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Surface lattice dynamics of nearly incommensurate overlayers
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A monolayer adsorbed on a crystal surface may form an overlayer whose unit-cell dimension in

one or both principal directions is very long compared with the substrate lattice constant (5—15 lat-
tice constants, for example). We refer to such overlayers as nearly incommensurate. In this paper,
we explore the lattice vibrations of such overlayers, within a model where the substrate is viewed as

rigid, providing a corrugated potential well within which the adsorbates reside. We first find the
static equilibrium configuration of the adlayer, and then calculate the phonon spectrum and mean-

square displacements within harmonic lattice dynamics. For small corrugation amplitudes, we find

very large mean-square displacements parallel to the surface. There is a smooth transition to a re-

gime where the overlayer is locked to the substrate tightly; the transition occurs within a rather nar-

row range of corrugation strengths. This and other systematic aspects of the vibrational properties
of such overlayers are explored in the paper.

I. INTRODUCTION

When an adsorbate overlayer is present on a crystal
surface, a rich variety of structures is realized. The
geometry of the overlayer, and its relation to that of the
substrate, is controlled both by the nature of the bonding
between the adsorbates and the substrate, and the
strength of the adsorbate-adsorbate interactions.

One simple limit is that where there is strong chemical
bonding between the adsorbate and substrate; the adsor-
bate is said to be chemisorbed. It will be found in a
high-symmetry site, usually where the coordination num-
ber is highest. Examples would be the fourfold hollow
site of the (100) surface of fcc crystal or the threefold hol-
low site of its (111) surface. At appropriate coverages
one realizes commensurate overlayers, with islands of
such structure at coverages in between those where com-
mensurability is realized.

A very different limit applies to a closed-shell atom,
such as a rare-gas atom adsorbed on a smooth metal sur-
face. The adsorbate is "rigid" in its electronic structure
to an excellent approximation and is bound to the sub-
strate only by virtue of the rather weak van der Waals at-
traction. This is the case of physisorption. If the metal
surface is very smooth, then at monolayer coverage the
separation between adsorbates is controlled only by their
mutual interactions. In this case, the monolayer is in-
commensurate with the substrate. An example of this be-
havior is provided by the overlayers of heavy-rare-gas
atoms on the Ag(111) surface, which is very smooth. ' On
a more corrugated substrate, such as Pt(111),both incom-
mensurate and commensurate rare-gas overlayers are
found, as demonstrates by the elegant experiments of
Kern and Cosma.

The lattice dynamics of the two classes of overlayer
just mentioned differ dramatically. Consider first the in-

commensurate monolayer, and assume that the x axis is
parallel to a direction of incommensurability. Clearly,
the energy of the system is left unchanged as one dis-
places the overlayer by an arbitrary amount e parallel to
the x axis. If one considers the surface phonons associat-
ed with such a substrate/adsorbate combination, then
there must be a mode whose frequency vanishes as its
wave vector

Q~~~
vanishes, when

Q~~ is directed along the x
axis. As Q~~~O in this manner, the polarization of the
mode is parallel to the surface, and the eigenvector be-
comes entirely localized within the overlayer itself. This
is a Goldstone mode of the adsorbate/substrate combina-
tion; its existence is guaranteed by the invariance of the
energy of the overlayer/substrate combination to the
translation just described.

For the incommensurate overlayer, we then have a
"soft mode" whose frequency vanishes as

Q~~
vanishes and

the motion is localized within the layer in the limit. We
may expect very large atomic mean-square displacements
at finite temperature, parallel to the surface and to the x
direction. If the overlayer is incommensurate as one
moves parallel to x, but is commensurate along a second,
noncolinear direction, the mean-square displacement will
be finite, in the harmonic approximation of lattice dy-
namics. If the overlayer is incommensurate in both
directions in the surface plane, then we have a phonon
whose frequency vanishes as Q~~~0 from any direction;
in this limit, this mode again will be localized within the
overlayer and polarized parallel to this surface. The pres-
ence of this mode leads to a divergence of the mean-
square displacement in the harmonic approximation.

The commensurate overlayer behaves very differently.
Any surface phonon whose amplitude is localized to the
surface as Q~~~O will have finite frequency. The only
surface mode with frequency that vanishes in this limit is
the Rayleigh surface phonon, whose existence is

42 5610 1990 The American Physical Society



42 SURFACE LATTICE DYNAMICS OF NEARLY. . . 5611

guaranteed and required by the theory of elasticity. As

@~~~~0, the Rayleigh wave penetrates deeply into the
crystal, a distance the order of Q~~

'. One encounters no
anomalous behavior in the mean-square displacement of
the overlayer in this instance.

The purpose of this paper is to explore, within a model,
aspects of the lattice dynamics of overlayers we have
come to view as a third class. These are commensurate
with the substrate, with a unit cell N XM in size, where
either N or M or both may be integers large compared to
unity. We refer to these as nearly incommensurate over-
layers, and the analysis presented here suggests they may
exhibit rather unusual behavior, as we discuss below.

An example of such an adsorbed overlayer is a Ag
monolayer on Ni(100), which forms a (2X8) structure.
The Ag overlayer is distorted only very slightly ( —1%)
from the hexagonal atomic layer one finds as a (111)
plane in the bulk Ag crystal. Evidently, the Ag-Ag spac-
ing is such that the overlayer requires only a very small
distortion to lock into the underlying (square) lattice one
finds on the Ni(100) surface. If one moves along the
direction in the unit cell which contains eight Ni atoms,
there are seven Ag atoms within this length. The Ag
overlayer on Cu(100) forms a (2X 10) structure.

In an earlier paper, we developed an approximate but
accurate description of the surface lattice dynamics of
such structures, which contain a large number of atoms
per unit cell and thus are difficult to analyze with stan-
dard methods. This was done with a force constant mod-
el, which did not take account of the detailed structure of
the overlayer; i.e., all adsorbates were assumed to lie in a
plane a given distance above the substrate, and no relaxa-
tion parallel to the surface was incorporated. Thus we
confined our attention to a Aat, ideal, 2X 8 overlayer cou-
pled to nearby substrate atoms with appropriate
"springs. " In the end, with a simple model of the force
constant, we obtained an excellent account of off-specular
electron scattering studies of the Rayleigh surface pho-
non of the structure. We did not explore the character
of atomic motions parallel to the surface.

In this paper, within the framework of a model, we
wish to study lattice vibrations of nearly incommensurate
overlayers, with attention to the role of relaxation and
the character of atomic motions parallel to the surface.
Our motivation is the following.

We may expect parallel mean-square displacements in
a truly incommensurate overlayer to be large, for the
reasons mentioned above. The question is, for the case of
high-order commensurability, with N rather large (say, in
the range of 5 —10), does one realize very large parallel
mean-square displacements, as expected for an incom-
mensurate overlayer, or is the Goldstone mode
suppressed by locking of the overlayer to the substrate, to
the point where the parallel mean-square displacement is
rather ordinary in magnitude? We find, for the model ex-
amined here, that the "lock-in" energy is in fact remark-
ably small, for the reasons described below. This result is
obtained for modest corrugations. There is thus rather
little difference, so far as the phonon spectrum is con-
cerned, between the truly incommensurate overlayer and
one which exhibits high-order commensurability.

The model is one in which the substrate is viewed as
quite rigid, with a profile that is corrugated. A given
adatom then feels a potential from the substrate we write
as V(r~~, z), where its position is r=r~~+zz, with z normal
to the surface plane and r~~

the projection of r onto it.
The form for V(r~~, z ) we use is discussed below.

We then bring down a monolayer of adatoms onto the
rigid, corrugated potential. These interact by means of
nearest-neighbor couplings of the form —,'k(r„r0—),
where r0, an input parameter, is the free-space equilibri-
um spacing between adatoms. Our interest is in the case
where the value of r0 is such that the adlayer placed in
free space is very nearly commensurate with the sub-
strate, where a small distortion will lead to an NXM
structure, with N or M large. We allow the atoms to re-
lax to equilibrium positions, by moving both vertically
and horizontally. When the adlayer "locks in" to the
substrate, we have a relaxation energy AE we may call
the lock-in energy. Once the equilibrium structure is
found, we then explore the spectrum of surface phonons
associated with the structure and calculate the mean-
square displacements within the framework of harmonic
lattice dynamics. As remarked earlier, our principal con-
clusion is that the lock-in energy is remarkably small for
modest corrugations. When N or M is large, the cost in
energy to slide the line parallel to the surface is very
small; a consequence is that the mean-square displace-
ment we calculate (in the harmonic approximation) is
very large.

In Sec. II, we introduce the model that forms the basis
for our analysis, and we can appreciate by means of a
simple discussion the reason why hE is so small. Section
III presents our full numerical analysis, and Sec. IV ex-
plores the implications of the results.

II. INTRODUCTION OF THE MODEL
AND GENERAL COMMENTS

For the adatom-substrate potential, we use a form

V(r~~, z ) = VQ(z)+ g 6 V(G~~)exp(iG~~ r~~)

6)( (40)

Xexp( —
G~~z) . (2.1)

The first term, Va(z) contains an attractive van der Waals
tail in principle (-1/z ) and a repulsive part at short
range. It describes, phenomenologically, the physisorp-
tion well associated with a very smooth surface. The
remaining terms provide the corrugation. If this piece of
the potential has its origin in the distribution of static
charge in the substrate, then at large values of z which lie
outside the physical charge distribution, the potential
must satisfy Laplace's equation. This dictates the z
dependence displayed in the second terms of Eq. (2.1), at
least for large z. We shall use this form for all values of z;
for our purposes, however, only the near vicinity of the
minimum in the physisorption well is important. We as-
sume the minimum in VD(z) lies at z =0 and suppose this
is far enough from the outermost layer of nuclei for the z
dependence of the corrugation terms to be reasonable. A
surface that can be viewed as exhibiting a sinusoidal cor-
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rugation is described by retaining the set of terms in Eq.
(2.1) associated with the star of reciprocal lattice vectors
of shortest length. We then just have one nonzero pa-
rameter, since symmetry may be used to interrelate the
various coefficients associated with this star, all of which
must have the same magnitude.

Once again, the adatom-adatom interactions are intro-
duced by assuming these are of nearest-neighbor charac-
ter and given by —,'k(r„ro—), where k and ro are pa-
rameters, and r„ is the separation between atoms n and
m.

It is instructive to examine first a one-dimensional
model of the structures explored below. Let us consider a
row of adatoms arranged along the x axis; vertical relaxa-
tion or motions will be ignored. The potential energy of
the array is then

yy(0)+g(1)+g(2)+ (2.8)

where e'„" and e'„' are, respectively, first and second order
in a. From the equilibrium condition [Eq. (2.3)], we find

and

t), sin(27ry„' '}

4 sin (n.yo)
(2.9)

Now suppose the surface is weakly corrugated, a limit
that applies to low index surfaces of metals (we comment
further on this below). We may expand the energy in
powers of the corrugation parameter a. It will be useful
to explore the structure of this expansion.

To begin, we expand the displacement in powers of a,
thus allowing the masses to relax:

U =
—,
) b V) g cos x„+—,

) kg (x„+)—x„—xo)
a

sin(4ny„' ')

sin (myo)sin (2myo)
(2.10)

(2.2)

This model has been explored extensively in the theoreti-
cal literature. We examine some features of it here, with
attention to the questions that motivate our study.

The equilibrium condition is found from Bu/()x„=0
for all x„. If we write x„=aoy„, then to find the equilib-
rium positions, we must solve

For the moment, we regard yo as an irrational number
very close to M/N in value; as we examine various terms
in the perturbation expansion, we shall take the limit
yo~M/N.

The energies E, and E, may also be expanded. If we
keep terms through those cubic in a, then in a unit cell
that contains N adatoms, the energy per atom is

y„+,+y„,—2y„+a sin(2my„) =0, (2.3)
N —

1 2~ N —1

cos(2my„' ') — g sin(2ny„' ')e'„"
n=0 n=0

where a =nb V) /kao. If we also let xo=aoyo, then the
potential energy of the array is

2~ N —1

y [cos(2my„(o))e(„'"
n=—0U= T)ka()(E, +E, ),

where

(2.4)

and

(2.1 1}

a
E, =—g cos(2~y„)

n

(2.5)

E,=/(y. +) —y. —yo)' (2.6)

is the interaction energy of the adatoms with the sub-
strate, and

E,
N

N —1

(~()) ~()))2
n=0

2 N —1

n=0
~ ~ ~

(2.12)

y„'"=a+nyo, (2.7)

where 6 is a position of a fiducial mark on the line of
atoms. A change in b, slides the line along the x axis.

is the elastic energy stored in the array.
When a=0 (a trivial limit, of course), we then have a

set of adatoms that are spaced uniformly, with separation
by =1 (or b,x =xo). We shall make a special choice of
yo, yo=M/N, where M and N are both integers. One
can show that this value of yo corresponds to a local
minimum in the energy of system. With this choice, in a
piece of substrate whose real-space length is Mao, we
have N adatoms. The choice N=7 and M=8 allows one
to mimic Ag on Ni(100), in the limit the Ni surface is
viewed as perfectly smooth.

When a=O, we denote the position of mass n by y„' '.
We write

To first order in n, we evaluate the leading term in Eq.
(2.11), which describes the interaction of a rigid, unre-
laxed row of adatoms with the corrugated substrate:

g cos(2my„' '),
n=0

or upon performing the sums,

Es a sin(mNyo )
cos [ m.[2b, + (N —1)yo] IAN sin m.yo

(2.13)

(2.14)

While there is a periodic dependence on 6 in Eq.
(2.14), and thus we have a contribution to the "lock-in"
energy first order in a, as yo~M/N the numerator van-
ishes identically, unless M/N is an integer. In the latter
case, the numerator and denominator vanish simultane-
ously, and
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~—cos I sr[28, + (N —1)yo ] I . (2.15)

If, as in our example with M =8 and N =7, M/X is
not an integer, then we must look to the terms second or-
der in a to find a contribution to the lock-in energy.

I

Note that this means that the lock-in energy has its phys-
ical origin in the substrate-induced relaxation of the
structure.

It is straightforward, though a bit tedious, to work out
the second-order terms. One finds, assuming yo is not an
integer,

and

E,' ' ~~ 1 sin(2mNyo}
1 —— cosI 2m [26+n(N —1)yo] ]N 4sin (~yo) N sin(27ryo)

(2.16a)

E(2)
e a 2 sin(2m Ny0 )1+—

8 sin~(kayo) N sin(2nyo)
(2.16b)

The dependence on b, resides in the second term in Eq. (2.16a). For the coefficient of this term to be nonzero, we re-
quire both sin(2nNyo) and sin(2nyo) to vanish as yo~M/N Thi.s means the ratio 2M/N must be an integer. When
this is the case, we obtain a contribution to the lock-in energy of order a .

To make the trend clear, we assume 2M/N is not an integer, and we examine the terms cubic in a. These yield

E,' ' ~3 1 2~sin (m.yo) sin(3nNyo).
1+ . cosI3n[25+(N —1)yo]I

32sin (cryo) N sin (2myo)»n(3~yo)
sin(nNyo )

cos I rr[26+ ( N —1)yo ] Jsin myo
(2.17a)

and

E[3]
e a sin( 3n Ny 0 ) sin( m Nyo )

cos[3m(Nyo+2b, )]+ . cos[m.(Nyo+2k)]
16sin (7ryo)sin(2nyo} N sin 3~yo sin ~yo

(2.17b)

In this order, we now obtain a contribution to the lock-in
energy if 3M/N is an integer.

The criterion for locating the first nonzero contribu-
tion to the energy which contains a dependence on 6 is
now quite clear. The first contribution will be the order
of a', where s is the smallest integer which makes sM/N
an integer. In our representation of Ag on Ni(100),
where we would choose M =8 and N =7, the lowest or-
der contribution will be the term proportional to a"!
When a & 1, this means the lock-in energy is very small
indeed. There is very little difFerence between the truly
incommensurate overlayer and the nearly incommensu-
rate structure, at least for weakly corrugated surfaces
with a «1.

The discussion above assumes the nature of the
adatom-adatom interaction is such that yo =M/N, where
M and W are integers presumably in the range of 1 —10,
and so we can speak of a unit cell of the
adsorbate/substrate complex whose length contains a few
substrate atoms. Of course, it is unlikely that in a real
physical system the equivalent of yo assumes such a spe-
cial value. However, the properties of systems studied to
date suggest that yo can lie very close to such a value.
The Ag overlayer on Ni(100), which we have remarked
forms a (2 X 8) structure, is distorted from a bulk Ag(111)
crystal plane by an amount the order of 1%, in each of
the two directions in the surface plane. Such a small dis-
tortion of the bulk Ag(111) plane generates an overlayer

I

that comes into precise registry with the Ni(100) sub-
strate, as a (2X8) adlayer. This suggests that we can
model a line of Ag atoms parallel to the direction where
the repeat distance is eight substrate atoms by choosing
yo= —,'+q, where g is very small in magnitude, the order
of 0.01. A very small adjustment of the mean spacing be-
tween adatoms will then allow the line to "lock in" to the
substrate.

To obtain a description of the lock-in energy in this sit-
uation, when the surface is weakly corrugated, we should
extend the discussion given above, to generate a power
series expansion for the energy of the structure in both a
and q. We will not do this here; it is clear the lock-in en-
ergy will remain very small. For example, if the mean
spacing between atoms changes by the amount g, the
change in elastic energy per atom in the line of adsor-
bates is given by —,

' k g, which is roughly —,'AcoM g, where

cuM is the maximum phonon frequency of the line of ada-
toms. This is the first term in an expansion of the energy
in powers of q and is, in fact, independent of A. It is also
very small in magnitude. Contributions to the lock-in en-
ergy will appear in higher order. Thus, if we were to ex-
pand the energy in a power series in both a and g, it
would remain the case that the contribution to the lock-
in energy will be small.

The numerical calculations presented in the next sec-
tion show that, for the systems considered, the lock-in en-
ergy is remarkably small, until the corrugation strength
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becomes substantial. Indeed, it proved challenging to
calculate it accurately in the parameter range of interest.
The purpose of the discussion in this section was to un-
derstand why this energy is so small. This is the origin of
the very large parallel mean-square displacements we
have calculated; nearly incommensurate structures on
weakly corrugated surfaces are remarkably "soft," with
respect to long-wavelength atomic motions parallel to the
surface.

III. QUANTITATIVE STUDIES OF THE MODEL:
RELAXATION OF THE STRUCTURE,

THE PHONON SPECTRUM,
AND THE MEAN-SQUARE DISPLACEMENT

Since this study is motivated by earlier experimental
and theoretical analyses of the Ag monolayer on Ni(100),
we depict this structure and its Brillouin zone in Fig. 1.
We construct a representation of this overlayer by plac-
ing one Ag atom in the fourfold hollow site, at the origin
of the coordinate system. Then, in the y direction, we
place seven Ag atoms (equally spaced in the figure, in
which relaxation is ignored) over a distance parallel to y
that contains eight substrate atoms. The second line of

~l x 8

Ag atoms is constructed parallel to the first, with each
atom halfway between two lines of Ag atoms constructed
as just described. As noted in Ref. 5, the Ag overlayer
constructed in this manner is only very slightly distorted
from the Ag(111) plane of elemental silver; the distortions
are the order of 1%. The primitive unit cell of the struc-
ture is the 1 X 8 form indicated in the figure.

We wish to begin with such a structure with adsorbates
equally spaced and allow the atoms to relax both in the
vertical direction and in the plane of the surface. The re-
laxation is in response to the substrate potential in Eq.
(2.1). If b,u(l) is the displacement of the atom at site 1,
then clearly from symmetry considerations, bu(1) lies in
the yz plane. Thus, for purposes of analyzing relaxation
of the adlayer, we may represent the substrate as a one-
dimensionally corrugated grating, with peaks and valleys

Vo(z) = Vo[exp( —20z) —2 exp( —oz)] . (3.2)

The minimun of V(z) is at z =0, where we have an ad-
sorption well of depth Vo. Here we are primarily con-
cerned with the behavior of Vo(z) in the vicinity of z=0,
and so we need not be concerned about a complete
description of it, including the van der Waals tail.

Interactions between the nearest neighbors in the ada-
tom overlayer will have the form

(3.3)

V(ri, z ) = Vo(z)+ b, V exp( —Gz)[1 —cos(Gy)], (3.1)

where G =2m /ao, with ao the substrate lattice constant.
For Vo(z), we use the Morse form
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FIG. 1. The structure of the Ag overlayer on Ni(100), with
relaxation neglected. (a) We show both the 2X 8 unit cell of the
substrate and also the 1X8. (b) The reciprocal lattice corre-
sponding to the 1 X 8 real-space unit cell. We show also the first
Brillouin zone.

where the sum is over nearest-neighbor pairs. We shall
be choosing parameters so our results provide a descrip-
tion of the Ag overlayer on Ni(100). We choose
k =2.02 X 10 dyn/cm, a value that provides a reasonable
representation of bulk Ag phonons, as discussed in the
paper by Black, Shanes, and Wallis. We choose ro to be
the nearest-neighbor distance in Ag; so ro =2.89 A.

We shall be employing reduced units of length and fre-
quency, as we present our results. Lengths will be mea-
sured in units of the bulk nearest-neighbor distance of Ni,
which is 2.49 A. In reduced units, ro =1.1619. Frequen-
cies will be measured in units of (k/M„~s)', which
equals 56.4 cm

We have three more parameters, Vo, 0., and AV. We
determine them via the following constraints.

(a) The fourfold hollow site lies on the line y =0, and
the bridge site at y =ao/2. We assume that the distance
between an isolated Ag atom in the fourfold hollow and
its four nearest-neighbor Ni atoms will be 2.59 A, the
average of the Ag-Ag and the Ni-Ni distances in the
bulk. We assume that an isolated Ag atom in the bridge
site is also separated from its two nearest Ni neighbors by
2.59 A. This places the bridge site 0.35 A above the hol-
low site, and we require this to be the case.

(b) The data reported in Ref. 5 suggest the average Ag
perpendicular vibration frequency (with substrate held
fixed) to be roughly 74 cm ' [(l.3) reduced units]. Furth-
ermore, the surface is rather smooth, and there seems lit-
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tie evidence for a site dependence in the perpendicular vi-

bration frequency. Thus we require the perpendicular vi-
bration frequency for an isolated Ag adatom in both the
fourfold hollow and the twofold bridge to be 74 cm

These constraints require V0=1.7 eV, and in reduced
units o.=2.0. Both values seem quite reasonable. We use
as a measure of surface corrugation a = V, m/ka 0, where

V, is the energy difference between the equilibrium four-
fold hollow and the equilibrium bridge site. Note that V,
is not equal to 2b V, in the presence of corrugation.
From the constraints we find a=0. 12, and so the sub-
strate is inferred to be rather smooth. The discussion of
Sec. II, which assumes a is small, is thus applicable. The
energy difference between the hollow and bridge sites is
0.3 eV in this picture.

The above numbers are surely reasonable for the dis-
cussion of a metal adlayer on a metal substrate. We shall
explore how our predictions are affected by variation of
the above parameters, but these choices provide us with
an initial starting point.

We now proceed as follows. We begin by placing an
atom in a hollow site, as described earlier, and then ar-
range the adatoms in a perfect, two-dimensional lattice
with the 1 X 8 primitive unit cell illustrated in Fig. 1. Ini-
tially, the spacing between adatoms is uniform, and all lie
in the same plane parallel to the average surface. In this
configuration, which is not an equilibrium configuration,
there is a force on each atom from the substrate except
for the atom in the hollow site. This force is determined,
and each atom is displaced in a direction parallel to the
force, and in an amount proportional to it. Each such
move lowers the energy of the system. The process was
repeated, until each force was below 10 in reduced
units; initial forces were larger by roughly six orders of
magnitude. In the end, we obtain the energy per atom,
accurate to one part in 10 .

For a =0.12, we show the atomic positions in the equi-
librium configuration (no forces) in Table I. We give
three sets of information. On the left, we have the re-
laxed positions of a one-dimensional line of atoms, such
as that considered in Sec. II. Then we have the two-
dimensional adlayer, with one atom confined to the ho1-
low site, and we also give relaxed positions for a second
structure, where we begin by placing the initial atom on a
bridge site. We can see that in both cases the two-

dimensional layer becomes rumpled, and that the dis-
placements away from the starting position are smaller
for the two-dimensional case, when compared to the
one-dimensional line.

Each of the two structures summarized in Table I is in
equilibrium, in the sense that no atom experiences a net
force from the neighbors, to which it is coupled, and the
substrate. It is not clear, however, that each corresponds
to a (local) minimum in the potential energy. We may
test this by calculating the frequencies of the various pho-
nons.

When we do this, for the parameters above, for the ar-
ray with one atom in the fourfold hollow site, the square
of the frequency of the lowest frequency phonon of zero
wave vector is negative. The frequency itself is thus pure
imaginary. This is then an unstable equilibrium position.
For the array with one atom in bridge site, the lowest fre-
quency is 0.015 692 in reduced units, which is very small
in reduced units compared to 1.31, the perpendicular vi-
bration frequency of the isolated Ag atom. The argu-
ment presented in Sec. II suggests that this gap frequency
should be the order of a typical vibration frequency, re-
duced by a, and a numerical prefactor that can be gen-
erated only from a detailed analysis. This follows by not-
ing the square of the gap frequency should be related to
the curvature of the "lock-in" energy, divided by the
atomic mass. One sees that 1.31a lies within a fraction
of the gap frequency just quoted. We comment on the
variation with a below. For the unstable hollow site
configuration, the square of the gap frequency is
—(0.015692) to high accuracy, suggesting that for the
relaxed structure, the lowest term in a dominates the
lock-in energy.

The difference in energy per atom of the two structure
is very small; for the hollow site geometry, the energy per
atom is 1.997 09 X 10 reduced units, while for the
bridge site, it is 1.997 06 X 10 . The difference is
3 X 10 reduced units, quite close to a (3.6X10 ), as
suggested in Sec. II. Clearly, the overlayer can be
translated parallel to the surface with very little cost in
energy.

We may also examine the one-dimensional line with
N =7 and M =8, for a parameter set identical to that
used for the two-dimensional simulation just described.
The two-dimensional structure is much "softer, " in the

TABLE I. Relaxed atom positions for a =0.12.

Atom One-dimensional
nUmber case y,

Initial atom in hollow site
Initial

positions

Initial atom in bridge site
Initial

positions

0.0000
1.0567
2.1553
3.3532
4.6468
5 ~ 8447
6.9433
8.0000

0.0000
1 ~ 1428
2.2857
3.4286
4.5714
5.7143
6.8571
8.0000

0.0000
—0.0394
—0.0451
—0.0182
+0.0182
+0.0451
+0.0394

0.0000

0.0007
0.0194
0.0794
0.1356
0.1356
0.0794
0.0194
0.0007

0.5000
1.6428
2.7857
3.9486
5.0714
6.2143
7.3571
8.500

0.0000
+0.0342
+0.0476
+0.0021
—0.0021
—0.0477
—0.0342

0.0000

0.1437
+0.1127
+0.0453
+0.0050
+0.0050
+0.0453
+0.1127

0.1437
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sense that the minimum phonon frequency in one dimen-
sion is 0.1302.

It is of interest to explore the variation in the rnagni-
tude of the gap, as various system parameters are varied.
For example, we need not suppose the vibration frequen-
cy of an adatom in the fourfold hollow site is identical to
that when it is adsorbed on the bridge site. If v~ and vH
are the bridge and hollow site frequencies, we may vary
these holding the Ag-Ni distances identical to those de-
scribed above. When this is done, for vs/vH=0. 8 (this
requires a=0. 15 and o =0.8), we find the gap frequency
to be 1.17X 10 dimensionless units, smaller than
1.57X10, corresponding to vs/vH=1. Similarly, the
choice v~ /vH = l. 2 leads to a gap frequency of
1.80X10 . Variation of vs/vH affects the value of the

gap frequency, but not its order of magnitude.
In Table II we show for a=0. 12 the variation of the

energy per atom and the gap frequency with the parame-
ter ro, which enters our model adsorbate-adsorbate in-
teraction. It will be recalled that the equilibrium distance
between adsorbates in a layer fully isolated from the sub-
strate is ro. If the adlayer matches onto the substrate
perfectly, to form a primitive unit cell which contains
eight substrate atoms and seven adsorbate atoms, then in
our reduced units one must have ro= —,'. Clearly, as ex-

pected, the energy/atom of the relaxed overlayer (bridge
site geometry, which is the stable configuration) has a
minimum at xo =

—,
' =1.1429. However, for the parame-

ters explored, the gap frequency increases monotonically
with ro. In the limit of zero corrugation, with the rows of
Ag arranged with the separation shown in Fig. 1, the
structure of minimum energy is a slightly distorted hexa-
gon with xo = 1.1488.

The effect of increasing corrugation is quite dramatic.
We have varied the corrugation strength parameter a,
with the isolated adsorbate frequency on both bridge and
hollow sites held fixed and equal. This may be accom-
plished through appropriate choice of o. in the physisorp-
tion potential, and by doubling then tripling the original
corrugation amplitude of 0.35 A. The results are in Table
III. This table shows results similar to those we have
found in several studies. For rather small values of a,
say, a~0. 10, the gap in the phonon spectrum is really
very small, and the gap varies dramatically with a, as ex-
pected from the arguments of Sec. II. We see in Table III
that as a is increased by a factor of 2, from 0.12 to 0.24,
the gap frequency increases by a factor of 10.2, not far

TABLE II. The energy per atom and gap frequency as a
function of xo.

0.12
0.24
0.36

2.0
1.9
1.7

1.997
4.058
6.082

0.0157
0.1605
0.3362

from the ratio expected (11.3) if the gap varied as a, as
suggested for the case from the arguments in Sec. II. As
soon as the gap becomes an appreciable fraction of the
maximum frequency 1.31, its variation with a becomes
far more modest.

We show two additional illustrations of this behavior.
In Table IV we see that doubling a from 0.06 to 0.12
again leads to an increase in the gap frequency that is a
bit more than a factor of 10, while increasing a by 25%
from 0.48 to 0.60 leads only to a 33%%uo increase in the gap
frequency. It should be remarked that for the calcula-
tions in Table IV we have chosen parameters so that iso-
lated adatom frequency in the hollow and bridge sites are
equal, and also so that the equilibrium height of the two
sites are the same (that is, the corrugation is removed).
In Fig. 2 we show the variation of the gap frequency with
a for the one-dimensional line, with seven adsorbate
atoms within a substrate unit cell that contains eight ada-
toms. For large a, the numerical results are fitted accu-
rately by coo= 3.305(a —a, ) where, as noted on the
figure, a, =0.0755. For the smallest a explored, say
a ~0.06 in this case, coo scales as roughly a, close to
the a behavior expected from the arguments in Sec. II.

These results suggest the following picture of the na-
ture of the relaxed adlayer. For small or rather modest

l.O—

o 0.8—

0.6—
(3
z',
LLI

0.4—
LLI

CL

o 02—

TABLE III. Effect of corrugation strength a on the energy
per atom and the gap frequency at the zone center.

Gap
Energy/atom frequency

a cr (reduced units) (10 ' reduced units) (reduced units)

Xp

1.10
1.12
1.14
1.16
1.18
1.20

Energy/atom
(10 ' reduced units)

2.36
2.12
2.00
1.99
2.11
2.33

Gap frequency
(10 ' reduced units)

0.78
0.98
1.23
1.57
2.03
2.64

0.0 O. I 0.2 0.3
I

0.4

FIG. 2. For a one-dimensional system, in which the basic
unit cell contains eight substrate repeat distances and seven ad-
sorbate atoms, we show the variation of the gap frequency with
a.
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TABLE IV. Influence of corrugation parameter o. on gap fre-

quency. (These calculations are carried out for the case where
the isolated adatom "sits" an equal distance above the surface in

both the hollow and bridge sites; the perpendicular vibration
frequency for the isolated adatom is also the same for both
sites. )

Gap frequency
(reduced units)

0.00
0.06
0.12
0.24
0.36
0.48
0.60

0.000
0.0022
0.0227
0.1980
0.5268
0.8680
1.1671

values of o., say, +&0.10—0. 15, the gap in the phonon
spectrum is very small, and one may translate the adlayer
across the substrate at a very small cost in energy per
atom. The mean-square displacements parallel to the
surface will be very large in this regime, as a consequence
of the very small gap. We shall present calculations of
the mean-square displacement in this regime below. As a
increases, suddenly the gap increases rather dramatically
with a, and by the time a-0. 3 or larger, the gap in the
phonon spectrum is a substantial fraction of the max-
imum phonon frequency of the substrate. In this regime,
the adlayer is locked rather tightly to the substrate, and
the parallel mean-square displacement is not anomalous.
As one sees from Fig. 2, one passes from one regime to
the other in a continuous manner. In our analysis, which
is equivalent to a mean-field description of the system,
there is no evidence of a phase transition. But there is a
clear, continuous crossover between two distinct regimes.

It is interesting that our parametrization of the Ag
overlayer on Ni(100) gives a=-0. 12, near the crossover
region. It is reasonable to expect some metal overlayers
on metal substrates may be described by values of o.
smaller than these by factors of 3 or 4. These would
display large amplitude mean-square displacements paral-
lel to the surface. On the other hand, a system with a
larger by a factor of roughly 2 would lock in rather tight-
ly to the substrate and display no anomalous behavior in
this regard.

In Table V we present a study of the variation of the
energy per atom and the gap frequency, with the number
of adatoms per unit cell. These calculations are carried
out for our simulation of the Ag overlayer on Ni(100).
That is, we assume that the vibration frequency of an iso-
lated atom in the hollow site is the same as that of such
an atom in the bridge site; ro is chosen such that the iso-
lated adlayer has spacing between neighbors equal to that
found in a (111) plane of bulk Ag. This, combined with
our model of the Ag—Ni bond length, leads to a height
difference of 0.35 A between the hollow and bridge site,
for reasons discussed earlier.

We give numbers for the two configurations discussed
earlier in which there is zero force on each adatom in the
array. One has an adatom localized in a hollow site and
one adatom localized on a bridge site. The energy per
atom for each configuration is remarkably close, in all
cases. Considerable care was taken in these computa-
tions, and all figures displayed are significant. It is intri-
guing that the energy per atom is a minimum when there
are seven adsorbates per unit cell, as realized in practice
for the Ag adlayer on Ni(100).

We have seen earlier that for N=7 the bridge site
configuration is a stable equilibrium configuration, in the
sense that all phonon frequencies are real, while the
bridge site is unstable. We see that as N increases, the
most stable structure alternates, with the hollow site
stable for N =5, 9, and 13, and the bridge site for N =7,
11, and 15.

So far, our examination of the lattice dynamics of the
adsorbate array has focused only on the gap in the pho-
non spectrum which, as we have seen can be very small,
and exhibits a strong variation with amplitude of the cor-
rugation, as described by the parameter a. We have done
this because in our two-dimensional model, the mean-
square displacement parallel to the surface is influenced
very importantly by the gap. We now turn our attention
to the phonon spectrum of the nearly incommensurate
overlayer and then to the mean-square displacement.

For the one-dimensional line, in Fig. 3 we show the
phonon spectrum for two cases, a=0.05 and 0.40. Di-
mensionless units of both frequency and wave vector are
used. The Brillouin zone is appropriate to a structure
with seven atoms per unit cell, and so each panel contains
seven phonon branches. Note the very small gap at q =0
for the lowest branch, for the case ca=0.05, while for

TABLE V. Energy per adatom and gap frequency as a function of the number of adatoms per unit
cell.

No. of adatoms
per unit cell

Energy per adatom
(reduced units X 10')

Hollow site Bridge site

Gap frequency
(reduced units X 10')

Hollow site Bridge site

5

7
9

11
13
15

2.093 409
1.997 087
2.096 928
2.217 134
2.326 183
2.419 627

2.093 599
1.997 058
2.069 32
2.217 133
2.326 183
2.419 627

2.8990
unstable
0.7768

unstable
0.1405

unstable

unstable
1.5700

unstable
0.3500

unstable
0.0466
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+=0.40 all branches have optical character, with a very
large gap even for the lowest case. As we have seen ear-
lier, o.=0.05 is small enough that the cost in energy to
slide the adsorbate line along the substrate is very small.
By the time +=0.40, the adsorbates are tightly locked
onto the substrate, and the adsorbate/substrate complex
is quite a rigid structure. Note that Fig. (3c) shows,
schematically, the relaxed equilibrium positions of the
adsorbates.

For the one-dimensional line, for a=0.05, 0.10, and
0.40, we have calculated room-temperature root-mean-
square (rms) displacements in Table VI. These are based
on xo =2.49 A, and the Ag-Ag force constant mentioned
earlier. For +=0.05 and 0.10, the rms displacements are
very large. These are so large, in fact, that harmonic lat-
tice dynamics is of questionable accuracy. An increase of
a from 0.10 to 0.40 reduces the calculated displacement
dramatically, into the range where the harmonic approxi-
mation is surely reasonable. It should be remarked that a
continued fraction technique has been used to calculate
the mean-square displacement; we find this works very
well.

In Fig. 4 we show information on the phonon spectrum

TABLE VI. Root-mean-square displacements (room temper-
ature) for the one-dimensional adsorbate array, for various cor-
rugation strenths [see Fig. 3(c)].

Atom
no. 0.05

a (A)
0.10 0.40

0.63
0.75
1.04
1.38
1.38
1.04
0.75

0.17
0.22
0.38
0.66
0.66
0.38
0.22

0.07
0.07
0.07
0.10
0.10
0.07
0.07

0 LONGITUDINAL
PERPENDICULAR

on the two-dimensional overlayer, on the corrugated sur-
face. The wave vector is directed parallel to the rows of
atoms. The very first figure, Fig. (4a), shows the phonon
spectrum calculated in the absence of substrate corruga-
tion. We have a perpendicularly polarized mode of Ein-
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FIG. 3. Phonon dispersion curves for the one-dimensional
case (a) for a=0.05 and (b) for a=0.40. In (a), the inset shows
the lowest branch near q =0 on a scale expanded by a factor of
10 scale; so the gap in the phonon spectrum is evident. Reduced
units of both frequency and wave vector are employed, and the
Brillouin zone is that appropriate to a unit cell which contains
seven atoms. In (c) we sketch the relaxed position of the adsor-
bates. Note that atom 1 is in a hollow site.

FIG. 4. (a) The dispersion relation of the longitudinal (open
circles) and perpendicular mode (solid dots) of the two-
dimensional adsorbate layer on a perfectly smooth surface. (b)
Trajectories of the principal structures in the spectral density
for longitudinal motion, for a=0. 12. (c) Trajectories of the
principal structures in the spectral density for perpendicular
motion for a=0. 12. In all cases, the Brillouin zone is that ap-
propriate to the substrate, in the absence of the overlayer.
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stein character. The frequencies of this mode are given
as solid dots. We then have a purely longitudinal mode
for the monolayer over the smooth substrate. As the
wave vector approaches zero, this becomes a true acous-
tic mode, with linear slope and frequency that vanishes in
the long-wavelength limit. It should be remarked that
the Brillouin zone chosen in Fig. 4 is that appropriate for
the substrate, in the absence of the overlayer.

Now, when corrugation is introduced, we may examine
its influence by presenting information in the Brillouin
zone used in Fig. (4a). Before we do this, we comment
qualitatively on the influence of corrugation. First, of
course, in the presence of corrugation induced "rum-
pling,

" the monolayer modes are neither purely perpen-
dicular nor purely longitudinal, but have mixed charac-
ter. We find these admixture effects are small throughout
the zone. More importantly, the corrugation mixes"
modes with wave vector q with wave vectors q+mG,
with G the reciprocal lattice vector associated with the
minizones of the actual structure. Thus, if we plot the
frequency spectrum associated with the wave vector q, we
see several contributions. One is from the "direct" mode,
which survives as the mode of wave vector q in the limit
of vanishing corrugation (the presence of corrugation
shifts its frequency, or course), and then we have contri-
butions from the waves that are "direct" modes in the
above sense of wave vector q+mG, which now contain
admixtures of motions of wave vector q, by virtue of the
corrugation induced mixing of eigenvectors.

In Figs. (4b) and (4c), for the longitudinal and perpen-
dicular spectral densities, we plot the trajectories of the
prominent features in the spectral densities, as a function
of wave vector. The full spectral densities are rather
complex, with rather substantial fine structure. We have
isolated the prominent features by plotting only those
points that corresponded to structures with peak intensi-
ty greater than a certain cutoff.

The principal effect of corrugation on the longitudinal
spectral peaks is to produce doublets, at the large wave
vectors. There is also clear evidence for "minigaps" at
the various zone boundaries. As q~0, there is now a
gap in the lowest frequency branch, but this is too small
to be apparent in Fig. (4b).

In Fig. (4c) we have a similar plot for the perpendicular
motion. The corrugation-induced alterations in the spec-
tral plot are more modest than for the longitudinal
modes. We again have a doublet structure, but these may
be hard to resolve in an experiment that offers the resolu-
tion of the measurements in Ref. 5. Indeed, in these mea-
surements, there is no evidence for such corrugation-
induced structures in the spectral density, although the
theory presented there does show that certain
corrugation-induced-mode mixings play a vital role in the
interpretation of the data.

In Table VII we show root-mean-square displacements
for the various adsorbates, in the two-dimensional 2D
overlayer, for a=0. 12. (To set the calculation up in 2D,
as a simplification, the force from the substrate on each
adsorbate perpendicular to the Ag rows was taken equal
in magnitude to that experienced by a Ag atom in the
hollow sites, parallel to the rows. ) The shear horizontal

TABLE VII. Room-temperature root-mean-square displace-
0

ments (in A) for various atoms in the two-dimensional adsorbate
overlayer, for the case where the corrugation parameter
a=0. 12. The terms shear horizontal (SH) and longitudinal (L)
refer to a direction parallel to the rows of adsorbate atoms,
which is the y direction.

Atom

x (SH)

y (L)
z (l)

o.=0.12
Bridge symmetry

0.09
0.52 (bridge site)
0.13

0.09
0.49
0.21

0.10
0.40
0.22

0.10
0.40 (near hollow)
0.13

(reckoned relative to the direction of the adlayer rows)
and perpendicular displacements are modest in magni-
tude and typical of those calculated for atoms in various
crystal surfaces. The longitudinal motions are very large
and, in fact, sufticiently large to call the results generated
by the harmonic approximation into question. This sys-
tem should be explored within the framework of molecu-
lar dynamics before quantitative conclusions can be
reached. We have such studies underway. It is clear,
however, that root-mean-square displacements parallel to
the surface are very large, for the reasons outlined earlier
in this paper.

IV. CONCLUDING REMARKS

We have investigated the energetics and lattice dynam-
ics of adlayers we refer to as nearly incommensurate, a
term defined in Sec. I. For modestly corrugated surfaces,
the discussion in Sec. II, and numerical calculations
presented subsequently show that the "lock-in" energy is
remarkably small. When the lattice vibrations of such an
overlayer are analyzed in the rigid substrate approxima-
tion, we find a very small gap in the lowest branch of the
phonon spectrums. This has the consequence that in the
harmonic approximation, the longitudinal mean-square
displacement is very large indeed.

As our corrugation strength parameter a is increased,
we find that the lock-in energy begins to increase rapidly.
The system stiffens up, and the longitudinal component
of mean-square displacement becomes rather ordinary in
magnitude. The transition between these two regimes is
gradual; i.e., when we vary the corrugation parameter a,
all properties we examine in our mean-field description
vary continuously with o.'.

The transition between the weakly and strongly locked
regimes occurs when a —=0.20. Application of our model
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to the Ag overlayer on Ni(100) suggests that for this sys-
tern, +=0.12. We are in the regime where we expect the
mean-square displacement parallel to the surface to be
large, but close to the crossover to strongly locked in be-
havior. We may expect the nearly incommensurate metal
overlayers on metal substrates will exhibit both behav-
iors, since rather modest changes in model parameters
will take us from one regime to the other.

Our results for the mean-square displacement suggest
that molecular dynamics should be used to study the
atomic motions in such systems. Also, it would be of

great interest to incorporate substrate atom motions into
the analysis. We have new studies underway with these
goals in mind.
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