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Electronic band structure of GaAs sawtooth-doping superlattices
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%e report simple calculations (of the Kronig-Penney type) concerning the band structure and

charge distribution of GaAs sawtooth-doping superlattices as a function of period and doping con-
centration. We have obtained, within the effective-mass approximation, analytic expressions for the
subband energy levels and envelope wave functions of the system.

I. INTRODUCTION

In their original proposal in 1970, Esaki and Tsu en-

visioned a one-dimensional (1D) periodic potential pro-
duced by a periodic variation of either impurities (doping
superlattices) or alloy composition (compositional super-
lattices) in semiconductors, with a period shorter than
the electron mean free path.

The introduction of the superlattice potential perturbs
the host-semiconductor band structure in such a way as
to give rise to narrow subbands separated by forbidden
regions, or minigaps.

The idea of tailored new materials has attracted
numerous scientists since then, with almost exclusive em-
phasis on compositional superlattices; this type of struc-
ture allows an unambiguous observation of quantum-
confined interband transitions. Kronig-Penney models
have been applied to study its quantum-confined energy
subbands and wave functions.

On the other hand, only very recently has it been possi-
ble to observe clearly size quantization in doping super-
lattices. ' ' In their original work, ' Esaki and Tsu pro-
posed a homogeneous alternating n- and p-type doping.
However, the solubility limit of impurities opposes a
strong modulation of the superlattice potential on a short
length scale (for a review on early work in doping super-
lattices, see Ref. 14).

This problem has been overcome recently with the use
of a 5-doping technique, ' which allows one to localize
impurity atoms on a lattice-constant length scale and to
exceed locally the solubility limit of Si and Be in GaAs.
A sawtooth-shaped band diagram is obtained as a conse-
quence (see Fig. 1).

It should be pointed out that already in 1972, Dohler'
made the first theoretical proposal on the interesting
properties of these 5-doped superlattices.

Besides size quantization, very recently also excitonic
effects in sawtooth-doping superlattices have been studied
experimentally' and theoretically. '

It is the purpose of this work to report on our Kronig-
Penney-type calculations of the band structure and
charge distribution of sawtooth-doping superlattices. We
have obtained, within the effective-mass approximation,
analytic expressions for the subband energy levels and en-

velope wave functions of the system. For the particular
case of band-edge energies, and as a consequence of the
definite parity of the envelope wave functions, the general
expressions for the subband energies and wave functions
simplify considerably.

In Sec. II both the general case, valid for any energy,
and the particular case of band-edge energies will be
developed and compared. In Sec. III the results of Sec. II
will be applied to the calculation of the band structure
and charge distribution of GaAs sawtooth-doping super-
lattice. This application will then be discussed.

II. THEORY

Vo

Ev

We choose the z direction as the superlattice direction.
Within the effective-mass approximation, the wave func-
tion corresponding to the particle [electron, heavy hole
(hh), light hole (lh)] motion in the x-y plane is given by a
simple plane wave.

The Schrodinger equation for motion in the z direction
1S

FICs. 1. Electronic band diagram of a sawtooth-doping super-
lattice. E,(E,, ) is the energy corresponding to the bottom (top)
of the conduction (valence) band of GaAs, E~ the bulk gap, and

Vo the band-edge modulation.

d + V(z) g„„(z)=E„(k,)g„„(z),
2&i dz "z 2

J

m* being the particle effective mass, and g„k (z) the en-"z
velope particle wave function corresponding to subband
index n and wave vector k, with eigenvalue E„(k,).

In Eq. (I), V(z) is the sawtooth-like potential of Fig. 1;
for electrons it is given by
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V(z) =eF g z —lh ~e((h/2) —(z —Ih ) ),
j= —oo

(2) A] B]
A', B', A',

—B 1

B',

where e(x) is the unit-step function and h the superlat-
tice period. A similar expression holds for the heavy and
light holes, with z replaced by z —h /2 (see Fig. 1). Final-
ly, the potential modulation Vo is related to the two-
dimensional 5-doping concentration N according to

Vo=eFh /2=~e2hN2D/6 (3)

where F is the built-in electric field in the superlattice,
given by F=2~eN /e, and e is the dielectric constant of
GaAs.

In the interval 0 ~ z ~ h /2, Eq. (1) for electrons reduces
to

det ik, h ik, h

A2 B2 —e '
A2 —e 'B2

=0, (9)

ik h

A2 Bz e ' Az
ik h

Ai(z)Bi'(z) —Ai'(z)Bi(z) = I /n, (10)

we find the eigenvalue equation

cos(k, h ) = m[(B—,
A.

2 B2A—, )( A&BI
—A', B2)

where A
&

=Ai( —ap), B
&

=Bi( —ap), A 2
=Ai[ —/3(a

—h /2)], and B2 =Bi[—P(a —h /2)].
Expanding the determinant in Eq. (9) and using the

Wronskian relation satisfied by the Airy functions, '

d
2

+eFz g„"I, (z) =E„(k,)1("„I,(z),
2m dz

(4) +( A )B2 —A2B) )( A IB~ —A2B, )],

whose exact solution is given by

P"„& (z)=a Ai[ —P(a —z)]+6 Bi[—P(a —z)],

where Ai and Bi are Airy functions, ' a, b are constants,
and u, P are defined as follows:

E„(k,)

eF

1/3
2m *eF

$2

g'„„(z)=c Ai[ —P(a+z)]+d Bi[—P(a+z )], (7)

where again c and d are constants to be determined.
In order to obtain the eigenvalue equation, we must

impose on wave functions (5) and (7) the boundary condi-
tions of continuity of the wave function and its derivative
at z=0 and h/2,

I (z=O)=$„~ (z=O), (Sa)

0'"a, (z=o)=4'I, (z=o»"Z

tk h

g"„I, (z =h /2 ) =e '
g'„I, (z = —h /2 ),"Z Z

(8b)

(8c)

g'„"I, (z =h /2 ) =e ' g'„z (z = —h /2 ), (Sd)

where the last two equations follow from Bloch's
theorem. ' Note that, as pointed out in Ref. 11, unlike
compositional superlattices, in doping superlattices the
effective mass of the particles is the same everywhere and
therefore it does not affect the boundary conditions. The
primes in Eqs. (8b) and (8d) represent the derivative with
respect to the whole argument (not to z).

Applying the condition that a, b, c, and d should not be
zero simultaneously, we obtain

For the sake of simplicity in the notation, we have
omitted the dependence of the parameter o,'on band in-
dex n and wave vector k, .

A similar analysis produces the solution in the left half
of the well ( —h /2 ~ z ~ 0),

a result that already was obtained in Refs. 11 and 13.
From Eq. (11) the dispersion relation E„(k,) versus k,

can be readily obtained. We have determined —in Ap-
pendix A—the corresponding eigenfunctions, using Eqs.
(5) and (7) and the system (Sa)—(8d). We show in Appen-
dix B that (11) reproduces, in the limit h ~ oo, the spec-
trum of a particle in a triangular potential, as it should.

Even though we have obtained analytical expressions
for the eigenvalue equation and wave functions, the re-
sulting equations are rather complicated.

Simpler results can be obtained, however, if the
analysis is limited to the edge energies of each band. The
band-edge energies and corresponding envelope wave
functions can be useful to analyze the superlattice proper-
ties. A similar analysis has been carried out for the case
of compositional GaAs/Al„Ga& „As superlattices in

Ref. 9.
Note first that the wave functions corresponding to the

edge energies must have definite parity. This follows
from Bloch's theorem, together with the dispersion rela-
tion (11). According to this last equation, the left-hand
side can take the maximum (minimum) value of + 1 ( —1)
when k,d, =0 (k,d, =+a/h). This, in. turn, corresponds
to the band-edge energies. Henceforth we shall use the
notation k,d, to denote the band-edge values of k, .

As a consequence, it is not hard to see that the system
of Eqs. (Sa)—(8d), when applied to band-edge energies, al-
lows only solutions with well-defined symmetries (for the
same value of k,d, ):a =c(a = —c) and b =d(b= —d), in
which case the envelope wave functions are even (odd)
functions of z.

Second, note that in the limit h ~~ we recover the
"atomic" problem of a particle in a V-shaped well (see
Appendix B). Also in this limit, and as a consequence of
the symmetry of the triangular potential, the eigenfunc-
tions have definite parity. In particular, the ground state
is an even function of z, the first excited state an odd
function, etc.

This allows us to conclude that the band-edge wave
functions of every odd-index (even-index) subband are
even (odd) functions of z in the unit cell.
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We will now proceed with the derivation of the eigen-
value equations and envelope wave functions correspond-
ing to the band-edge energies.

A. Odd-index subbands (n = 1,3, 5, ... )

The band-edge wave functions corresponding to every
odd-index band are even functions of z( —h /2 z h /2).
As a consequence, a =c and b =d in Eqs. (5) and (7):

B. Even-index subbands (n =2,4, 6, ... )

(z)=a Ai[ —P(a —z)]+b Bi[—P(a —z)], (22)

The band-edge envelope wave functions corresponding
to every even-index subband are uneven functions of
z( —h/2~z ~ h/2). The general solution given by (5)
and (7) reduces to this symmetry when a = —c and
b= —d:

(z) =a Ai[ P(—u z)]—+b Bi[ P(a—z)]-,
(z)=a Ai[ —P(a+z)]+b Bi[—P(a+z)] .

(12)

(13)

(z)= —a Ai[ —P(a+z)] —b Bi[ P(a—+z)] . (23)

As before, boundary conditions at z =0 and z =h /2
produce the following set of equations:

Again imposing on wave functions (12) and (13) the
boundary conditions of continuity of the wave functions
and its derivative at z =0 and h /2, we obtain three non-
trivial equations [the condition of continuity at z=0 is
satisfied trivially by (12) and (13)],

~A, +&B,=o,

(1+e "" )(aAz+bB&)=0,

(1—e ' " )( aAz+bBz)=0 .

(24a)

(24b)

(24c)

aA, +bB', =0

(1 —e "" )(aAz+bB&)=0,

(1+e "" )(aA z+bB& )=0 .

(14a)

(14b)

(14c)

However, and unlike the odd-subband case, the
minimum band-edge energy for every even-index subband
is obtained when k,d, h =+m in (24a) —(24c). From (24a)
and (24c) we obtain the eigenvalue equation

A 1B2 A2B1 =0 (15)

From (14a) [or (14c)] and the normalization condition
in the unit cell,

(16)

it is not hard to obtain the explicit expression of the
coefficient a and the ratio b/a,

The minimum band-edge energy for every odd-index
band is obtained particularizing the system (14a)—(14c}
for the case k,d, =0, in which case (14b) is satisfied trivi-
ally, and from (14a) and (14c) we obtain the eigenvalue
equation

A1B2 —A 2B1=0, (25)

7r~p 8, (Bz )

2 (B~ )
—P(o. —h /2)8,

A1

B1

' 1/2

(26)

(27)

Finally, when k,d, h =0 in (24a) —(24c), we obtain the
maximum energy for every even-index subband. From
(24a) and (24b) we obtain, this time,

while from (24a) and the normalization condition (16) the
coefficient a and the ratio b/a are

m p (8'i ) (Bz)

P( h /2 —a )(8 ', ) +aP(B & )

' 1/2

(17)

A 182 A 2B1 =0 (28)

with the corresponding coefficients for the normalized
wave function,

A',

B1
(18)

2 2 1/2
~'p

B2 B2 (29)

A 1B2—A2B1 =0, (19)

while the expressions for the coefficients of the wave
function are now

~'p
2 apB~ (8',)—1/2

(20)

B]
(21)

Some useful integrals of the Airy functions necessary to
get the explicit result (17) can be found in Ref. 20.

Similarly, the maximum band-edge energies for every
odd-index band are obtained when the system (14a)—(14c)
is particularized to the case k,d, h =+a: (14c) is trivially
satisfied, and from (14a) and (14b) we obtain

A]

B1
(30)

Eigenvalue band-edge equations (15), (19},(25), and (28}
(and the corresponding expressions for the coefficients)
are our desired result. They are simpler than the general
result (11),and as a consequence, of easier application.

It should be noted that the band-edge equations are
diferent functions (of energy) froin the general result (11).
They only give the same answer (same eigenvalue) for the
particular case of band-edge energies. The same applies
for the band-edge coefficients with relation to the general
coefficients given in Appendix A.

As an example, we will prove the consistency between
the general eigenvalue equation (11), when particularized
to the minimum band-edge energy of the first subband,
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and the corresponding Eq. (15).
Taking into account that k, h=0 and 3',Bz —AzB',

=0 [Eq. (15)], Eq. (11) reduces to

( A, B~
—A,'B, )( A ', B~

—A ~ B ', ) = —I /vr (31)

Expanding the left-hand side and again using the eigen-
value equation (15), (31) can be rewritten as

( A IB ~

—A
~
B I ) ( A ~ B~

—A ~B~ ) = —1/vr (32)

As an illustration of the application of the expressions
obtained in Sec. II, we have calculated the electron,
heavy-hole, and light-hole energy subbands as function of
the period h and two different values of 5-doping concen-
tration N . We have also calculated the corresponding
normalized band-edge envelope wave functions for the
first two subbands in each ease.

The values of the physical parameters we use in the
calculations are ' m,*=0.067mo, m hh =0.377mo,
m, „=0.090mo, and e=12.5 (mo being the free-electron
mass).

We show in Fig. 2 the electron, hh, and lh energy sub-
bands as function of h, for a 2D 5-doping concentration
N =12.5X10' crn . The straight line corresponds to
the potential modulation Vo( Vo=eFd/2). Note that for
electrons we have chosen the bottom of the conduction
band as the origin of energies, while for the hh's and lh's
the origin of energies lies at the top of the valence band.

which, according to the Wronskian relation satisfied by
the Airy functions [Eq. (10)], is an identity. In a quite
analogous way, it is possible to check the consistency be-
tween (11) and the band-edge expressions (19), (25), and
(28).

III. APPLICATION AND DISCUSSION

Most of the experimental studies on sawtooth-doping
superlattices have been done for N =12.5X10' crn
and h =150 A. ' From the analysis of these experi-
mental results, good agreement has been found between
the experimental quantum-confined transitions and
theoretical results using the energy levels of a particle in
a V-shaped quantum well.

Figure 2 indicates that this analysis, as expected, is
justified only for the first two subbands for the electron
and lh, while for the hh the first six subbands are in the
quantum-well regime.

For comparison, we have repeated the calculations that
lead to Fig. 2, but with a concentration of doping impuri-
ties 10 times smaller (N =1.25 X 10' cm ). The re-
sults are shown in Fig. 3. As a consequence of the corre-
spondingly smaller magnitude of the superlattice poten-
tial V(z), the bands become much broader for the same
period h. For example, for h =150 A only the first sub-
band corresponding to the hh can be considered in the
quantum-well regime, while all the other subbands are in
the superlat tice regime.

We display in Fig. 4 the band-edge normalized en-
velope wave functions corresponding to the minimum en-
ergy of the first (n =1) electron (solid line), hh (dashed
line), and lh (pointed line) subbands for the two values of
N considered in Figs. 2 and 3.

For this particular case, all wave functions are even in
the unit cell (as all the odd-index band-edge wave func-
tions), but are also even from cell to cell.

Note that, as a consequence of the indirect gap in real
space characteristic of doping superlattices, the electron-
ic charge distribution is displaced a distance h/2 from
the hh and lh charge distributions.

The different degrees of localization (for the same X )

of the electron, heavy holes, and light holes are a direct
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FIG. 2. Calculated subband energies and bandwidths for electrons, heavy holes, and light holes as function of period h. The
straight line corresponds to the potential modulation Vo( Vo =eF/2). N' = 12.5 X 10"cm
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consequence of their different effective masses
(m, (m}},(m„h).

The main difference between Figs. (4a) and (4b) is that
the charge distribution is much more uniform in the
latter case. It can be seen that, for example, the wave
function corresponding to electrons in Fig. 4(b) is essen-
tially a constant with a weak modulation, while in Fig.
4(a) it is essentially concentrated in the well region.

Figure 5 corresponds to the band-edge normalized
wave functions associated with the maximum energy of
the first (n = 1) electron, hh, and lh subbands.

The wave functions are even in the unit cell, but they
are now odd from cell to cell, unlike the previous case.
This means that the wave function (and, consequently,

the charge distribution) must be very small in the barrier
regions. This condition induces no large changes in the
charge distribution when N = 12.5 X 10' [Fig. 5(a)] be-
cause the wave function is already very small around
such regions. However, when N =1.25X10' cm
[Fig. 5(b)], the charge distribution moves towards the
well regions [cf. Figs. 4(b) and 5(b)]. The overlap between
an electron and lh (or hh) wave functions will be larger in
the situation of Fig. 4(b) than in that of Fig. 5(b); this, for
example, could be an important piece of information in
an analysis of experiments of optical absorption in
sawtooth-doping superlattices.

We display in Figs. 6 and 7 the band-edge normalized
envelope wave functions corresponding to the minimum
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and maximum n =2 energy subbands, respectively. In
both cases the wave functions are odd in the unit cell (as
are all the even-index band-edge wave functions}, but
while in Fig. 6 they are also odd from cell to cell, in Fig.
7 the wave functions are even from cell to cell.

Clearly, as we move towards higher-energy subbands,
we approach the "nearly-free-particle" limit, ' ~here the
periodic potential of the superlattice is a small perturba-
tion compared to the kinetic energy of the particle. For
example, the electron envelope wave function of Fig. 7(b)
is already very well approximated by (2/&h)sin(2nz/h),

the band-edge wave function corresponding to a simple
nearly-free-particle —limit analysis.

In conclusion, we have calculated the subband energies
and charge distribution of a Kronig-Penney model of
semiconductor sawtooth-doping superlattices. The ana-
lytic expressions obtained become very simple for the
particular case of band-edge energies, as a consequence of
the definite parity of the envelope wave functions. The
results obtained in this work could be very useful for the
analysis of this class of superlattices and application to
device designs.

APPENDIX A: COEFFICIENTS OF THE NORMALIZED ENVELOPE WAVE FUNCTIONS IN THE GENERAL CASE

From the system of Eqs. (8a}—(Sd), the following ratios between the coefficients are readily obtained:

—=2m (KA r
A ', —A 2 A 2 )[(1+2m A 282 )

—K(1+2rr A 'iB, )] (A 1)

—=[BiB',(I+2m A 282) —8282(1+2nA', 8, )](KBiB'i 8282)— (A2)

—= [( I + 2m A iB r ) K( I+—2' A 282 ) ] [2m[8 82' (21+2m A rB r }—8
r
8'i ( 1+2m A 282 ) ] ]

d
(A3)

ik h
where we have defined K =e

Finally, the coefficient a, obtained from the normaliza-
tion condition of the envelope wave function in the unit
cell, is given by

' 1/2

tions are'

X
—r /4 —2x /31

2&7r
(B1)

&r+&rr+&rrr
(A4) Ai'(x) = —x ' e

1 3/2

2&r-
(B2)

where

2)r=(l+CC*)[z2A2 —A2 —z, A, +(A', ) ],
2)„=(BB"+DD")[z282 —(82) —z, B, +(8', ) ],
2)rrr =(8+8*+CD*+ C*D )(z2 A282 —A 282 —z, A

r Bi

Bi(x ) x
—

r /4e 2x /33/Z

2&m-

Bi'(x) = x1 3/2

2&~

(B3)

(B4)

+ A', 8', },
and we have defined 8 =b/a, C=c/a, D =I/a,
z, = —aP, and z2 = —P(a —h /2).

Replacing (Al) and (A4) in (5), and (A2) —(A4) in (7),
gives us the general normalized envelope wave functions,
valid for any energy (inside the bands), period, and tr-

doping concentration.
It is easy to check that (Al) —(A4) reduces to the

simpler expressions given in Sec. II for the special case of
band-edge energies.

APPENDIX 8: LIMIT h ~ Qo OF THE SUPERLATTICE
EIGENVALUE EQUATION

An analysis of the limit h ~ ~ of (11) is easy and in-

structive. The asymptotic expansions of the Airy func-

Replacing A2, A2, 82, and 82 in (11) by their asymp-
totic expressions, it is not hard to derive that the eigen-
value equation in the limit h ~ ~ reduces to

Ai A] =0, (B5)

and consequently the eigenvalues are related to the zeros
of A, or 3 ).

%hen h ~ ~ the superlattice problem becomes
effectively a quantum-well problem of a particle confined
to move in a triangular potential. The exact solution of
this latter problem coincides with the result (B5).' ' In
particular, the ground state is even and its energy is relat-
ed to the first zero of 3 ', , the first-excited state is odd and
its energy is related to the first zero of 3, , etc.
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