.

The Schnakenberg model [Eq. (7)] predicts a
temperature-dependent activation energy and Fig. 1 also
shows temperature-dependent activation energy which
decreases with decrease in temperature. Thus it appears
that the Schnakenberg model might be appropriate for
the vanadium germanate system. In Fig. 6, log, o(o T) is

plotted as a function of reciprocal temperature. The
theoretical curves given by Eq. (7) are also drawn in this
figure, using vo, 8'&, and 8'D as variable parameters.
The best fit to the experimental points, above the ternper-
ature of —120 K, has been observed for those values of
the parameters shown in Table V. It may be noted that
the value of vo shows a little dispersion and is close to the
value obtained from the infrared data. As expected, the
value of the hopping energy 8'H is less than the high-
temperature activation energy W (Table II). It should be
noted that the values of WD are close to the estimates of
8'D from the Miller-Abrahams theory for vanadate
glasses. It might also be noted that the value of
RH+ WD/2 is approximately equal to 8' in accordance
with the prediction of the Mott model [Eq. (2a)]. Howev-
er, the Schnakenberg model is not consistent with the dc
conductivity data below 120 K.

Another model which accounts for the decrease of ac-
tivation energy with decreasing temperature is due to
Killias [Eqs. (8) and (9)]. In this model, the temperature-
dependent activation energy [Eq. (9)] arises due to the
dependence of the activation energy on the hopping dis-
tance. ' Equation (9) predicted by this model indicates
that the activation energy, W( T) is linearly dependent on
the inverse temperature. However, the experimental ac-
tivation energy estimated from Fig. 1 does not show in-

2 ~ 0 C,.O 6-0 8.0 10.0

i/T (10 K )

12.0

FIG. 6. Product of the dc conductivity and temperature
(cr T) shown as a function of reciprocal temperature. The solid
curves are fits to Eq. (7) predicted by the Schnakenberg polaron
model for the values of the parameters given in Table V.

verse temperature dependence, but rather follows Eq. (7)
predicted by the Holstein model (Fig. 3).

B. ac conductivity

1. Quantum mechanica-l tunneling (QMT) model

TABLE V. Parameters obtained by fitting the dc data to the
Schnakenberg model for various sample compositions.

Glass
composition
mol%%uo V205

80.2
70.2
60.5

8'0
(eV)

0.30
0.34
0.39

(eV)

0.06
0.08
0.11

Vp

(s ')

9.6x10"
8.4x 10"
7.2x 10"

The QMT model has been applied previously to the ac
conductivity data for many amorphous semiconductors
without much success, and it turns out the behavior of
the vanadium germanate system reported here cannot be
reconciled with this theory. The most obvious discrepan-
cy between theory and experiment concerns the ternpera-
ture dependence of the frequency exponent, s of the ac
conductivity. From Eq. (15), the QMT model is seen, in
its simplest form, to predict a value for s of -0.81 (for
typical values of co and vo), which is temperature indepen-
dent. However, it can be clearly seen from Fig. 4 that the
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frequency exponent s decreases with increasing tempera-
ture, thereby conflicting with the prediction of the simple
QMT model. For the QMT model of nonoverlapping
small polaron, i.e., for the NSPT model a temperature
dependence of s is predicted, but it is of opposite sign
[Eq. (16}]. The siinple QMT model also predicts that s
should decrease appreciably with increasing frequency. '

No such variation is observed for the present glass system
in the investigated frequency range (10 —10 Hz) [Fig.
3(b)].

Nevertheless, the QMT model [Eq. (12)] suggests the
temperature dependence of the ac conductivity in the
form tr, (to) ~ T", with n =1. From the plot of log, oa, (co)
versus IogioT (Fig. 7) for the gertnanate glass, it is ob-
served that the ac conductivity increases linearly with
temperature [i.e., a, (co) o- T", with n =1]over a consider-
able range of low temperature. However, at higher tem-
peratures the ac conductivity starts to deviate from
linearity, and the temperature at which deviation from
linearity starts increases with increasing frequency. Fits
to the experimental values of o &(to) made using Eq. (12)
as a function of temperature are shown in Fig. 7 for lower
temperatures. The values of the parameters obtained
from the best fit are shown in Table VI. In the fitting
procedure a fixed frequency (co=10 s ') and a fixed
value of the decay paratneter (a=1.0 A ) were as-

0

sumed. It might be noted that the values of ~p obtained
from the fitting procedure are approximately equal to the
inverse phonon frequency vp

' estimated from the dc data
(Table II}. The values of N(EF ), however, are lower by 1

order of magnitude than the estimates from the variable-
range-hopping analysis (Table IV).

2. Overlapping large polaro-n tunn-eling (OLPT) model

The OLPT model predicts that cri(co) should have a
negative temperature dependence of the frequency ex-

TABLE VI. Parameters for various sample compositions, ob-
tained by fitting low temperature ac data to the QMT model.

Sample
composition
mol% V20q

80.2
70.2
65.5

(s)

1.0X 10
1.7X10 "
2.0X 10

&(EF)
(eV 'crn ')

5.4X 10"
2.3 X10"
1.0X10"

ponent s, at least at lower temperatures [Eq. (21)], and
thus at first sight it appears that this model might be a
possible contending theory to explain the data presented
here. The theoretical curves for s predicted by the OLPT
model [Eq. (21)] are drawn in Fig. 8 as a function of
ka T / WHo for various values of the normalized polaron
radius rp. These curves are universal in the sense that
they are plotted versus reduced temperature, kit T/WHo,
or put another way, changes in 8'Ho result in a rescaling
of the temperature axis. The experimental data for s are
fitted in Fig. 8, using WHo as a variable parameter. The
best fit to the experimental points is observed for the
values of O'Ho shown in Table VII. As is seen from Fig.
8, the experimental data for s lie between the theoretical
curves for r p =1.0 to 2.0 at low temperatures. However,
at higher temperatures the experimental points neither
reside between theoretical curves nor show minima as
predicted by the OLPT model. '

Equation (18) can be used to estimate the large polaron
radius rp from the known values of the intersite separa-
tion R (Table I) and the previous estimate of the polaron
hopping energy WH (Table V). The estimated values of
ro (Table VII) are smaller than the average vanadium site
separation and thus appear to be inconsistent with the
basic premise of the overlapping large polarons.

1.0

10
10 Hz 0 0.9

10

10

b

10

10 Hz

3 0
10 Hz

10 Hz
2

0.8

0.7

0.6

0.5

0 4 — & 605 o o

r' = 2.5
1-o =2.0
ro =1-5

ro =1.0

10
1.9 2.0 2.1 2-2 2.3

log&OT (K j

2.4
0.3

0 0.02 0.04

Kg TJ'WHp

I

0.06 0-08

FIG. '7. Temperature dependence of the frequency-dependent
conductivity (real part) obtained by the subtraction procedure
as in Fig. 3(b) for the sample composition 80.2 mo1%
V,O, —19.8 mol% GeO, plotted double logarithmically. The
solid lines are the fits made using the QMT model [Eq. (12)].

FIG. 8. The frequency exponent s for various sample compo-
sitions shown as a function of k~ T/WHO. The solid curves are
calculated from the OLPT model [Eq. (21)] for a fixed frequency
~=10 s ' and relaxation time 7.O=10 ' s and for various
values of the normalized polaron radius ro (shown).
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TABLE VII ~ Parameters obtained by fitting with the OLPT
model at low temperatures for various sample compositions.

TABLE VIII. Parameters obtained by fitting with the CBH
model for various sample compositions.

Sample
composition
mo1% V20q

80.2
70.2
60.5

1.0
1.5
2.0

~HO
(eV)

1.02
1.17
1.31

fo
0

(A)

2.70
2.87
2.92

Sample
composition
mol% V20)

80.2
70.2
60.5

(s)

1.0X10-"
3.1 X 10
4.2X10-"

8'M

(eV)

0.95
1 ~ 13
1.29

N
(cm ')

1.61X 10"
1.87X10"
2.23 X 102'

The OLPT model [Eq. (21)] also predicts the frequency
dependence of s. A detailed analysis shows that in the
low-temperature region ( ks T /WHo & 0.04—0.05), s

should increase with frequency. An opposite and more
significant behavior should be observed in the high-
temperature region (kttT/WHo) 0.05). In the present
work, the change in frequency did not exceed 3 orders of
magnitude and the frequency dependence of s was not ob-
served.

The OLPT model [Eq. (19)] predicts a considerably
stronger temperature dependence of the ac conductivity
in the temperature region where the frequency exponent s
is a decreasing function of temperature. The functional
form of the temperature dependence of cr, (to) predicted
by this model [Eq. (19)] is complicated and cannot be ex-
pressed simply as o, (co) ~ T" with n constant over a con-
siderable temperature range. Nevertheless, at low tem-
peratures (kttT/WHo &0.04—0.05) the hopping length
R„has nearly constant temperature dependence,
R —T' (for rp=2. 5) and consequently o~(to) ~ T for
the uncorrelated case, and also o &(co) 0- T for the corre-
lated form of the OLPT model. ' This is obviously at
variance with the much weaker temperature dependence
exhibited by the low-temperature data of the present
work (Fig. 7).

3. Correlated barrier hopping (CBH) model

The CBH model [Eqs. (24) and (26)] predicts that
cr, (co) should behave, in some respects, in a similar
manner to the OLPT model, namely it should have nega-
tive temperature dependence of the frequency exponent s
and therefore it might be a possible candidate theory for
the ac conduction in the present glass system.

A critical test for the CBH model comes from the tem-
perature dependence of the ac conductivity and its fre-
quency exponent s. Fits to the experimental values of s as
a function of temperature made using Eq. (26) are shown
in Fig. 4. The values of the parameters used in calculat-
ing the curves are those given in Table VIII ~ A fixed fre-
quency (co=10 s ') has been assumed in all cases. From
Fig. 4, it is observed that the fit appears to be reasonable
over the entire temperature range measured. In Fig. 3(a),
the measured total conductivity o„,(co) is fitted to the
measured values of the dc conductivity plus the ac con-
ductivity calculated from Eq. (24) predicted by the CBH
model, using 8'M and ~o as variable parameters. The cal-
culated curves are scaled so as to fit the value of o „,(co)
at to=10 s ' for the lowest temperature [i.e., thereby
effectively fixing N (Table III)]. The values of WM and rp

obtained by the fitting procedure for various sample com-
positions are collected in Table VIII. The values of 8'~
are, as expected, higher than the high-temperature ac-
tivation energy for dc conduction. However, the values
of the relaxation time ~0 are higher than those that would

be expected for typical inverse phonon frequency, al-

though such a discrepancy is not unexpected when lattice
relaxation effects are important. ' It is also noted from
Table VIII that the values of N obtained from this
analysis are close to the concentrations of reduced vana-
dium ions estimated from ESR (Table I).

C. Imaginary parts of the ac conductivity

The total measured capacitance C„,(co), like the con-
ductance, can be decomposed into two components: a
dispersive term C(to), which arises due to loss mecha-
nism, and a nondispersive term C„,which is determined
by the high-frequency atomic and dipolar vibrational
transitions, viz. ,

C„,(co) =C(co)+C„. (32)

Several methods' for eliminating the nondispersive com-
ponent exist, namely the numerical differentiation of the
capacitance data, whereupon the constant term C „drops
out. Thus, if the dispersive part of the capacitance obeys
the power law

1

C(co) ~ to' (33)

oz(co) /o, (co )
=AC (co) /G(co), (34)

where G (to) is the conductance at frequency co.

In Fig. 9, the experimental data for oz(to)/o'~(to) [cal-
culated from Eq. (34)] are plotted versus log, p(to) for one
glass composition at two temperatures. It is observed
that o2(ro)/o, (co) is temperature dependent. The QMT
model [Eq. (27)] predicts a temperature-independent
value for o 2(co)/cr, (co) and hence is not applicable to the
data presented in Fig. 9. The temperature dependence of
o2(to)/cr &(co) predicted by the NSPT model [Eq. (28)] is
also much weaker than the observed data shown (Fig. 9).
On the other hand, the CBH model [Eq. (29)] predicts a
stronger temperature dependence of o2(co)/o &(co). In

(where s ' is different from s) a plot of
log~p[ —dC(~)/d 1n(co)] versus log, pcs should yield a
straight line of slope s —1. This differentiation tech-
nique has been employed in the present work to deter-
mine C(co). The ratio of the imaginary to the real part of
the conductivity is then calculated from the relation
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are more sensitive than the fits made to just the real part
of the ac conductivity.

8.0-
T =84K

=A
VI. CONCLUSIONS

3 6.0—

E
4.0-

b
T=173K

0

2.0-

0 l

10 10 10

~{s '}

t

10

l

10

FIG. 9. Ratio of the imaginary to the real parts of the ac con-
ductivity [cr, lco)/o, ( co)] for the sample composition 80.2 mol%
V20& —19.8 mol% GeO& at two temperatures shown as a func-

tion of frequency. The solid curves represents the behavior of
the CBH model [Eq. (29)].

Fig. 9, the curves are shown corresponding to the predic-
tions of the CBH model [Eq. (29)], using the same values

of the parameters WM and rp (Table VIII) already de-

duced from the fitting of the real part of the conductivity
to the CBH model [Eq. (24)]. The fit between theory and
experiment may be regarded as good, bearing in mind
that no extra parameters are used in the calculation of
o z(co)/o, (co) from Eq. (29). The discrepancy is ascribed
to the fact that Eq. (29) is only approximate; higher-order
terms become important at high temperatures. It should
be noted that the fits to o.2(co)/o, (co) are very sensitive to
the values of the parameters used (e.g., WM and Tp) and

The dc conductivity as well as the real and imaginary
parts of the ac conductivity for the vanadium germanate
glassy semiconductors have been presented for the first
time, in the temperature range 80—450 K and the fre-
quency range 10 —10 Hz. Analysis of the observed dc
data shows that at higher temperatures the dc conduc-
tivity is consistent with the predictions of the phonon-
assisted hopping conduction model in the adiabatic ap-
proximation, while at low temperature the variable-
range-hopping model is valid.

Of the various theoretical models for ac conduction in
amorphous semiconductors (Sec. II}, the CBH model is
consistent with all aspects of the loss data, namely the
temperature dependence of the ac conductivity and its
frequency exponent. Fits using this model are in good
agreement with the experimental data for all tempera-
tures and frequencies measured. The other models, such
as the QMT model, fail to predict the temperature depen-
dence of the frequency exponent, although this model
seems to be consistent with the low-temperature ac con-
ductivity. The temperature dependence of the frequency
exponent is in agreement with the predictions of the
OLPT model in the low-temperature range, however, this
model predicts a temperature dependence of the ac con-
ductivity that is much stronger than the experimental
data indicate.

Finally it should be remarked that fits to the ratio of
the imaginary to the real parts of the conductivity are
much more sensitive than fits to the real part of the con-
ductivity alone.
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