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We present a continuum model for growth on vicinal surfaces that incorporates an approximation
to adatom interactions in the form of diatomic island formation. The resulting nonlinear-diffusion

equation is then integrated numerically to obtain the adatom- and diatomic-island-concentration
profiles along the terrace. It is shown that due to the inclusion of adatom interactions, the model is

applicable to molecular-beam epitaxy (MBE) on vicinal surfaces over a wide range of growth tem-

peratures, beam fluxes, and terrace-misorientation angles. Furthermore, a natural outcome of the
model is the identification of the transition temperature T„atwhich island formation may be
neglected and epitaxial growth proceeds predominantly by step propagation. The excellent agree-
ment between the value of T, determined by the nonlinear model and those obtained from both
Monte Carlo simulations and measurements on vicinal GaAs(001) surfaces for different Ga and As&

fluxes shows that the inclusion of adatom interactions is an essential ingredient of a realistic model
of MBE growth on misoriented surfaces.

I. INTRODUCTION

Vicinal (stepped) crystal surfaces, with a misorientation
angle of a few degrees, are frequently used as substrates
for growth of semiconductor heterostructures by
molecular-beam epitaxy (MBE).' Furthermore, studies
of growth on vicinal surfaces as a function of substrate
temperature and beam fluxes have provided insights into
the fundamental growth kinetics of MBE, as well as pro-
viding a framework within which to estimate the parame-
ters characterizing the underlying microscopic kinetics.
Specifically, measurements of the temporal profiles of
reAection high-energy electron-diffraction (RHEED)
specular intensity oscillations during MBE of vicinal
GaAs(001) have shown the growth mode to be strongly
temperature dependent. At low temperatures, an oscil-
lating RHEED intensity suggests growth by the forma-
tion and coalescence of two-dimensional islands on ter-
races, while at higher temperatures, an approximately
constant RHEED intensity indicates growth by step
propagation, with arriving adatoms incorporated directly
into the step edges.

These observations, and the importance of understand-
ing the physics of epitaxial growth, have rekindled in-
terest in the pioneering theory of Burton, Cabrera, and
Frank (BCF) for near-equilibrium crystal growth on
stepped surfaces. In the BCF theory, linear-diffusion
equations are used to determine the step velocity and dis-
tribution of adatoms on terraces. Extensions of the BCF
theory to MBE have included the influence of the moving
step boundary, ' important in semiconductor growth,
where step velocities are high, and deviations from local
equilibrium at the step edges, including the case of
differing attachment rates from above and below the
step. In none of these treatments, however, were lateral

interactions of adatoms on the terraces included in the
calculations, although it was recognized that corrections
to BCF theory due to adatorn interactions would be sub-
stantial for growth under typical conditions found for
MBE. ' Indeed, experiments and simulations ' have
shown island formation of atoms on the terraces to be a
very important process which competes with adatom
capture at the step edges, eventually causing a breakdown
of the step-flow mode at low temperatures.

A model for MBE must include both the migration of
adatoms on the substrate and the interaction among these
adatoms in the form of incipient cluster formation.
Atoms collide to form islands, which then form capture
sites that compete with the step edges as sinks for the mi-

grating adatoms. Collisions among atoms produce non-
linear sink terms in the effective-diffusion equation for
single adatoms, while the capture and subsequent emis-
sion of adatoms from cluster and step edges produce non-
linearities in the form of a concentration-dependent
diffusion constant. Consequently, either interactions
have been neglected entirely, as in the BCF-based
theories discussed above, or the problem of island forma-
tion alone on a flat surface has been tackled with kinetic
rate equations. " Within the rate-equation approach,
rates of island formation are given by gain and loss terms
which are nonlinear in the adatom and island concentra-
tions. However, this approach is applicable only to flat
surfaces, since no spatial dependence of the adatom or is-
land concentration is considered (this greatly simplifies
the solution of the growth equations). However, in the
presence of steps, a diffusion-controlled adatom-
concentration gradient is present along the terraces.
Thus a growth model which includes the full physics
must explicitly combine adatom diffusion (and thus a spa-
tial concentration dependence) with the nonlinear island-
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formation terms, a task which, as far as we know, has not
been previously attempted.

In this work, we improve on existing step-growth
theories by incorporating a first-order approximation to
lateral adatom interactions in the form of diatomic island
formation. One of the important results of this approach
is that the effective diffusivity of the adatoms is decreased
by several orders of magnitude as a result of island forma-
tion. In this regard, our work shares some similarity
with recent studies of diffusion on dynamically disordered
lattices. ' ' However, an important difference is that in
our approach the diffusing adatoms participate directly in
the fluctuations of the disorder (through island forma-
tion), while in Refs. 12—14, the dynamical disorder arises
independently of the diffusing species, whose total con-
centration is therefore a conserved quantity. A second,
more practical result to emerge from our analysis is the
determination —directly from the nonlinear-diffusion
equation —of the temperature beyond which growth
proceeds predominantly by step advancement. This re-
sult, together with the considerable reduction in effective
diffusivity, highlights the role of the nonlinear interac-
tions responsible for island formation as an essential in-
gredient in a realistic model of MBE on vicinal surfaces.

The outline of this paper is as follows. In Sec. II we
derive the effective-diffusion equation in the presence of
island formation using the formalism of reaction-diffusion
equations. This formulation provides a prescription for
deriving formally exact master and Fokker-Planck equa-
tions from a given "reaction" sequence, from which the
effective-diffusion equation for the average concentration
may be easily obtained. Additionally, the formalism pro-
vides the Aexibility to study Auctuations and the evolu-
tion of the full probability-distribution function with full
account taken of the far-from-equilibrium nature of
MBE. The extent to which an analytical solution is pos-
sible is discussed in Sec. III, where the full equation is
solved numerically for the adatom- and island-
concentration profiles along the terrace. We show that
under typical MBE conditions island formation cannot be
neglected, and that the inclusion of island formation in
the growth equation is of similar or greater importance
than corrections to BCF theory due to the moving
boundary. Furthermore, as described in Sec. IV, we are
able to predict the regime of growth conditions in MBE
where island formation is likely to be significant. Esti-
mates of the transition temperature beyond which epitax-
ial growth proceeds predominatly by step advancement
and island formation may be neglected, and are com-
pared to Monte Carlo simulations in Sec. V and measure-
ments on vicinal GaAs(001) surfaces for difFerent Ga and
As2 Auxes in Sec. VI. Our conclusions are summarized in
Sec. VII.

II. GROWTH MODEL

One of the most concise ways to formulate the inter-
play between diffusion and island formation due to lateral
interactions is through reaction-diffusion equations.
Each step of the deposition and growth process is
represented by a "reaction" that describes the rate-

determining conversions of different "species" among one
another. The advantages of this approach are threefold.
Once the basic reaction sequence is formulated, master
and Fokker-Planck equations can be derived by well-
established techniques, and effective-diffusion equations
for the average concentrations can be obtained easily.
Additionally, the original master and Fokker-Planck
equations also contain valuable information concerning
the spatial and temporal dependence of the nonequilibri-
um fluctuations. Finally, this formulation is ideally suit-
ed to the far-from-equilibrium conditions of MBE, since
no assumptions regarding equilibrium are made.

The substrate consists of a square lattice with a
nearest-neighbor spacing of a. The boundary conditions
are for the moment left unspecified, though for growth on
a vicinal substrate, some combination of rejecting, ab-
sorbing, and periodic boundary conditions could be ap-
plied. The lattice is coarse grained into X square cells of
size A (Fig. 1). Denoting incoming atoms from the
molecular beam by 3, substrate atoms by X, and diatom-
ic islands by Y, the "reactions" describing the deposition
and growth processes are

ko k, k2

A ~X, 3+X~ Y, 2X~ Y.
The first two reactions in (1) describe the deposition pro-
cess, with the first reaction representing the deposition of
atoms from the molecular beam onto the substrate, and
the second reaction accounting for the direct collision of
arriving atoms with substrate atoms. The third reaction
represents the formation of diatomic islands by the
coalescence of mobile substrate atoms. The reverse reac-
tions in each could be included and would correspond, re-
spectively, to evaporation of single adatoms, evaporation
of adatoms from diatomic clusters, and the dissolution of
diatomic clusters into two free adatoms. We will show
below that the neglect of evaporative processes does not
significantly affect our results. Our reasons for neglecting
the decay of diatomic clusters will be discussed below.
The reaction-rate constants k; are determined by the
growth conditions in terms of the molecular-beam Aux
and substrate temperature, as well as microscopic hop-
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FIG. 1. Illustration of coarse graining on a length scale A of
a square lattice with lattice constant a.
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ping barriers, as will be discussed below.
The reaction sequence (1) may now be converted into a

master equation, ' from which an effective evolution
equation can be derived for the average number x, (t) of
atoms of X in the ith cell at time t:

a particular site is denoted by ~o. Thus, in a time 6~, a
migrating atom on average encounters 6~/v. o sites. The
probability that the site is occupied is x, /(A/a) . Thus
the number of diatomic islands formed from the com-
bination of migrating atoms during the time interval 6~ is

dXt. N= g D;,x, +ko & —k, Ax, —2k2x,2 .
j=1

(2)
2

5~
k2x, 6~=o.

&0 (A/a)

The first term on the right-hand side of (2) represents
cell-to-cell diffusion, and the remaining terms account for
the reactions (1).

The reaction rates k; are required to complete the
specification of (2). We consider first the deposition pro-
cess. The deposition rate J is the arrival rate per unit
area of atoms onto the substrate from the particle beam.
Thus the rate at which atoms are deposited onto the ith
cell is JA . According to the first two reactions in (1),
there are two possible outcomes of the deposition process
(Fig. 2): (i) the creation of a migrating atom, if the
chosen site is unoccupied and if the nearest neighbors are
unoccupied, or otherwise (ii) the creation of a diatomic is-

land with an accompanying "annihilation" of a neighbor-
ing atom. Since there are A /a sites in each cell, the
probability of any site being occupied is x, /(A/a)2. The
rate at which single atoms are deposited onto the sub-
strate is thus the total deposition rate from which the
effect of (ii) is subtracted:

X;
ko~ =J

(A/a)
(3)

where the second term accounts for the island-forming
sites, with the factor m being the number of such sites
around a single adsorbed adatom that form a diatomic is-
land when filled. For example, for a (001) surface, m =4,
since a single adatom has four nearest neighbors; if the
site of the adatom itself is included, then m =5. The rate
of diatomic island formation from the deposition process
is calculated for (ii) as in (3):

FICx. 2. Schematic illustration of processes contributing to
diatomic island formation, including deposition onto sites with

occupied nearest neighbors and collision during migration.

mx,
k13 =JA =Ja mx, .

(A/a)

The probability that two mobile atoms collide to form
a diatomic island is derived by considering the probabili-
ty that a migrating atom encounters a filled nearest-
neighbor site. The average residence time of an atom on

where o is the capture efficiency, so that

CTk2=-
wo(A/a)

(6)

In our model, the entire process of island formation is
represented by cr, which gives the net rate at which stable
diatomic islands are formed. Clearly, cr has a tempera-
ture dependence; however, for a first approximation it is
simplest to set o equal to a constant, estimated to be of
order 1." Finally, substituting (3), (4), and (6) into (2),
the evolution equation for x, becomes

N= g D; x +JA —2Jma x, —2 x,
w (A/a)

(7)

2mn(x, t)=DV —(x, t)+J — Jn (x, t) 2oDn (x, t) . —2

no

(10)

To apply (10) to epitaxial growth on a vicinal surface,
we consider a substrate which consists initially of an
infinite train of Rat steps separated by terrace length
x =h in the x direction, pictured in Fig. 3. The crystal is
infinite in the y direction and the steps are one atomic
unit high. Step growth occurs both through the adsorp-
tion of single atoms onto the terraces and their subse-
quent diffusion into the step edges, as well as island for-
mation through adatom collisions. Following the
crystal-growth theory of BCF, we make the simplifying
assumption of straight step edges. Meandering of the
step edge in the y direction is neglected, and the step is
treated as a continuous line sink with a constant adatom-
capture potential in the y- direction. Consequently the
dependence of the concentration on y may be neglected,

To obtain the continuum form of (7), we first divide
both sides of (7) by A . The equation for the density
n;(t)=x;(t)/A is then

dnt N n]= QD, n, +J —2Jm —2 n,
dt . ,

"' n,

where no =a is the site density. We now take the con-
tinuum limit A~O at fixed particle density n, and intro-
duce the diffusion constant D =va exp( E/ktt T), —
where v is an atomic vibration frequency (=10' s '), E
is the energy barrier to diffusion, and kz is Boltzmann s
constant. In the continuum limit, we have

n, (t)~n (x, t), D J ~DV, wa ~D,

so that the effective nonlinear-diffusion equation reads
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where no is the concentration of lattice sites introduced
in (8). Equation (12) is solved in the absence of island for-
mation [R (n) =0] in Appendix A, where solutions to oth-
er special cases are also given.

III. STEADY-STATE SOLUTION
OF THE NONLINEAR-DIFFUSION EQUATION

FOR A VICINAL SURFACE

FIG. 3. Schematic representation of evolution of a stepped

crystal and the concentration of adatoms, n (x), and of diatomic

islands, N(x), along a terrace.

It is convenient to introduce dimensionless variables
into the steady-state nonlinear diffusion equation (12).
The distance is scaled as x ~x/h, so that 0&x & 1. The
natural concentration scale arising from the equations is
n, =Jh /D, which has units of surface concentration. In-
troducing the dimensionless concentration y (x)
=n (x)/n, . =Dn (x)/(Jh ), (12) takes the form

and (10) reduces to a one-dimensional problem of the
form

dn(x, t) d n(x, t)
dt

where the function R incorporates the two island-forming
terms in (10). Assuming that the steps are moving at ve-

locity U, it is convenient to switch to a moving reference
frame by employing the coordinate transformation
x ~x —vt. In the steady state and in the moving coordi-
nate system, the continuity equation (11) becomes

dy+a + 1 —2aPy —2amy =0,
dx

y (o)=y (1)=0 (14)

where the dimensionless parameter a =Jh /Dn 0

represents the ratio of the diffusion time for an adatom to
reach a terrace (h /D) to the interarrival time of atoms

per site (no/J), and the dimensionless parameter
P= cr noh ' is a measure of the misorientation angle

(through the terrace length with monatomic steps) and of
the lateral interaction (through the capture cross section).
Note that the concentration scale n, =Jh /D =+no.

As in Appendix A, we introduce the variable p defined

D +U +J —R(n)=0.
dx

(12a)

In the BCF theory, the concentration of adatoms at the
step edge is assumed to be in local equilibrium; thus the
concentration at the step is a known value n, . However,
this assumption is not likely to be valid at the far-from-
equilibrium growth conditions of MBE. Therefore, we
utilize absorbing boundary conditions at the step edges
whereby all adatoms reaching the step from either above
or below "disappear" due to incorporation by the step.
Further, once an atom is attached to the step, subsequent
detachment is forbidden. Thus the concentration of ada-
toms vanishes at the step edges:

n(x =0) = n(x =h) = 0 . (12b)

Uno =Jh (13)

To be consistent we must also neglect the decay of dia-
tomic clusters into single adatoms, since the effective-
energy barriers should be comparable.

In order to solve (12) for a specified island-formation
rate R (n), we require an additional relation to give the
unknown steady-state velocity U which appears in (12a).
This is accomplished by invoking the law of mass conser-
vation around a terrace. At steady state, the concentra-
tion of adatoms on the terraces must remain constant.
Thus, all of the incoming fiux per terrace (Jh) must be re-
moved due to advancement of the steps at the two boun-
daries. For monatomic steps, the velocity is then given
by

Qx

whereupon (14) becomes

p
P = —ap —1+2aPy +2amy .8p

dy
(16)

Integration of these equations from x =0 to 1 requires a
starting value at x =0 for y(0) and p(0). However, the
boundary conditions in (14) yield only y (0)=0; p (0) (the
adatom fiux into the step edge) is unknown. We proceed
via shooting methods by assuming a value for p(0) and
iteratively performing the Runge-Kutta integration to
x = 1 until the assumed value for p (0) is one which yields

This expression is a first-order nonlinear equation: an

Abel equation of the second kind. ' Unfortunately, we

cannot simply continue as in Appendix A since (16) is not
separable in p and y. We notice that even if (16) were
solvable for p, we would still be left with an integral of
the kind in (A12); thus it is far simpler to solve (16) nu-

merically. We use a fourth-order Runge-Kutta method
with Kutta's coefficients' to integrate the set of two
simultaneous first-order differential equations for y and p:

dy
4(x

tgp = —ap —1+2aPy +2amy .
Qx
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y (1)=0. Successive improved guesses of p (0) are found
using the half-interval method the solution converges
rapidly. Solutions of (14) for n (x}are shown in Fig. 4(a)
without adatom interactions, R (n) =0, and Fig. 4(b) with
adatom interactions for m =5 and 0.=1. The flattening
of the profile due to island formation is pronounced at
large a (low temperature).

Once the adatom concentration is known, the diatomic
island concentration N (x, t) may be computed from

2 =R (n)=2trDn +2JmdN 2 n

n. O

(18)

%e assume that once an island is formed, it is immobile;
thus islands do not move with the terrace. Kith refer-
ence to Fig. 3, we focus on a fixed frame of reference at
the point where single adatoms are just forming a new
sliver of step edge (at x =h) and observe the formation of
adatoins with time. At this point (t =0), we assume that
there are no islands on the freshly formed sliver of step;
thus N(0, 0)=0. As time increases, the step moves along
with velocity v. At our fixed position (which is now posi-
tion x according to the moving reference) the concentra-
tion of islands includes all of those islands which were
formed during the time t =(h —x)/v it took for the step
to move distance It —x. Thus, using the dimensionless
quantities defined above and introducing the dimension-
less island concentration Y(x)—=2N (x)/(ano), we obtain

Y(x)=2P f y (x)dx+2m f y(x)dx .
X X

next step has reached our fixed reference point, and all is-
lands are instantaneously captured by the advancing step.
The island-concentration profile along the terrace is pic-
tured in Fig. 5 for various a; Y(x) is seen to be greatest
directly below the step edge at x =0.

It is instructive to write the boundary condition relat-
ing advancement of the step in terms of the adatom and
island fluxes:

dn dn
vno —D

x =0 d~ x=h

+2oD n x x +2pygJ n no x
0 0

(20)

+ 2aP f y (x)dx+2ma f y(x)dx
0 0

(21)

The first and second terms on the right-hand side of (20)
represent the flux of single adatoms at the step from
below and above, and the last two terms represent flux
due to islands. Note that the adatom flux is due to
diffusion of the adatoms to the steps, while the island flux
is due to the movement of the steps which sweep up the
immobile islands. Because of mass conservation (13},
vno=Jh, and all of the incoming flux per terrace must
go toward advancing the step. Using (13) and switching
to dimensionless quantities x ~x /h, y = n /(ano ),
a= Jhi/Dno, and P=o noh, (20) becomes

r

dy dy
x=0 dx x=1

When t =h /v (x =0 in the moving reference frame), the The first term in large parentheses (21) represents the
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FICx. 4. Adatorn concentration profiles along a terrace with length h =15a for various a. The left panel (a) shows profiles with no

island formation included [~r =0 and m =0 in (14)]. Note the fiattening and lowering of the profile in the right panel (b), which in-

cludes island formation [o.= 1 and m = 5 in (14)].
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FIG. 5. Dimensionless diatomic island concentration along a
terrace for p= 225 and various a. Calculations use (14) and (22)
with m =5.

fraction of material which adds to the step from above
and below as single, free diffusing adatoms; the second
term in large parentheses represents the fraction of ma-
terial which is swept up by the step as immobile diatomic
islands. In Appendix B, we show that the evaporation
for free adatoms can be neglected under typical operating
conditions of MBE.

IV. TRANSITION TO STEP-FLOW GROWTH

In the MBE experiments of Neave et al. on GaAs,
growth regimes were monitored with RHEED specular
intensity oscillations. At low temperatures, oscillations
are observed in the RHEED intensity which are indica-
tive of the competition of island formation with incor-
poration of atoms at step edges. As the temperature is
increased, the oscillations weaken until a critical temper-
ature T, is reached, at which oscillations are no longer
visible. Above this temperature, growth is essentially
step propagation since enhanced adatom mobility pro-
motes direct incorporation at steps over island formation.

We can describe these observed growth regimes and
predict the transition temperature T, from our nonlinear
theory simply by dimensional analysis of (14). In (14) the
variables are scaled so that the diffusion and flux terms
are both order 1, independent of the value of a. The pre-
factors of the other terms are all proportional to cz, and
these terms make varying size contributions to the equa-
tion as a function of a. By comparing the magnitudes of
the individual terms, one may divide the parameter space
into various regimes corresponding to the controlling
growth mechanisms.

(a) Island formation dominates, a & 1, y "+ay '

E
T, = ln

B
(22)

Previously, predictions of the transition temperature
T, have used the Einstein relation for surface diffusion
x =2D~. This linear model treats the migration of
atoms as a random walk, taking no account of the effect
of island formation on adatom mobility or the influence
of the moving step boundary. Growth is therefore as-
sumed to be step flow when the time for atoms to diffuse
to a step is equal to or less than the adatom interarrival
time at a specific site. At greater diffusion times, the
buildup of adatom concentration in the center of the ter-
race is assumed to lead to cluster formation. With x =h,
D given as in Sec. II, and ~=n0/J, the average time in-
terval between deposition at a specific site, the Einstein

+1+2apy +2amy =0. Since p&100, for a&1, the
adatom-interaction term is multiplied by a large factor
2aP»1 and dominates the equation. The rate of island
formation and the step velocity are high, and the full
nonlinear equation must be used. Solution is only possi-
ble numerically. For very large a, the actual adatom-
concentration profile is likely to be even lower than that
given by (14), since in this region one would expect for-
mation of tri- and higher-atomic islands and island
coalescence to become increasingly important (see Ap-
pendix Cj.

(b) Island formation competes with step flow, 1&a
& 1/p, y" +1+2apy +2amy =0. For small a, the
moving-boundary term a dy/dx is less than order 1 and
can be neglected, but the prefactor of the adatom-
interaction term 2ap is still greater than 1, since p is a
large number. It is significant that the interaction term is
of similar or greater importance than corrections due to
the moving boundary; this confirms previous predic-
tions. Adatoms interact to form islands on their diffusion
path to the steps, although the step velocity is low
enough that the effect of the moving boundary may be
neglected. The solution is given by (A12) in terms of an
elliptic integral.

(c) Step-fllow mode, a&1/P, y"+1=0. When a be-
comes much less than 1/p, the adatom-interaction term
is multiplied by a small number, 2ap&1, and can be
neglected. The adatom concentration on the terrace is
extremely low, island formation is negligible, and in-
cident adatoms are directly incorporated into the step
edge due to their high mobility. The exact solution is
given by (A5).

Step-flow mode [regime (c)] is achieved below a thresh-
old value of a: a, & 1/p « 1, where the adatom-
interaction terms are negligible compared to the diffusion
and flux terms in (14). In Fig. 4, profiles of the adatom
concentration with decreasing a show that there is no
sharp transition to the step-flow growth mode, and so, al-
though we have shown above that a, is several orders of
magnitude less than 1, a, must be fixed using a further
criterion. For example, a threshold a, could be deter-
mined as that value which gives a maximum island con-
centration of less than 1%; this is discussed further
below. The temperature T, is then evaluated from a, as
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relation yields the following expression for the transition
temperature T, :

T, = ln
8

2v

Jh
(23)

700

Comparing the above equation with (22), we note that a,
in (22) is replaced by the factor 2. However, the island-
formation rate dominates the growth equation for a=2,
and so the assumption implicit in the use of the Einstein
relation in calculating T, that adatom interactions can be
neglected is clearly invalid. It is necessary to utilize (14)
which incorporates the full nonlinear behavior. Al-
though a linear theory which neglects adatom interac-
tions may be used accurately for calculating the adatom
concentration at very low a, island formation must be ex-
plicitly included in the analysis to determine the a regime
where step propagation dominates.

650—

V

600

550

I
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I
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V. COMPARISON TO SIMULATIONS

We compare the results of our model to Monte Carlo
simulations of MBE by Clarke, Vvedensky, and co-
workers. ' A full description of the details of the com-
puter simulations is given in Ref. 20; thus a brief outline
of the simulation model will suffice here. Atoms are ran-
domly deposited on the stepped substrate and migrate by
nearest-neighbor hopping, the probability of which is
given by k =ko exp( E/ks T).—Island formation is tak-
en into account through the site dependence of the
diffusion barrier E, which includes contributions from
nearest-neighbor paralle1 bonding. Thus comparison of
our model to the simulations is also a test of the validity
of the continuum approach in representing the micro-
scopic kinetic processes occurring on the surface.

In the simulations, the transition temperatures to step
flow are identified by the absence of oscillations of the
step density. The nonlinear model is a steady-state model
and will not exhibit oscillations, and so a different cri-
terion must be chosen to pinpoint an exact value of a, at
which we can consider step flow to be achieved (we have
shown above that a, &1/p«1). We will assume that
step flow is achieved when the flux due to captured is-
lands at the step edge [the second term on the right-hand

Island concentration uY(0)
FIG. 6. Effect of temperature on the island concentration

a Y(x) =2N(x)/no at x =0. Note the sharp dependence of the
temperature on a Y(x) for low concentrations. Calculations are
done using (14), (19), and (22) for stepped GaAs(001) with
h =10a, no=1/a', a =3.98X10 ' cm, ED=1.3 eV,
v=2. 5x10"s ', J =1x10'"cm s ', o =1, and m =5.

side of (21)] is less than lgo of the total flux. This is
equivalent to an island concentration below the step edge
(at x =0) of a Y(0)=2N(0)/no=0. 01. The temperature
T, is then found by determining the value of
a= Jh /Dno for which a Y(0)=0.01 as follows: (a) Solve
(14) for a given u and with fixed p=anoh, and (b) deter-
mine a Y(0) from (19). This process is repeated until a a,
is found which yields a Y(0)=0.01. We find that this
cutoff [with corresponding a, = 1/(2p)] gives excellent
agreement with the simulations over an order-of-
magnitude variation in the flux J and for misorientation
angles of 2'-4', as shown in Table I. This is remarkable
given the sharp dependence of the transition temperature
on the value chosen for the island concentration (Fig. 6).
Thus step flow is considered to dominate when the atom-
ic flux due to islands into the step edge is approximately

TABLE I. Comparison of transition temperatures at which step flow occurs, calculated using Monte
Carlo simulations (Ref. 19), nonlinear theory including adatom interactions (22), and the Einstein rela-
tion (23). Parameters used for a GaAs(001) surface with a =3.98 X 10 ' cm, no =1/a, ED =1.3 eV,
o.=1, m =5, and v=2k~ T/A', where here A' is Planck's constant.

J (cm s ')

5.0x 10"
1.Ox 10'4

5.0x10"
1.0x10"
1.Ox10'4
1.0X 10'
5.Ox10'4
2. 3 x10"

h/a

10
10
10
10
14
20
20
18

Simulation

650
680
725
735
700
750
815
775

T, (K)
Theory

654
673
722
746
707
750
811
766

Einstein relation

520
533
563
577
545
559
592
571
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1%, a physically reasonable criterion. The results indi-
cate that increasing the length of the terrace h and in-
creasing the rate of deposition J wi11 both lead to an in-
crease in island formation, and thus a higher temperature
T, will be required to achieve a step-flow growth mode.

Also shown in Table I is the prediction of the Einstein
relation (23). It consistently underestimates transition
temperatures by 150'—200', this can be directly traced to
the neglect of interactions among the adatoms. It is as-
sumed that mobile atoms are undeterred in their path to
the steps and thus predicts that step flow will occur when
their diffusion length is equal to the terrace length. In
our model, diff'using adatoms are captured to form is-
lands; thus much higher temperatures must be attained
before island formation is negligible and adatoms move
essentially freely. Our nonlinear theory shows that the
diffusivity in the Einstein relation x =2D~ should be re-
placed by an eff'ective diffusivity D,ff =Da, /2 to account
for the adatom interactions, where n, is several orders of
magnitude less than 1 for typical MBE conditions.

VI. COMPARISON WITH EXPERIMENT

%e show in Fig. 7 values of T, measured during MBE
for GaAs(001) for various Ga and As2 beam fiuxes. Un-
fortunately, comparison with the predictions of (22) is not
as straightforward as with the simulations, since ED for
GaAs, which was fixed at 1.3 eV in the simulations, is not
accurately known. Consequently, we allow ED to be a
variable parameter and find the best fit of (22) with a,
calculated at a Y(x)=0.01 from our nonlinear theory in

TABLE II. Least-squares fit of {22) to experimental transi-
tion temperatures (Ref. 3) plotted in Fig. 7, with a, =2 for the
Einstein relation and a, as determined by (14) for the nonlinear
theory with adatom interactions. A best fit with both ED and

a, as variable parameters is also shown. The root-mean-square
deviation o, , of the inverse transition temperatures 10'/T,
from the data is also shown. Parameters used are for a
GaAs{001) surface with a =3.98X10 ' crn ', h =18a,
v= 3 X 10"s ', o.= 1, and I =5.

ED (eV)

a,
~rms

Best
fit

1.3
1.4X10-'
1.3X 10

Nonlinear
theory

1.4
1.7X10-"
6.9 X10--'

Einstein
relation

2.0
2'

1.9X10-'

'These parameters are fixed by theory, not fitted.

accordance with the results shown in Table I, and for
comparison with a, =2 (the Einstein relation). The re-
sults are represented by dashed lines in Fig. 7. The solid
line represents the best least-squares fit of (22) to the data
with both ED and a, as adjustable parameters. The fitted
parameters are presented in Table II. The correspon-
dence between a, =0.0017 calculated from our nonlinear
theory to the "best fit" of the data (a, =0.000 14)
confirms that due to island formation, step-flow-
dominated growth is only reached in the parameter re-
gime of a && 1 when the diffusion time is several orders of
magnitude less than the time for the step to move a ter-
race length. By contrast, attempting to fit the Einstein

1.25—
ry

1.4—

1.20—

CO
1.2

C0

1.15—

-0.5 0.0 0.5 1.0 1.5

ln [ JG, (10 cm 2s ') ]

FIG. 7. Comparison between T, measured during MBE on
GaAs{001) for the indicated Ga and As& fluxes {from Ref. 3)
with theoretical values calculated with (22) using a Y(0)=0.01
and the indicated values of ED.

1n [ JG, (10' cm 2s ') ]

FIG. 8. Calculated values of T, for the indicated Ga fluxes
and terrace widths using {22) with the parameters determined
for the nonlinear theory in Fig. 7.
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relation with o., =2 to the measurements requires

EI, =2.0 eV, and extremely high value; if a lower, more
realistic energy were used (e.g. , 1.3 —1.4 eV as predicted
by the "best fit" and the nonlinear theory), the Einstein
relation would predicted T, several hundred degrees
below the measurements. (It is also interesting to note
that if Monte Carlo simulations are fitted to the measure-
ments of Neave et al. , E~ =1.45 eV is required to quan-
titatively reproduce the experimental transition tempera-
tures. '

)

Using the value of a, determined above, we can extend
the range of external parameters over which the model
can be applied to predict T, . In Fig. 8 we show plots of
T, as a function of the Ga flux for the indicated terrace
widths. Based upon the comparison in Fig. 7, this dia-
gram should provide reliable estimates for T, for a wide
range of vicinal angles and growth conditions.

Finally, it is also worth pointing out that measure-
ments with widely varying values of As2 beam fluxes,
from 1.72 to 9.4 cm s ', all fall within a quite narrow
range around the curve predicted by our model. This
confirms that for typical conditions of MBE it is reason-
able to treat the two-component GaAs system as a one-
component system by neglecting the presence of the As2
flux.

VII. CONCLUSIONS

In this paper we improve on continuum models of
growth on vicinal surfaces by including the effect of ada-
tom interactions to a first approximation via diatomic is-
land formation. The resulting nonlinear-diffusion equa-
tion is then integrated numerically to obtain the adatom-
and diatomic-island-concentration profiles along the ter-
race. Comparison of the results with and without island
formation show that adatom interactions are a significant
component of growth under typical MBE conditions.
Regimes of growth conditions where island formation
competes with capture at the step, and where it can be
neglected, are estimated theoretically. It is found that a
dimensionless parameter a, which represents the ratio of
the time for diffusion of a single atom to a step to the
time for a step to move one terrace length, must be
several orders of magnitude less than 1 in order for the
concentration to be represented by a linear equation.
Below this critical value of the parameter a, (alternative-
ly above a critical temperature T, ), growth occurs almost
exclusively due to direct incorporation of atoms at steps
with negligible island formation; this regime is the step-
flow mode. We compare T, calculated from our non-
linear model with Monte Carlo simulations of MBE
growth over a wide range of beam fluxes and misorienta-
tion angles, and find that step propagation can be con-
sidered to be achieved when the atomic flux due to cap-
tured islands into the step edge is 1% of the total flux.
Using this criterion, we find that the nonlinear model
gives an excellent fit of measurements of T, on GaAs(001)
for a variety of Ga and As2 beam fluxes. We conclude
that adatom interactions are an integral part of the fun-
damental physics of growth on stepped crystals, and that
they must be explicitly included in the diffusion equations

for a model which is generally applicable over a wide
range of growth conditions.
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APPENDIX A: SPECIAL SOLUTIONS

In order to evaluate the effect of adatom interactions
on step growth, we will first completely neglect any island
formation. In this case, (12) is written with R (n) =0 as

D +u +J=O, n(0)=n(h)=0 .
7l dn

dx dx
(Al)

Combining (13) with (Al) and introducing the dimension-
less concentration y =n/(an0) and distance x ~x/h, so
that 0 y «1 and 0 x «1, yields

+a +1=0, y(0)=y(1)=0 .
dx dx

(A2)

The dimensionless parameter a= Jh /Dna represents the
ratio of the diffusion time for an adatom to reach a ter-
race (h /D) to the interarrival time of atoms per site
(n0/J) Usin. g (13), a may also be written as a Peclet
number, ' a=vh/D, and can therefore, alternatively, be
thought of as the ratio of the adatom-diffusion time to a
terrace to the time for a step to move one terrace length
(h /u). The solution is

—ax
y(x) =-

a 1 —e
(A3)

d p +1=0, y (0) =y (1)=0,
dx

with the simple solution

y (x)= —,'x(1 —x),

(A4)

(A5)

which is simply the limit of (A3) as a~0.
The nonlinearity in (12) introduced by the interaction

term 2aPy' greatly complicates its analytical solution.
We first attempt to solve (14), retaining only the difficult
nonlinear term and the diffusion term:

—2a13y =0 .
dx

The genera1 solution of the above equation is'

(A6)

The concentration is plotted in Fig. 4(a) as a function of
a. Note that as a increases (corresponding to decreasing
temperature through the diffusion constant D or increas-
ing flux J), adatom concentration builds up in the center
of the terrace. The asymmetry in the concentration
profile noticeable at large a is due to the effect of the
moving coordinate system. For small a, the effect of the
moving boundary may be neglected and the governing
equation becomes
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y (x)= p(C2+x;0, C, ),6

a
(A7)

where p(x;a, b) is the Weierstrass elliptic function. C&

and C2 are integration constants determined by the
boundary conditions at x =0 and 1. For the boundary
conditions (12b), it is clear that the only solution to (A6}
is the trivial one y(x)=0, since there is no flux term to
replace the adatom concentration lost due to island for-
mation.

We now proceed one step further in complexity and in-
clude the flux term and the term due to the flux collision
contribution to island formation (2amy). However, we
will still neglect the effect of the moving boundary
(a dy/dx) as in BCF theory; this is likely to be valid only
at low step velocities. The resulting dimensionless con-
tinuity equation is

uno=Jh —— n(x)dx .
7 0

(84)

ergy. Und r typical MBE conditions, ~)&1, and the eva-
poration term may be neglected; however, we will include
it in the following analysis.

The velocity is given by the sum of the flux due to sin-

gle adatoms and the flux due to upswept islands:

dn
Uno =a

dx

+2crD f n (x)dx+2mJ f (nln )dx . (83)
0 0

If evaporation is neglected, the velocity v in (81) can be
determined simply from a mass balance as Uno=Jh.
However, if atoms are also leaving the system through
evaporation, the velocity is given from (Bl) and (83) as

+1 2aPy —2amy =—0 .
dx

First, we define the variable p where

dx dy

(A8)

(A9)

Thus (Bl} and (84) must be solved simultaneously. We
introduce the dimensionless variables x ~x /h,
y(x)=Dn(x)/(Jh ), a=Jh /(Dno), and p=onoh to
obtain

dy dy+ V + 1 —yy —2aPy —2m ay =0,
dx

After rearrangement, (A8) becomes

p dp =( —1+2aPy +2amy)dy .

Integration of the above equation yields

p =2( —y+ —', aPy +amy )+C& .

Since p =dy/dx, we obtain

d =x+C2 .
4a 3 y +2amy —2y+C,

(A10}

(Al 1)

(A12)

The integral on the left-hand side of (A12) is not expressi-
ble in terms of any classical elementary functions; howev-
er, it may be expressed in terms of elliptic functions. The
integration constants C, , embedded in the integral, and

C2 will be determined by application of the boundary
conditions.

APPENDIX 8: EFFECT OF EVAPORATION

The full diffusion equation for growth on stepped sur-
faces at steady state and with respect to a moving refer-
ence frame is

D +u +J ———R (n)=0,d n dn n

dx dx

n (0)=n (h)=0, (Bl)

with

1V=a 1 —y f y(x)dx
0

y (0)=y (1)=0, (85a)

(85b)

where y =h l(D7. ) is the ratio of the diffusion time to a
step edge to the residence time of an atom on the surface
and can also be written as

y=(h/a) exp[ —(Ed„E)D/(k&T—)] .

V =vh/D is the dimensionless velocity. The set of equa-
tions is solved iteratively as follows: A starting value of
Vo=a is used in (85a), which is solved using a fourth-
order Runge-Kutta method. A new Vis then determined
using the calculated y (x) in (85b). This improved value
is then used in (85a) to recalculate y (x), and this process
is repeated until the assumed V satisfies both (85a) and
(85b).

As temperature increases, a decreases, and for very
small a(1/p, the nucleation terms in (85a) may be
neglected with respect to the diffusion and flux terms.
However, the magnitude of y increases with increasing
temperature. The temperature at which the evaporation
term becomes important compared with the other terms
depends on the difference between the adatom desorption
energy and the diffusion barrier, AE =Ed„—ED. As a
rough guide, y =10 for h/a =20 at 970 K if AE =0.3

eV, but 3180 K must be reached to give y = 10 for AE = 1

eV.

R (n)=2oDn +2mJ(nina} . (82)
APPENDIX C: EFFECT OF TRIATOMIC

ISLAND FORMATION

We assume that the rate of evaporation of adatorns is
given by

I /r= v exp[ —Ed„/(kzT)],
where v=10' s ' and Ed„is the adatorn desorption en-

We consider the effect of allowing the formation of tri-
atomic islands in addition to diatomic island formation.
The concentration of diatomic islands will be denoted as
N2 and that of triatomic islands as Ã3. We assume that
triatomic islands can be formed in two ways: the col-
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lision of a mobile adatom with an existing diatomic island
and direct collision of incident atoms with a diatomic is-

land. Assuming that the capture efficiency cr is the same
for the collision of an adatom and a diatomic island as it
is for an adatom-adatom collision, and letting l represent
the number of sites around a diatomic island that will

form a triatomic island when filled, we obtain the follow-

ing rates of island formation:

n
R (n, N ) = =0 Dn +Jm oDn—N —Jl

n Pl 0

dN3 N2
R3(n, N2)= =crDnN2+Jl

dt no

(Cl)

(C2)

The net rate of disappearance of single adatoms is then
R =2R 2+ 3R 3. Using the dimensionless quantities
defined in the text and Y2 =N2l(ano), we obtain the con-
tinuity equations

dg dg
dx2

+a +1—2aPy —2ctmy —aPy Y —alY =0,
(C3)

dY&
+Py +my —Py Y2 —IYz =0 .

Y3(x)=P J y (x)Y2(x)dx +I J Y2(x)dx .
X X

(C4)

Concentration profiles including triatomic island forma-
tion were computed for a typical misorientation, P=225,
using I =8 for a (001) surface, and compared to those
with diatomic island formation alone [Fig. 4(b)].
DifFerences in the adatom profiles are unnoticeable for
a «1, but for a= 1 the profile is lowered by about 25%
due to triatomic island formation. We also find the tran-
sition temperatures T, to step flow in Table I are only in-

creased by a few percent by inclusion to triatomic island
formation.

The second-order equation in y(x) and the first-order
equation in Y2 (x ) must be solved simultaneously with the
boundary conditions y (0)=y(1)=0 and Y2(1)=0. Note
that (C3) may be extended to include island formation of
an arbitrary size; then j differentia equations must be
solved simultaneously, where j+1 is the number of
atoms in the largest island included. Equation (C3) may
be solved numerically using the Runge-Kutta method.
The dim ensionless triatomic island concentration
Y3 =N3 /( an o ) is then calculated from
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