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Energy shifts and broadening of atomic levels near metal surfaces
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We present calculations of the lifetime broadening and the shifts of hydrogenlike atomic levels

(ground and excited states of H, Li, Na, K, Rb, and Cs) near jellium metal surfaces (Al and Na).
The energies and widths of the atomic resonances are obtained from the Schrodinger equation with

use of the complex scaling technique; the electron potential in the surface region is calculated with

use of density-functional theory. We find that the energy shifts of the atomic levels are influenced

mainly by the properties of the surface potential close to the atom. The widths of the atomic levels,

on the other hand, depend on the surface potential in the whole surface region. We show that in or-
der to obtain accurate widths of atomic levels it is important to incorporate nonlocal effects, partic-
ularly the image potential. We also find that the widths are strongly influenced by hybridization
among the near-degenerate atomic levels. The excited atomic levels shift differently with distance
from the surface leading to multiple level crossings. At such positions the hybridization can be

strongly enhanced, resulting in states that are oriented towards or away from the surface, with very
different lifetimes that may vary in a nonexponential manner with distance from the surface.

I. INTRODUCTION

The energies and lifetimes of excited states of atoms
and molecules at or near solid surfaces are controlling
factors in many physical phenomena. For example, elec-
tron or photon radiation can stimulate desorption of sur-
face atoms if electronically excited repulsive states are lo-
calized and sufficiently long lived. ' Furthermore, the
final charge and electronic states of the species so pro-
duced will be influenced by the lifetimes of the competing
levels and the curve crossings they exhibit. Photochem-
istry at surfaces depends on the enhanced reactivity of
electronically excited species and the time the excitation
survives. The angular, velocity, charge, and electronic-
state distributions of sputtered particles depend strongly
on the lifetimes of the electronic states. In the spectros-
copy of adsorbed species, the lifetimes of excited states
contribute to the broadening of adsorption peaks. Fi-
nally, the lifetimes and energies of excited states deter-
mine the survival probabilities of excited species in the
scattering of atoms and molecules from surfaces.

Charge-transfer processes at surfaces are usually de-
scribed with use of dynamical theories based on the An-
derson Hamiltonian. ' ' The energy shifts and lifetimes
of the excited states are crucial parameters in such mod-
els. In particular, the final state of a scattered atom can
be strongly influenced by transitions that occur near the
positions where the energy of the atomic state becomes
resonant with the Fermi energy of the metal. Such cross-
ings can occur at large atom-surface separations, so in or-
der to obtain a complete description of charge transfer it
is necessary to obtain the energy shifts and lifetimes of
the levels for a broad range of distances from the surface.

In spite of the obvious importance of the dynamics of
excited adsorbate states there is relatively little known ei-
ther theoretically or experimentally about how excited
states shift and decay at surfaces. There are many
reasons for this. From a theoretical standpoint, calcula-
tions of excited-state properties are di5cult. Density-
functional theories are questionable for the description of
excited states. ' ' The conventional many-body theory
that is used for electronic-structure calculations at sur-
faces, the local-density approximation (LDA), is valid

only for small adsorbate-substrate separations and does
not apply to all distances of interest in typical atom-
surface dynamical processes. Furthermore, due to cou-

pling to the metal conduction band, excited states are as-
sociated with resonant scattering wave functions that are
not square integrable. Conventional bound-state tech-
niques are, therefore, not applicable and scattering tech-
niques must be used.

From an experimental point of view, until very recent-
ly there have been no techniques that can provide direct
measurements of lifetimes of excited adsorbate states.
Traditionally, lifetimes have been estimated by linewidth
analysis. There can, however, be other contributions to
the broadening of spectral features that have nothing to
do with the lifetime of the state and may dominate the
observed width. Recently the first direct measurements
of excited electronic-state lifetimes at surfaces have been
performed using time-resolved techniques. ' ' With the
further development and refinement of ultrashort laser-
pulse techniques it is likely that such real-time measure-
ments will be able to provide detailed information about
lifetimes of excited states at surfaces.

While at present there exists no simple computational
technique to calculate the total energy of an excited atom
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at a metal surface, it is less difficult to calculate energy
shifts and lifetimes of individual valence levels of adsor-
bates at relatively large distances from the surface (more
than 5 a.u. ). This is because the dominant contribution
to the lifetimes of the excited states at such distances is
resonant tunneling of electrons between the adsorbate
level and the surface. ' The tunneling rates are deter-
mined by the variation of the electron potential in the re-
gion separating the adsorbate from the surface. The elec-
tron potential outside a metal surface is a relatively well-
known quantity that can be calculated theoretically
and can also be probed experimentally, for instance, by
low-energy electron diffraction techniques.

There have been several theoretical calculations of the
shifts and broadening of atomic levels at chemisorption
distances from surfaces but relatively few for the
larger distances relevant for scattering or desorption pro-
cesses. Gurney calculated the shifts of atomic levels
outside a perfectly conducting metal surface. Gadzuk
and Remy calculated the shifts and also the broadening
of the ionization levels of the alkali atoms outside metal
surfaces. Both of these studies used perturbation theory,
and employed an idealized surface potential. The widths
of the adsorbate resonances, in particular, are sensitive to
the details of the surface potential, and it is important to
represent this function accurately. A more sophisticated
approach to evaluate the width of atomic states outside a
metal surface was taken by Grozdanov and Janev who
used a WKB approach to evaluate the tunneling rates.
These authors, however, used an electron potential that
diverges at the surface. In order to obtain tractable solu-
tions, they introduced parabolic coordinates with the re-
sult that the surface plane was implicitly curved towards
the adsorbate. The combination of inaccurate potential
and curved surface plane resulted in calculated level
widths that are too large. ' Another shortcoming of all
of these studies is that the hybridization of atomic levels
was not properly taken into account. As we will show
below, the mixing of nearly degenerate atomic states can
have a drastic effect on level widths.

In this paper we present a calculation of the shifts and
broadening of atomic levels in the vicinity of a metal sur-
face. We calculate the level shifts and widths directly
from the density-functional surface potential using the
nonperturbative "complex-scaling" method. The ad-
sorbate states are allowed to hybridize and mix with the
electronic states of the surface. We consider adsorbates
at physisorption distances from the surface (distances
larger than 5 a.u. from the surface). At such distances
the adsorbate-metal interaction can be adequately
modeled using the jellium description of the metal sur-
face. The jellium model represents the potential due to
the positive ion cores in a metal by a smeared out con-
stant attractive potential. The potential thus has no la-
teral variation but increases steeply to zero away from
the surface. The jellium model is appropriate for large
adsorbate-surface separations because the effects of la-
teral corrugation of the metal surface decay rapidly with
distance from the surface. The present application is
restricted to a one-electron description of the adsorbate
atomic levels. This assumption is reasonable for describ-

ing the excited states of hydrogen and alkali atoms. In
Sec. II, we present the theoretical details of the calcula-
tion. In Sec. III the results of the calculations are
presented. In Sec. IV we present a discussion of how the
surface potential influences the calculated shifts and level
widths. In Sec. V we discuss some limitations and possi-
ble extensions. In Sec. VI we present the conclusions of
the paper.

II. THEORY

In this section we outline the method of calculation.
As will be elaborated upon below, the lifetimes of the
atomic states can be obtained directly from the one-
electron potential outside the surface. In Sec. IIA we
show how we construct this surface potential and in Sec.
IIB we describe a method for solving for the resulting
resonance states. In the Appendix we give further details
about the method.

A. The surface potential

When an atom is placed outside a metal surface, the
atomic levels will shift in energy. The levels can also ac-
quire widths, i.e., broaden into resonances. The energies
of atomic states shift because the potential around the
atom is altered. The broadening of atomic states is due to
the continuum of surface electronic states into or out of
which the electrons can tunnel. In general, the farther
away from the surface an atom is, the smaller the tunnel-
ing probability because both the height and the breadth
of the tunneling barrier increases.

The surface potential is a function of both electron and
adsorbate coordinates. We use lower case letters to
denote electron coordinates (p, z) and capital letters to
denote atomic positions (Z). The z axis is directed out-
ward from the surface and measured from the surface
(jellium edge). The coordinate p indicates the radial dis-
tance along the surface from the surface normal through
the atom. Unless otherwise indicated, atomic units will
be used throughout the text. Thus distances are given in
terms of the Bohr radius and energies in hartrees. We
start by describing the interaction of an adsorbate with a
perfectly conducting metal surface. We then describe
how this interaction is modified when the surface is
modeled using the jellium description.

Consider a positive ion at a fixed distance Z from a
perfectly conducting metal surface. The resulting poten-
tial experienced by an electron is

V' (p, z;Z) = VI)(z)+ 6 V'(p, z;Z)+ V "(p,z;Z) .

The first term in Eq. (l) is the electron-surface interac-
tion, Vo(z), in the absence of the positive ion, which for a
perfect conductor is just the image attraction, —1/4z.
The second term b, V'(p, z;Z) is the change in the
electron-surface potential induced by the positive ion,
which for a perfect conductor is [(z+Z) +p ] ' ', the
repulsion between the electron and the negative charge
induced in the surface due to the positive ion image. The
third term V "(p,z;Z) is the direct electron-ion interac-
tion, which for a proton is just —1/r; i.e.,
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[(z —Z) +p ]
' . Thus for a hydrogen atom outside a

perfect conductor, Eq. (2.1) becomes

V' (p, z;Z)=— 1 1

[(z+Z) +p ]'
1

[(z Z)2+~2]&/&
(2.2)

The total potential for a neutral atom near a metal sur-
face contains one additional term, the attractive interac-
tion of the positive ion core with the surface, which for a
proton near a perfect conductor is the attractive image
potential —1/4z. This term does not affect the ionization
energies or lifetimes of electronic levels, the quantities we
calculate here, and so it is neglected in Eq. (2.1). It would

need to be included to calculate total interaction energies
of atoms with surfaces.

Figure l(a) shows the first two terms of Eq. (2.1) for a
perfectly conducting surface. The dashed curve is the
electron-surface potential Vo(z), i.e.,

—1/4z. The dotted
curve is b, V'(p, z;Z)=[(z+Z) +p ] '~ for a positive
ion fixed at a distance Z =10ao from the surface. The
solid curve is the sum Vo+hV', i.e., the total electron
potential excluding the direct electron-ion interaction.
Note that even with this simple classical potential a po-
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FIG. 1. In (a) we show the surface potential outside a perfect-
ly conducting metal surface. The dashed line is the bare surface
electron potential. The dotted line is the electron-core image
potential for a proton placed at a distance Z =10, and p=0.
The total potential is drawn with the solid line. In (b) we show
the surface potential outside a realistic metal surface (jellium
approximation with r,. =2). The dashed line is the bare surface
potential calculated using density-functional theory. For com-
parison, the bare surface potential as obtained using the local-
density approximation as also plotted (dashed-dotted line) ~ The
dotted line is the proton induced image potential. The solid line
is the total density-functional potential.

tential energy barrier between the surface and the atom
arises (solid curve). This barrier will reduce electron tun-
neling rates considerably. In addition, the sum of the
electron-electron image and electron-core image interac-
tions at a point very near the ion core is a net repulsive
interaction of magnitude 1/4z. This results in an upward
shift of the electron levels with a corresponding reduction
of the ionization potential. This upward shift of an elec-
tron level should not be confused with a total interaction
potential. The attractive interaction between the core
and the image core [neglected in Eq. (2.1) as discussed
above] compensates for the shift in the electron level and
the total static interaction potential approaches zero for a
neutral atom at large distances. Due to the image
charges, the adsorbate orbitals become slightly polarized
and an attractive interaction results. This is the van der
Waals interaction and its magnitude decays as Z

For the interaction of an affinity level of an atom (i.e., a
negative ion state) and a perfectly conducting surface the
situation is very different. The core of the atom is neutral
and there is no electron-core image repulsion. In this
case, the affinity level shifts down by the electron-electron
image interaction. Affinity levels therefore follow the
surface potential and become stabilized at surfaces. Since
there is no electron-core image barrier to prevent tunnel-
ing between the surface and the atom, affinity levels can
be very broad.

The image approximations to Vo(z) and b, V'(p, z;Z),
Eq. (2.1), are not adequate for small or intermediate
values of z. The image approximation to Vo(z) diverges
at small z, whereas the true potential should approach
that of the bulk. In order to more accurately represent
these potentials, we invoke the usual jellium approxima-
tion for the surface. We employ for Vo(z) the density-
functional (DF) electron-surface potential computed by
Ossicini et al. , employing the "weighted density ap-
proximation" suggested by Gunnarsson et al. Alterna-
tive density-functional calculations of Vo(z) have been re-

ported. ' These are quantitatively very similar to the
Ossicini potential we have employed, and the use of one
of these alternatives would have had essentially no
influence on our results. All of these potentials correctly
approach the image potential at large z, and smoothly ap-
proach the bulk potential for negative z, as shown by the
dashed curve of Fig. 1(b). In contrast, potentials calcu-
lated by the conventional local-density approximation
(LDA) are not adequate because they do not approach
the image potential at large z. The LDA assumes that
the exchange-correlation part of the electron potential at
a point is determined by the local electron density at that
point. This approximation neglects nonlocal interactions
such as the image force, and is, therefore, valid only close
to the surface. The difference between LDA and DF is
significant and gives rise to marked differences in the lev-
el broadening at physisorption distances from the surface.
In Sec. IV these differences will be discussed further.

In Fig. 1(b) we plot the LDA and the DF electron po-
tentials outside a jellium surface. The potentials for the
bare surface look very different from those in Fig. 1(a).
The major reason for this is that the conductivity of a
real surface is finite and the surface charges will be distri-
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6 V'(p, z; Z) = b, V"(p,z; Z) . (2.3)

We approximate the induced surface charge distribution
responsible for the first term of Eq. (2.2) with a smeared
surface charge density

1
cr(p', z', Z) = —e ' ' cr,{(p',Z —zo)v'g (2.4)

where o.,] is the classical surface charge electron density
for an infinitely conducting metal with a proton at dis-
tance Z —zo from the surface. z' is the distance from the
image plane, 5 is the thickness of the surface charge dis-
tribution, and p' is the radial distance from the surface
normal. The change in the electrostatic part of AV' is
then evaluated using Poisson's equation:

buted in a thin region around the selvedge. At large38

distances from the surface the DF potential is imagelike.
The potential is slightly changed compared to the per-

fectly conducting surface in Fig. 1(a) and has the form
—' /(z —zo), where zo is an effective image plane located at
4

the center of gravity of the induced surface-charge distri-

bution. The values of zo typically lie slightly outside the

surface. In contrast, the LDA surface potential van-

ishes exponentially outside the surface and there is no im-

age contribution.
At a closer distance, the electron starts to overlap with

the surface-electron density. As a result the electron is
not entirely separated from its exchange-correlation hole
and the image potential saturates close to the surface. In
this region the surface potential also contains an electro-
static dipole contribution, that arises from the fact that
the electron distribution is spread out around the sel-
vedge. At these smaller distances the differences between
LDA and DF become negligible.

The image approximation for the ion-induced potential
b, V'(p, z;Z) is also adequate. The proton induces a nega-
tive image charge distribution in the selvedge. This
charge distribution will give rise to both an electrostatic
potential outside the surface (electron-core image repul-
sion) and also change the exchange-correlation potential
close to the jelliurn edge. Thus

p„,(.n) = [nE„,(n)),= d

4 1

0.458

S

0.44
r, +7.g

(2.7)

(Xq

2(r +d )
(2.8)

where n is the local electron charge density. The poten-
tial b, V'(p, z;Z) calculated as outlined above for r, =2 jel-
lium, p=0, and Z =10ao is shown by the dotted curve of
Fig. 1(b). The parameters b, and zo that were used for cr
in the calculation are listed in Table I. The vertical ar-
row in Fig. 1(b) indicates the magnitude of the reduction
of b, V'(p, z;Z) resulting from the exchange-correlation
correction, Eq. (2.5). It can be seen that this is a rather
small correction to the surface potential.

Our procedure for calculating hV' is approximate.
Ideally one would like to calculate AV' self-consistently.
Even for a jellium model within the nonlocal DF approxi-
mation this represents a formidable task and to our
knowledge has not been done. The AV' term, however,
varies rather slowly with z and has a relatively minor
effect on the resonance energies. Our linear response ap-
proach is therefore adequate. In Sec. V we will further
discuss the validity of this approximation and present
some error estimates.

This completes presentation of our prescription for
computing the quantities Vo(z) and b, V'(p, z;Z) of Eq.
(2.1). The complete one-electron potential thus requires
only specification of the direct electron-ion potential,
V "(p,z;Z). As discussed above, for the hydrogen atom
V"(p,z;Z) is simply the Coulomb interaction
llr =[(z —Z) +p ]

'~ . For alkali atoms we approxi-
mate V "(p,z; Z) by pseudopotentials developed by Bards-
ley. These angular momentum ( I) dependent potentials
have the form

I CXd
V (r)= A&r exp( g&r~)—p I 2(r2+d )2

Vel( Z) = —(z'/5 l
dz'

p7
[p +(Z+z —z') ]'

(2.5)

The parameters d, a„,a~, A{, and g& are listed in Table
II.

B. Solution of the Schrodinger equation

The image charges are induced close to the surface,
where the nonlocal exchange-correlation potential closely
resembles the LDA result. We can therefore use the
LDA methodology and parameters to calculate the
change in the exchange-correlation part of the surface
potential 6V". Thus we employ the local-density expres-
sion

An electronic state of an atom or molecule in the vicin-
ity of a solid surface may have a finite lifetime with
respect to resonant decay into a continuum of states of
the solid, i.e., these states may be decaying resonance
states rather than true bound states. Indeed, calculation
of the lifetimes of such states is a primary objective of the
present work. In the one-electron model employed here,

b, V"'(p, z, Z) =p"'[no(z)+ cr (p, z, Z)] —p"'[n ~(z)], (2.6)
TABLE I. Parameters 6 and zo used in the evaluation of

cT{p,z, Z) [Eq. {2.4)].

where no(z) is the bare surface electron density. Fol-
lowing Ref. 38 we use the corrected form of Wigner's ex-
pression for the exchange-correlation energy p„,

zo (a.u. )

0.85
0.4S

5 (a.u. )

1.74
2.25
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TABLE II. Pseudopotential parameters (a.u. ) for alkali-metal atoms as defined in Eq. (2.8) in the text.

CXd

CXq

d
I,.

„

Ai
A2

A3

ko

k

Li

0.1925
0.112
0.75
2
6.013668

—0.740 679
—0.067 342

1.293 213
1.410 279
0.8

0.945
5.0
F 1
2

10.281 59
2.692 467

—1.452 763

1.294 506
0.681 447
1.0

5.47
41.5

1.5
2
9.568 369
2.897 295

—3.916641

0.709 742
0.363 969
0.748 353

Rb

8.966
102.0

1.95
3

17.295 03
2.851 747

—1 ~ 553 162
—1.380 882

0.746 748
0.295 391
0.387 761
0.436 382

Cs

15.0
230.0

2.0
3

14.767 32
2.960 707

—0.399 982
—1.943 567

0.541 614
0.232 594
0.193 225
0.367 542

any atomic state with energy above the bottom of the jel-
lium conduction band can decay by resonant tunneling
into the conduction band, and is thus a resonance state.
In order to obtain the energies and widths of the reso-
nance states we employ a technique called complex scal-
ing or "dilatation transformation. " ' This technique has
been used extensively in atomic physics to calculate reso-
nance lifetimes both for free atoms and for atoms in
external fields. The advantage of this method is that res-
onance states, which are formally scattering or continu-
um states, can be computed using bound-state techniques,
i.e., using a set of square integrable basis functions.

A simplistic description of the wave function + of a
resonance state is

sly(t) =exp( iEt/fi)%(t =—0),
where the eigenenergy E is complex:

(2.9)

(2.10)

ik .r+k r
%(r) e-' f (L2) as r~ oo . (2.11)

Complex scaling is a procedure for transforming the orig-
inal Hermitian Hamiltonian into a non-Hermitian Hamil-
tonian which exhibits square integrable eigenfunctions
with complex eigenvalues.

The procedure, as we implement it here, is as follows:
the coordinate r designating the position of the electron
relative to that of the ion core is "rotated" into the com-
plex plane by an angle 0, 0 & 0 & m. /2:

rare io (2.12)

The rotated Hamiltonian is obtained simply by every-
where substituting re' for r. H(8) is then given by

E„and I are the real and imaginary parts of the energy,
respectively. Thus 'p(t) decays in time with a lifetime
(21 ) '. Our objective is to compute both the energy E„
and the width I as a function of the distance of the atom
from the surface for the electronic states of interest. A
Hermitian Hamiltonian, however, can produce only real
eigen values for square-integrable eigenfunctions. The
desired complex roots are associated with eigenstates ex-
hibiting so-called Siegert (diverging) boundary condi-
tions:

H(8)=H(re' )

=e ' +V(re' ) .
g2

2
(2.13)

Upon this rotation the resonance boundary conditions
take the form

For 8& arctan(ktlk„), this is transformed into a bound-
state boundary condition. Formal aspects of the
complex-scaling approach have been examined in depth
and it has been shown rigorously that, for a class of po-
tentials ("dilatation analytic" ) V(r), this mathematical
transformation has the following consequences. (1) The
bound-state eigenvalues of H (8) are identical to those of
the original Hamiltonian H. (2) The scattering thresholds
are unchanged by this transformation. (3) Complex ei-
genvalues of H(8) may arise corresponding to square-
integrable eigenfunctions. It is the latter that are associ-
ated with resonance states, with real and imaginary
eigenenergies, E~ and I /2, with the same meaning as in

Eq. (2.9). Thus by performing the complex rotation on
the Hamiltonian, we can obtain both bound and reso-
nance states via the same calculation using only square
integrable basis functions. The advantage of simpler
boundary conditions is at the expense of having to deal
with a non-Hermitian complex Hamiltonian. This
lengthens the computation time somewhat, but is not a
serious problem.

In this application we solve the one-electron
Schrodinger equation by expanding the wave function in
a basis consisting of generalized Laguerre polynomials:

—kr/2 l +)L 2l +2(g ) Ir (II) (2.1S)

where k is a parameter that can be used to optimize the
basis. For each angular momentum quantum number l,
we include n(l) radial functions. The basis set is thus
specified by a vector (n (0), n (I), . . . , n (1,„)).Typical
values of l,„employed were 15 and n (I) ranges from 10
to 40.

The matrix elements of the complex Hamiltonian are
easily evaluated and the Schrodinger equation is convert-

& i kk cos8+ k& siln8)r +(k&cos8 —
k& sin8)r%r —e " ' ' ' ' " f(Q)asr~oo.

(2.14)
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ed into a matrix equation which is solved by direct diago-
nalization. This task is computationally quite fast, even
for the largest basis sets employed. The details of the
procedure are elaborated in the Appendix.

If the basis set is large enough to be essentially com-
plete, the method approaches the formally exact result.
The resonance energies and widths will be independent of
6 as long as 0 is large enough to "expose" the resonance
[8)arctan(kl/k„)]. In practice, a limited basis must be
used and both the real and imaginary part of the reso-
nance energies will vary slightly with 0. The eigenvalues
wil1, therefore, form trajectories in complex coordinate
space. The 8 dependence of the resonance eigenvalues in-
troduces some uncertainty in the results, but also pro-
vides an estimate of the error introduced by the use of a
limited basis. It has been shown that under certain con-
ditions the complex energies satisfy a generalized varia-
tional principle, such that, with a limited basis, the true
resonance energy will be stationary with respect to 0.
Using this criterion the resonance eigenvalues can be ob-
tained directly from the stationary points of the eigenval-
ue trajectories. In Fig. 2 we give examples of complex en-

ergy trajectories for one of the hydrogen n =2 resonances
for different choices of basis sets. Each figure contains
ten dots representing 8 varying from 0.15 to 0.6. For
Figs. 2(a) and 2(b), we used a basis set containing 49 basis
functions, n =(7,7, 7, 7, 7, 7, 7). For Fig. 2(a) A, =0.66667
was used. It can be seen that the real and imaginary
parts of the resonance energy vary relatively strongly
with 8. In Fig. 2(b) the value A, =1.0 was used. This
choice of k corresponds to the correct wave function for

the n =2 states of a free hydrogen atom. It can be seen
that the 0 trajectory for this choice of basis is much more
confined. In Fig. 2(c), a slightly larger basis set is used
n =(8,8, 8, 8, 8, 8, 8, 8) and A. =0.66667. This larger basis
set reduces the 0 variation considerably compared to Fig.
2(a).

For Fig. 2(d) we used the larger basis set with the more
appropriate A, = 1. Here the 6I trajectory is very compact,
and the resonance energy can be obtained to three
significant digits. Increasing the size of the basis further
confirms the results from Fig. 2(d). Thus for this one-
electron application the method is very eScient. Even
with a modest set of 49 basis functions the resonance en-

ergy and lifetime can be obtained to two significant
figures. Increasing the basis set and verifying conver-
gence does, ho~ever, serve as a valuable check that the
correct resonance eigenvalue has been obtained. The cal-
culations described below were typically performed with
225 basis functions, and we are confident that the accura-
cy of the results is better than three significant figures.

III. RESULTS

In the following section, we present results of calcula-
tions of the energies and lifetimes of atomic electron
states in the vicinity of jellium surfaces. In Sec. III A we
discuss hydrogen on different surfaces. Hydrogen is the
simplest of all adsorbates and it is a true one-electron
atom. In Sec. III 8 we give results on alkali atoms on jel-
lium. For the alkalis, we employ a pseudopotential to re-
move the core electrons and reduce the alkalis to approx-
imate one-electron atoms as well.

0- (o) 49 (b) 4eafn
X, ~ I.O A. Hydrogen

0.90—

o 080
OJ

I, ops

)0 (C) 64 bfn

~= 2/5
0.65

(d) 64bfn
) =&,0

0.85—

0.65
0.15

0.80—
I I

0.$055 0.1060
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I I

0.1055 0.1060

FIG. 2. Examples of trajectories of the resonance eigenvalues
as functions of rotation angle 0. The calculation refers to one of
the H (n =2) resonances for H/Al at z =10. (a) shows trajec-
tories with a small basis set. In (b) we show trajectories for a
larger basis set. (c) uses the same basis as in (a) but with 1=1.
In (d) we show the trajectories using k= 1 and a large basis.

In a previous publication ' we presented results for the
level shifts and broadening for a hydrogen atom in the vi-
cinity of r, =2 (Al) and r, =4 (Na) jellium surfaces. Here
some additional results are presented. One of the charac-
teristic features of a hydrogen atom interacting with a
metal surface arises from the degeneracy of hydrogenic
states. The surface potential lifts the degeneracy and
causes the hydrogen states to hybridize and mix with
each other. This is illustrated in Fig. 3, where we show
how the real and imaginary part of the lowest hydrogen
levels vary with distance from an Al (r, =2) surface. The
real parts of the hydrogen states show a somewhat com-
plicated variation with distance. The hydrogen-surface
interaction results in the formation of hybrid states simi-
lar to "Stark states. " These hybridized states form at
large distances from the surface since an infinitesimal
linear component of the surface potential is sufhcient to
lift the asymptotic degeneracy of the states. For the
n =2 states, the symmetry of the surface allows the 2s
state to interact with only the 2p, state within the n =2
manifold. The Stark states 2s+2p, and 2s —2p, then
form. In the upper part of Fig. 4 we show schematically
what these states look like. The orbitals are oriented
away from and towards the surface respectively. The 2p„
and 2p states do not mix.

At smaller atom-surface separations, the hybridization
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of the states becomes more complicated, and additional

mixings with surface electronic states occur. There are
several level crossings, as shown in Fig. 3. A rough un-

derstanding of why the crossings occur can be obtained
from the following arguments: The full electron-surface
interaction is attractive at large distances from the sur-

face and repulsive at short distances. The electron densi-

ties of the 2s —2p, and 2s+2p, hybrids are shifted to-

ward and away from the surface, respectively, and the

2p state is centered on the proton. Thus, as the atom

approaches the surface from a large distance, the 2s —2p,

5 +p
z

FIG. 3. Calculated energy shifts and widths for hydrogen on

A1. In the left part of the figure, the real part of the energy is

shown. The n =1 state has been shifted 0.35 a.u. upward in en-

ergy. The solid curves are the m =0 states. The dashed curves

are the m =1 states. Distances are in a.u. measured from the

jellium edge and energies in Hartrees.

is most attractive. At shorter distances this same state
exhibits the strongest repulsion due to overlap with the
surface electron cloud. Thus crossings must occur as
shown in Fig. 3. We note that for the complex non-
Hermitian Hamiltonian that results from the complex-
scaling procedure, the "noncrossing" rule does not apply.
Not only can the real parts of the energies of states of
different symmetry be equal, but so can those of the same
symmetry. Thus the real parts of the energies can exhibit
actual crossings or avoided crossings, and we observe
both in the examples below. Since it is diScult to deter-
mine whether numerical curves actually cross or are
avoided by a tiny amount, we will simply refer to cross-
ings as all cases for which the curves approach to within
the precision of the calculation, about 10 a.u.

While there are relatively small differences in the real
parts of the energies of the different hybridized states,
their corresponding lifetimes are extremely different.
This is because the widths are determined by electron
tunneling between the hydrogen and the surface. Since
tunneling rates are exponential functions of the distance,
there will be a large difference in the tunneling rate de-

pending on whether the orbital is oriented towards the
surface, parallel, or away from the surface. Figure 3
shows, as expected, that the state pointing towards the
surface has the largest width and the state oriented away
from the surface is most narrow.

The n =3 levels are also plotted in Fig. 3. The n =3
state is asymptotically ninefold degenerate. The surface
potential lifts the degeneracy, producing six distinct
states (three nondegenerate m =0 states, two doubly de-
generate m = 1, and one doubly degenerate m =2}.
Curve crossings are exhibited by these states as well. The
lifetimes of the various hybridized orbitals differ even
more than for n =2. This is due to the increasing possi-
bilities of hybridization when an extra state is added.
The most longlived of the n =3 states has almost as long
a lifetime as the most longlived of the n =2 states in the
depicted region.

B. Alkali atoms

S + dz2

S —dz&

p+d, a
z

p —da
z z

FIG. 4. Schematic illustration of the surface hybridized

states. The 2s and 2p, states hybridize and form 2s+2p, and

2s —2p, states. We also show a schematic representation of the

states resulting from s-d and d-p hybridization.

We now present results of calculations for the alkali
atoms (Li,Na, K,Rb,Cs) near r, =2 and r, =4 jellium sur-

faces. The only change from the H atom calculations de-
scribed above is the replacement of the —l/r Coulomb
potential by pseudopotentials as discussed earlier. One-
electron calculations using these pseudopotentials repro-
duce the energies of the ground state and the lowest few

excited states for the atoms in vacuum with very high ac-
curacy. Furthermore, they have been successful in calcu-
lations of the binding of alkali dimers, suggesting that not
only the energies but also the resulting wave functions are
quite accurate. The pseudopotential depends on angu-
lar momentum, I, and the matrix elements are evaluated
using complex basis functions as outlined in the Appen-
dix.

In Figs. 5 —9 we present calculations of the energies
and the shifts of the ground and lowest excited alkali
atom states in the vicinity of a r, =2 jellium surface, i.e.,
aluminum. We will discuss each figure separately but we
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FIG. 5. Calculated energy shifts and widths as a function of
atom surface separation for the I =0 states of Li/Al. Dis-
tances are in a.u. measured from the jellium edge and energies
in hartrees. States are labeled by their asymptotic limits.

FIG. 8. Calculated energy shifts and widths as a function of
atom surface separation for the m =0 states of Rb/A1. The
units and notations are the same as in Fig. 5 ~

wi11 start with some general comments. The application
to alkali atoms shows some distinct new features com-
pared to hydrogen. A fundamental difference is that in
the alkalis the different angular momentum states for the
same principal quantum number, n, are asymptotically
nondegenerate. The hybridization of the atomic levels
with the surface is, therefore, normally much less exten-
sive than in the case of hydrogen. The excited levels of
the alkalis are, however, relatively closely spaced in ener-

gy. Due to the differences in spatial extent of the atomic
orbitals, the energies can shift differently. Because of
these facts, there are several possibilities for curve cross-
ings and avoided crossings. In the vicinity of these cross-
ing points, atomic states of the correct symmetry can hy-
bridize strongly. In the case of s- and p-level crossings,
the resulting states will be similar to the Stark states. We
also encounter s-d and p-d hybridization. This also leads
to orbitals that are oriented away from or towards the
surface. In Fig. 4, we show a schematic plot of some of
the different hybrid orbitals that are encountered. As
was the case in the hydrogen problem, the lifetimes of
such surface hybridized states can be drastically different
from each other and from those of the parent unhybri-
dized states.

The surface potential is a rather complicated function
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FIG. 6. Calculated energy shifts and widths as a function of
atom surface separation for the m =0 states of Na/Al. The

units and notations are the same as in Fig. 5.
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FIG. 7. Calculated energy shifts and widths as a function of
atom surface separation for the m =0 states of K/Al. The units

and notations are the same as in Fig. 5.

FIG. 9. Calculated energy shifts and widths as a function of
atom surface separation for the m =0 states of Cs/Al. The
units and notations are the same as in Fig. 5.
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of the electron and ion core coordinates. The shifts and
broadening of the atomic levels reflect the complexity of
the potential and it is difficult to give a detailed account
of how the resonances behave as function of atom-surface
separation. It is appropriate, however, to state some gen-
eral observations.

All states eventually shift upwards to higher energy
(lower ionization potential) with smaller atom-surface
separation. The magnitudes of the shifts are different for
the different states and basically are determined by two
effects. The spatial extent of the orbital determines how

rapid the upshift will be. A large orbital averages the
surface potential over a large region and, therefore, shifts
more smoothly with distance than a compact orbital
which basically will follow the image potential. The same
trend also applies to the variation of the widths with dis-
tance. The other factor that influences how the reso-
nances vary with distance is the orientation of the atomic
state. The energies of the states for which the electron
density is shifted towards the surface will vary faster with
distance than states that are oriented parallel to or away
from the surface. This is because it is the electron-core
image repulsion that is primarily responsible for the up-
shift of the electronic states. The potential is largest in

the direction towards the image core, i.e., towards the
surface. The states that are oriented towards the surface
also have larger widths than states that lie along or away
from the surface. As we discuss Figs. 5 —9 separately, we
will see that the energy shifts of the alkali levels are rela-
tively smooth functions of distance. The widths, on the
other hand, show a much more complicated behavior,
due primarily to changing degrees of hybridization.

In Fig. 5 we show the lowest energy m =0 states of Li.
The 3p, and 3d 2 states are asymptotically very close in

energy and are fully hybridized in the depicted region
(Z &32 a.u. ). The p and d hybridization results in two
states, schematically depicted in Fig. 4. One state p +d is
oriented towards the surface and the other, p —d points
in the vacuum direction. The state oriented towards the
surface and has a shorter lifetime and crosses the p —d
state since it shifts faster with distance.

In Fig. 6 we show the variation with distance of the
lowest Na levels (rn =0). The 3d 2 and 4p, levels are well

separated at the largest distance. The 3d state shifts
slightly faster than the 4p level and at a distance of
around 15 a.u. , the states start to hybridize analogous to
the 3p and 3d levels of Li. The energies of the two states
are clearly separated. The hybridization has a dramatic
effect on the resonance widths as a function of distance,
producing a distinctly nonexponential decay of width
with distance from the surface. The p-d hybridization
produces states that have their weights shifted towards or
away from the surface. The state correlating asymptoti-
cally with 3d forms the hybrid that is shifted towards the
vacuum. The width of this state is dramatically reduced
since the part of the 3d function oriented toward the sur-
face is largely cancelled. The state correlating with 4p
becomes the hybrid that is oriented toward the surface.
The width of this state increases more rapidly in the vi-
cinity of the curve crossing since the surface oriented
part of the state gets more weight.

In Fig. 7 we show the lowest m =0 states for K. The
3d 2 and 5s states are initially relatively far apart and the

states are not hybridized. As the atom approaches the
surface, the Ss state shifts more than the 3d and the states
approach each other. At Z =17 a.u. there appears to be
a crossing. The hybridization is relatively weak and re-
sults in an extended state, s+d, and a compact state
s —d, as illustrated schematically in Fig. 4. Again, the
hybridization has a large effect on the lifetimes of the lev-
els. This effect can be seen most clearly by considering
the slopes of the curves of the level widths as a function
of distance. After the hybridization the width of the 3d
state increases much more slowly with decreasing dis-
tance than before the interaction. The width of the 5s in-
creases faster with decreasing distance.

In Fig. 8 we show the lowest m =0 states for Rb. The
6s and 4d 2 levels do not significantly hybridize at large

distances. The 4d level shifts faster with distance than
the 6s level and at 18 a.u. the states come relatively close
to each other and start to interact. The s-d hybridization
results in an extended state with relatively short lifetime
and a compact state with longer lifetime. For Rb the hy-
bridization is very large and the state that is derived from
the 4d actually reduces its width as the surface is ap-
proached. The 6s state increases its width more strongly
than in the absence of the interaction. The energy levels
do not cross each other but follow each other closely.

In Fig. 9 we show the variation with distance of the en-
ergies of Cs m =0 states. The 7p, state shifts faster than
the 6d & state, and at Z =22 a.u. , the states come close to
each other. The hybridization is weak and there appears
to be a crossing of the levels. The widths of the states
change slightly as a result of the hybridization. At Z =8
the Sd 2 and the 6p, levels come close to each other. The

hybridization is rather weak but can clearly be detected
from the change of slope of the widths as a function of
separation from the surface.

IV. THE ROLE OF THE SURFACE POTENTIAL

In this section we investigate in some detail how the
widths of the atomic resonances are influenced by the
surface potential. We start by noting that the real and

the imaginary parts of the resonance energies are sensi-

tive to different parts of the surface potential. From per-
turbation theory it is known that the shift of an atomic
level depends primarily on the overlap between the atom-
ic state and the potential, i.e., the shift depends mainly on
the potential in the region where the electron density is

large. The width, on the other hand, is determined by
tunneling of an electron between the atom and the sur-

face. The WKB expression for the tunneling current be-
tween two points involves an integral of the potential
over the region between the points. The width of the res-
onance is thus sensitive to the variation of the surface po-
tential in the entire region between the adsorbate and the
surface. The use of different prescriptions for obtaining
the potential is the primary source of discrepancy be-

tween the present work and previous calculations.
%'e now illustrate these points with some examples. In

Fig. 10 the widths of the Li 2s state as a function of dis-
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FIG. 10. (a} Calculated width of the Li 2s resonance as a
function of distance from an Al and a Na substrate. (b} The
bare surface potential Vo(Z} for an Al and a Na substrate. The
atomic potential is schematically indicated with a dashed line.
The energy of the Li 2s state is also indicated. All units are in

a.u.

tance on two different substrates, Al and Na, are plotted.
It can be seen that the lifetime of the Li 2s level is shorter
on Al. This can be understood directly from the
difference in the surface potential between these sub-
strates. For the argument it suSces to consider only the
bare surface potential. There are also some differences in
the repulsive electron-core image potential, since the lo-
cation of the image plane and the width of the induced
charge distribution, 5, are different on Al and on Na.
Since the variation of b, V (p, z, Z) with z is relatively
smooth, these differences are relatively minor. In the
lower part of Fig. 10 the bare surface potential Vo(z) is

plotted for Na and Al. Na is a low-electron density sub-
strate with a rather extended surface potential. The sur-
face potential Vo(z) for Al varies much faster and is more
confined to the surface. From the WKB approximation
it is clear that the widths of the atomic resonances de-
pend strongly on the breadth of the potential barrier be-
tween the adsorbate state and the surface. These
breadths l~~ and lN, between the Li and the two different
metals are also indicated in the figure. As can be seen in

Fig. 10, due to the fact that the surface potential varies
more gradually for Na, the breadth of the barrier IN, is

larger. Thus the width of the Li 2s level is smaller for Na
than for Al.

In Fig. 11 we show the shifts of the lowest hydrogen
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FIG. 11. Variation of the real part of the lowest excited H

levels with distance from the jellium edge. (a} is for H on r, =2
jellium (Al} and (b) is for H on r, =4 jellium (Na}. The units and

notations are as in Fig. 4,

V, k is the perturbation matrix element between the level

~a ) and the states ~k). At any given energy s there are
in general more states k with ck=c. in a large bandwidth
metal such as Al than on Na. Thus, since this dominates
the difference between the V, k.„twill be larger on Al
than on Na.

A straightforward application of the golden rule to the
calculation of atomic-level broadening is, however, not
possible, except at very large separations from the sur-
face. When the adsorbate state is introduced, the metal
states must orthogonalize to the atomic wave function.

states as a function of distance outside an Al and a Na
surface. From the figure it can be seen that the energy
shifts are very similar. This is due to the fact that at
Z ) 5 a.u. the potential outside Al and Na is fairly similar
(see Fig. 10), and basically determined by the image in-

teractions. Since the shifts of atomic levels depend main-

ly on the potential in the region of overlap with the atom-
ic wave function, both metals will induce roughly the
same shift. Also in this situation the width of the H reso-
nances will be much larger for H/Al than H/Na. This
fact is most clearly seen by considering the n = 1 state. H
(n =1)/Na has zero width while for Al this resonance
can be very broad (see Fig. 3).

The result that electronic levels of atoms at physisorp-
tion distances are broader on Al than on Na is not obvi-
ous and in direct contradiction to what has been found
using approximate methods. Al has a higher work
function than Na so the electron distribution is more
confined to the surface for Ai. One might, therefore,
have expected lower tunneling rates outside Al surfaces.
Tunneling is, however, a resonant process and to describe
the process one must take into account both the spatial
and energy distributions of the states. The golden-rule
expression for the broadening of a discrete level ~a ) in-

teracting with a continuum of states ~k) is

(4.1)
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FIG. 12. A comparison of the widths for the three H (n =2)
resonances as a function of distance outside an Al surface using
different many-body descriptions. The solid lines are the results
using DF theory. The dashed lines are the results obtained us-

ing LDA theory and the mean-field approximation. The dotted
lines are the results obtained using the LDA but including the
electron-core image repulsion. To distinguish between the
different H (n =2) states their orientation is schematically indi-
cated on each figure. All units are in a.u.

This orthogonalization perturbs the metal states
significantly and the unperturbed metal states are un-

suitable for a perturbation expansion of the bare
adsorbate-metal potential. The present approach of solv-
ing the Schrodinger equation includes these effects and
preserves the orthogonality of the atomic and the surface
(nonresonant scattering) electronic states.

An important consequence of the fact that extended
surface potentials will give rise to smaller broadening of
physisorbed atoms is that calculations using LDA will
overestimate the widths of atomic resonances. As was
depicted in Fig. 1, the LDA surface potential rises more
steeply towards the vacuum than the DF potentials
which include the image forces. In Fig. 12 we compare
the widths of the H (n =2) resonances on an Al surface
modeled using zo and Vo(z) calculated in the present
nonlocal approximation (solid line) and in the LDA (Ref.
21) (dotted line). It can be seen that calculations using
the LDA description overestimate the widths of the
atomic states. At a distance of 7 a.u. the 2s+2p, state
which is oriented towards the vacuum is 50% broader us-
ing LDA than with the DF description of the surface po-
tential. The 2s —2p, states that are oriented towards the
surface differ by less than 10%%uo. This is because LDA
gives a good description of the surface potential close to
the selvedge.

As was mentioned in Sec. II A, the total surface poten-
tial for the ionization level of a H atom contains two
parts, an attractive electron-electron image interaction
and a repulsive electron-core image interaction. In calcu-
lations based on a mean field approximation such as the
local-density approximation, ' " one does not distinguish
between the different contributions to image charges but
considers only the electrostatic interaction between the
atom and the surface. In the case of a neutral adsorbate
the electron-core image interaction is not included and
there is no repulsive barrier between the adsorbate and
the surface. This leads to too large a width for the atom-

ic levels. The dashed curves in Fig. 12 are the widths of
the H (n =2) states calculated using LDA with neglect of
the electron-core image repulsion. LDA in the mean field
approximation can thus overestimate level widths for
neutral atoms far from the surface by up to a factor 4.
With decreasing atom-surface separation the atomic
wave function starts to overlap with the surface wave
functions. Close to the surface the electron-core image
repulsion will be included and the level widths thus calcu-
lated properly. These facts show that the variation of
neutral atomic level widths with distance will be underes-
timated using the LDA. These arguments could be a pos-
sible explanation for the finding by Lang et aI. that the
widths of the ionization levels of noble gas atoms phy-
sisorbed on metals seems to be only weakly dependent on
atom-surface separation.

V. DISCUSSION

There is mounting experimental evidence that cal-
culated excited state lifetimes reported previously are too
short. Our present demonstration of much longer life-
times for electronic states at surfaces means that reso-
nance tunneling charge transfer must occur somewhat
closer to the surface than previously believed. It also
means that there will be much more "memory" of the ini-
tial configuration in the final state of a particle emerging
from a surface than what has been assumed. For in-
stance, in scattering experiments, the final state can be
more strongly affected by processes that occur at the im-

pact of the particles with the surface. In the region close
to the surface the adsorbate levels can be strongly
affected by various physical effects such as adsorbate-
substrate hybridization and promotion, and estimates of
level shifts based only on the image potential will not be
accurate.

In a recent experiment ' the neutralization rate of al-
kali ions scattered from a cesiated tungsten surface was
studied. It was shown that the conventional theories for
charge exchange in atom-surface reactions using previ-
ously published (short) lifetimes fail to explain the data.
The consequence of short lifetimes for such a process is
that as soon as the work function becomes smaller than
the ionization energy, neutralization can occur with high
probability. This leads to an approximately steplike be-
havior in the neutralization efficiency as a function of
work function. The experiment revealed a relatively
smooth variation of the neutralization efficiency with
work function. In a recent publication it is shown that
the data of the experiment is in accord with the longer
lifetimes calculated in the present paper, provided that
the effects of memory and local fields are included.

In a recent sputtering experiment on metal surfaces the
velocity distribution of excited metal atoms was deter-
mined. The experimental results show that excited met-
al atoms with low velocities can be detected. This finding
again indicates that the lifetimes of the excitations are
relatively long on the surface. Resonant deexcitation of a
sputtered atom seems to occur only very close to the sur-
face where the atomic level hybridizes strongly with the
substrate levels. This is again in agreement with our
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finding of long lifetimes of excited atomic states.
In electron stimulated desorption from metal surfaces

significant fractions of excited H have been observed.
The excited H are assumed to be formed at some distance
zp from the surface. As the H recedes from the surface
the excited states can decay. Interpretations using the
previously calculated short lifetimes for the hydrogen
n =3 state have been forced to assume that the H (n =3)
is formed at very large distances from the surface, zp 20
a.u. It is difficult to conceive of a mechanism for creating
excited H at this large distance. An interpretation using
the present longer lifetimes give the more reasonable
zp=5 a.u. In addition, in recent electron stimulated
desorption experiments from alkali covered metal sur-
faces, a linear dependence of the excited H fraction on
alkali coverage has been observed. As we have discussed
above for alkalis, such a finding is inconsistent with the
earlier proposed short lifetimes which predict a sharp
steplike decrease of the yield of excited H with work
function. The results are consistent with the present
finding of long lifetimes.

In principle, one can obtain an upper bound to the
lifetime-induced width from experimental spectra. How-
ever, the direct comparison of calculated excited elec-
tronic state lifetimes with experimentally determined
widths is complicated by the many contributing factors
to experimental line broadening. In addition, the equilib-
rium bond lengths of physisorbed species are generally
not known accurately.

In recent NMR experiments it was concluded that
the width for the Li 2s state on Fe is 1.0 eV. Assuming a
Li metal bond length of 2.5 a.u. (corresponding to the cal-
culated equilibrium distance of Li on r, =2 jellium) and
modeling the surface with jellium of r, =2 our calculated
width is 1.2 eV. This is in relatively good agreement with
the NMR experiments.

Spectroscopic studies of the electronic structure of
physisorbed alkali atoms is complicated by various types
of collective as well as final-state effects and have, to
our knowledge, not yet been able to provide unambiguous
estimates for widths and shifts of alkali levels. The ex-
perimental situation is better for inert gases physisorbed
on metals. It has been pointed out by Lang et al. , that
the lifetimes of excited noble gases should be very similar
to the lifetimes of the ionization levels of the correspond-
ing alkali atoms at the same distance from the surface.
Thus the width of the excitation of a physisorbed inert
gas can provide information about the lifetime of alkali
atoms on metal surfaces. In Ref. 49, Xe physisorbed on
Al was studied. The width of the Xe 7s level was found
to be 0.2 eV. A self-consistent field (SCF) LDA calcula-
tion for Cs adsorbed at an assumed distance of 5 a.u.
gives a width of 1 —1.5 eV. A SCF LDA calculation for
Cs adsorbed on Al using the present scheme gives a width
of 1.4 eV while our proposed DF method gives a width of
1.1 eV. The difference between LDA and DF approxima-
tions is thus too small to account for the large difference
between the calculated Cs ionization level widths and the
experimentally measured width of the adsorption spectra
for Xe. Possible reasons for this difference could be the
assumption of an incorrect equilibrium distance for the

TABLE III. Comparison of widths calculated using the
present approach and the local-density approximation (Sec. IV)
with those obtained using SCF methods. The substrate is Al
(jellium r, =2).

Level Z (a.u. )

FWHM (eV)
Present SCF

Na 3s
K 4s
Cs 6s

3.0
4.0
4.57

2.0
1.6
1.4

atoms (for a bond length of 9 a.u. , the calculated width is
0.2 eV) or excitonic effects (i.e., interactions between the
6p hole and the 7s electron) in the excited noble-gas atom.
We cannot, however, exclude the possibility that
density-functional theory is inadequate for the calcula-
tion of widths at short distances from metals.

The principal source of error in the present calculation
comes from our approximate treatment of the surface po-
tential. Ideally the surface potential should be calculated
self-consistently. Unfortunately, a self-consistent calcula-
tion of the electron potential in a physisorption system
using nonlocal-density-functional theory at present ap-
pears intractable. Thus in the present work a linear
response approach has been used to construct the surface
potential. Such an approach is not valid close to the sur-
face. In order to test the quality of this approximation at
distances close to the surface, we have performed a series
of calculations using the LDA surface potentials (Sec. IV)
for alkali atoms chemisorbed on Al (r, =2) surfaces. The
bond distances for this test are short and the results can
be directly compared with fully self-consistent LDA cal-
culations for the same systems. The results are summa-
rized in Table III. It can be seen that even for quite small
distances from the surface the calculated resonance
widths are within 50% of those obtained using the SCF
method. We therefore conclude that the present linear
response approach for calculating AV' is adequate for
z ~ 5 a.u.

Another approximation we have employed in the con-
struction of the surface potential is the use of the LDA
parameters when calculating the image charge distribu-
tion cr [Eq. (2.4)]. In order to test this approximation, a
series of calculations were made for the width of the 2p„
states of H at Z =10 a.u. outside Al, for different param-
eters zp and b. The results are summarized in Table IV.
It can be seen that the calculated widths are very insensi-
tive to the magnitudes of these parameters. The reason,
as was mentioned in Sec. II, is that 5V' varies only weak-
ly with z and therefore, does not strongly inhuence the
widths. ""

Another source of error is the use of pseudopotentials
for the alkali atom cores. The magnitude of the hybridi-
zation between the valence levels of the alkali atoms de-
pends on the details of the wave functions of the involved
atomic states. The pseudopotential does not reproduce
the wave functions exactly. The calculated resonance en-
ergies for the alkali atoms are, therefore, approximate.
The exact location of the crossing points are, of course,
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zo (a.u. )

0.85
—0.15

1.85
0.85
0.85

5 (a.u. )

1 ~ 74
1 ~ 74
1.74
0.87
2.61

I /2 (a.u. )

1.15X10 '
1.15 X10--'
1.07 X 10--'

1.18 X 10--'

1.15 X 10--'

TABLE IV. Calculated widths of the 2p, , states of H at
Z = 10 a.u. outside Al for some different parameters zo and A.

method we have employed and further extensions of it
should have applications for a large number of important
dynamical processes such as the lifetimes of image states,
lifetimes of chemisorption systems, tunneling rates in
quantum wells, scanning tunneling microscopy, and de-
fect or impurity levels in solids. In atomic physics the
method has successfully been applied to the Stark effect
for two-electron atoms. We see no problem, in principle,
in extending its applicability to treat negative ion level
widths and auger rates for atoms adsorbed on surfaces.

also subject to some uncertainty. The qualitative aspects
of the interaction such as the structure of the level width
as a function of distance in the vicinity of crossing points
are likely to be valid.

Finally, we note that the use of a one-electron descrip-
tion almost certainly breaks down close to the surface
where the overlap between the atom and the surface wave
functions is large. In this region two-electron processes
such as Auger decay will be strongly competing and
perhaps dominant. An attempt to estimate the relative
importance of one- and two-electron processes as a func-
tion of atom surface separation will be made in the fu-
ture.

VI. CONCLUSIONS

We have demonstrated that the complex-scaling tech-
nique can be used to calculate lifetimes of adsorbate reso-
nances at surfaces. We have shown that previous calcula-
tions of excited state lifetimes are typically too large by
severa1 orders of magnitude. Our finding of 1ong lifetimes
may mean that the so called "memory term" must be tak-
en into account in dynamical descriptions of atom-
surface reactions. We have shown that the shifts of excit-
ed levels are not simply given by the image potential.
Different excited states shifts differently depending on
their extent and spatial orientation. We have also shown
that the lifetimes of excited alkali states are not always
simple exponential functions of distance from the surface.
In situations where levels cross each other, the lifetime of
an atomic state may even increase with decreasing dis-
tance. This means that some of the conventional theories
for charge exchange in atom surface scattering must be
modified since they are based on the assumption that lev-
els decay exponentially. We find that the magnitude of
the widths depend on the substrate. The lifetimes of al-
kali levels are longer on metals with low-electron density
such as Na than on high-electron density substrates such
as Al. We have shown that it is important to include the
image force when calculating adsorbate level widths. The
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APPENDIX

In this appendix we outline the theoretical details in-
volved in the calculation. The starting point in the calcu-
lation is the one-electron Schrodinger equation:

[ —
—,'V'+ V' (p, z;Z)]+=e+, (A1)

with V' given by Eq. (2.1). In the following we omit the
variable Z denoting the nuclear coordinate. In spherical
coordinates the Hamiltonian takes the form

H = —
—,'V + V"(r)+ Vo(r, Q)+b, V'(r, Q), (A2)

H(8)= ——' ' 7 + V "( ' )+ V'(re' 0)
+5V'(re'", 0) . (A3)

We now solve this Hamiltonian with a basis set of gen-
eralized Laguerre polynomials,

(r, a,g)=C„,(A, )r'+'e / "L„'+(iver)Y, (a, P} .

(A4)

The matrix element of the kinetic energy factorizes

where we have separated the coordinate dependence of
the surface potential into a radial and angular part Q.
We introduce the complex rotation in the radial coordi-
nate and the Hamiltonian takes the form

T„& .„.&. .(0)=e ' f dr f da sina f dory„*l (r, Q)( —
—,
'V' )g„I (r, II) .

Using the above expression for the basis function the two angular integrations can be performed analytically and the
matrix element reduces to

(&)=—
—2i 6)e C„1(A.}C„I (A, )

d2f d I + 1
—gr/21 2I +2( g } + ( ) I'+ I —Ar/21 2l'+ 2(g (A6)
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For the hydrogen atom, V "(r) is just the Coulomb attraction —I lr. The matrix element of the Coulomb term has the
form

C„I .„.I .(8)= —e ' f dr f dasina f ding„*l,„(r,Q) ——P„.I. (r, Q) (A7)

and analogously with the kinetic energy term it can be reduced to a simple one-dimensional integral

C„, .„,( g) e I8C—
,(g)C„., (g)5, , 5 ~ f dr e harp.

2II+—1L 2l+2(kr)L 2l'+2(gr) (A8)

Thus the kinetic and Coulomb matrix elements are factorized into a real part that depends only on the basis set and a
complex part that depends on the rotation angle L9. This means that these matrix elements can be evaluated using real
arithmetic, 0=0, and can then trivially be obtained for any complex angle 0. This is not true for matrix elements in-
volving the surface potential. A considerable amount of computational effort is required for the evaluation of this ma-
trix element. The matrix element has the form

V„I .
„ I (8)=f dr f dasina f dpi'„'I (p, Q) Vo(re', 0)+bV'(re', II) y„,I, .(r, Q) . (A9)

For the present calculations, the surface potential is prescribed numerically and its analytic continuation is not known.
If we perform a variable substitution x = re', and integrate with respect to P, the expression for V takes the form

(g) e
—i8C (g)C (g) f dX 8

—Ixe'
(Xe

—r8)/+I'+2L 2I+2(QXe —
&8)L 2l'+2(gXe —&8)S (X) (A 10)

Here the basis functions are complex and the surface potential is real. The analytic continuation of the basis functions
is trivial. We note that the radial part of the basis functions is not complex conjugated, since its imaginary parts came
from a variable substitution; i.e., from complex rotation. The matrix S in Eq. (A10) is defined in the following way:

S, I (x)= f dasinaPI (cosa)[Vo(x, Q)+b V'(x, Q)]PI (cosa)6 (Al 1)

This entity is real.
For the alkali atoms a pseudopotential [Eq. (2.8)] is used instead of the Coulomb potential. The corresponding ma-

trix elements are evaluated using complex basis functions analogously to (A10). The expression takes the form

p (g) —g g e r8C (k)C, , (k) f dx e
—Axe '

(xe
—(8)I +I'+2L 2l + 2(axe

—i8)L 2l'+2(axe —I 8) Vl(x)

(A12)

where V' is the Ith component of the pseudopotential
defined in Eq. (2.8).

The integrals in the radial integrations of the matrix
elements above all contain an exponential factor e
The integrations can, therefore, very efficiently be per-
formed using Gauss-Laguerre quadrature. The basis
functions can be evaluated using the recursion relations
for generalized Laguerre polynomials. A direct evalua-
tion of the polynomials by means of Horners scheme does
not provide sufficient accuracy for the higher-order poly-
nomials (order larger than 30).

The eigenvalue problem is thus converted to a secular
equation. Since all matrix elements are diagonal in the
azimuthal quantum number m, different m states do not
couple:

The solution of this equation gives both the bound and
the resonant states. Due to the fact that the basis set is
limited, the eigenvalues will depend slightly on 0 and per-
form a trajectory in complex-energy space (Sec. II B).
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