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Core structure of a dissociated easy-glide dislocation in copper investigated by molecular dynamics
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The atomic structure in the core of two Schockley partial dislocations in copper, resulting from
the dissociation of a perfect easy-glide dislocation, and its influence on the fault ribbon, have been
investigated for the first time as a function of temperature using molecular dynamics. We employed
a resonant model pseudopotential adapted to copper. Our results show that at increasing tempera-
ture, the core of the partial dislocations becomes increasingly extended and invades entirely the
fault ribbon, but the separation distance between the partial dislocation pairs is not altered. It fol-
lows that the structure of the fault ribbon differs significantly from that of an infinitely extended
stacking fault and for this reason experimental determinations of the stacking-fault energy, based on
the measure of the separation distance between partial dislocation pairs, should be considered with
caution. We found that the temperature dependence of the fault ribbon energy in our model is
mainly due to the elastic-modulus variation. Moreover, at high temperatures vibrational ampli-
tudes of atoms are much larger in the core of the partial dislocations than in the bulk of the perfect
crystal and the local atomic structure becomes highly disordered. Although disordered, the core
structure remains solidlike up to the melting point 7,,. Above T, the liquid nucleates always in the
core region, thus qualitatively indicating that the nucleation barrier therein is lower than in the
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bulk.

I. INTRODUCTION

Dislocation cores have been the object of numerous
studies in the past which tried to handle the large, none-
lastic strains existing in this region and thus to overcome
obvious difficulties encountered by the elastic theory of
dislocations. Although old, this subject is still active be-
cause the study of individual dislocations gives valuable
information about the differences in the plastic behavior
of various materials and also provides crucial data on the
electrical and mass-transport properties associated with
dislocations in low-defect materials such as semiconduc-
tors and minerals. Moreover, many of the properties of
interest in materials science depend more strongly on the
core structure than on the long-range stress and strain
fields. Indeed, cross-slip processes and the role of dislo-
cations as sources and sinks of point defects are highly
dependent on the core structure.

Since the earlier studies, in which dislocations are
treated as linear discontinuities in the strain and stress
fields in an elastic continuum, it has been realized that
such a description is inadequate in the case of disloca-
tions in crystals.? In crystalline solids, large atomic re-
laxations occur in the core region, usually represented by
a pipe surrounding the dislocation line the radius of
which typically equals the Burgers vector length. Thus
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an extended core configuration is produced, by far much
more realistic than the localized dislocation.> Unfor-
tunately, despite the remarkable advances made by high-
resolution electron microscopy, the investigation of
atomic relaxations near dislocations and grain boundaries
is still a challenge and only indirect evidence exists of the
relaxed core structure. Among others, a good example
has been given recently by Legrand, who studied and
definitely clarified the old problem dealing with the origin
of different easy-glide planes observed in hexagonal-
close-packed-structure metals.* To account for easy glide
on the basal or prismatic planes in these materials, a
variety of different criteria existed, all of which suffered
serious exceptions. It has been demonstrated that this be-
havior is due to the fact that dislocation cores are prefer-
entially extended either in the basal or in the prismatic
planes, depending on the electronic structure of the con-
sidered metal. As a consequence, the type of the easiest
glide plane in these materials is predicted in complete
agreement with available experimental data.*

It is well known, from minimum-energy arguments,
that in many materials perfect dislocations are dissociat-
ed into partial dislocation pairs separated by a stacking-
fault ribbon. In face-centered-cubic (fcc) metals, the
11 10](111) perfect dislocation splits into two Schockley
partial dislocations, 1[121](T11) and 1[211](111), re-
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spectively, separated by an enclosed intrinsic stacking
fault. For materials with a very low stacking-fault energy
v the elastic theory predicts large dissociation distances
ro and thus the fault ribbon can be assimilated with a
stacking fault of quasi-infinite extension. The measure of
ry, using transmission electron microscopy, allows for ex-
perimentally determining y.° However, in materials hav-
ing a large stacking-fault energy, it is likely that the ex-
tended cores of the partial dislocations may seriously
change the structure of the fault ribbon with respect to
the perfect stacking fault, which is widely recognized as
being a practically planar defect (i.e., relaxations along a
direction normal to it are negligible®).

Although direct investigations of such effects are not
available, pipe diffusion in dissociated dislocations can
serve as an atomic level probe for structural studies since
diffusion is intimately connected to the atomic structure.
Experimental results on pipe diffusion in nickel have been
obtained by Wuttig and Birnbaum which suggested that
the fault ribbon may contribute to fast mass transport.’
Balluffi and Granato criticized this interpretation by ar-
guing that in the stacking-fault nearest-neighbor relation-
ships are conserved and thus no reason existed either for
a significant decrease in the formation energy of defects
or for fast diffusion to occur along the fault ribbon.® In
other words this criticism is based on the widely accepted
assertion that stacking faults are essentially planar de-
fects. Very recently however, the present authors used
molecular-dynamics (MD) simulation to study pipe
diffusion along a dissociated perfect dislocation
1[110](111) in copper.”!® The obtained results showed
that, contrary to current assumptions, the fault ribbon as
well as the pipes are preferential fast diffusion paths for
both vacancies and interstitials. These results can be un-
derstood only if the structure of the fault ribbon differs
significantly from that of an infinitely extended stacking
fault and support the suggestion made by Wuttig and
Birnbaum.’

In the present work MD is used to study the tempera-
ture dependence of the atomic structure of the Schockley
partial dislocations resulting from the spontaneous split-
ting of a perfect dislocation in copper. We found that
even at low temperatures, T <0.57,,, the cores of the
partial dislocations are extended and partly cover the
fault ribbon which is entirely invaded by them at high
temperatures. In the cores the amplitudes of atomic vi-
brations are significantly enhanced with respect to the
bulk crystal and an increasing disorder appears on in-
creasing the temperature. Consequently, the local atomic
structure exhibits some liquidlike features but no local
melting has been observed up to the bulk melting point.
When the system is heated above the melting tempera-
ture, melting occurs and the liquid phase nucleates in the
vicinity of the dislocation cores. This qualitatively indi-
cates that the nucleation barrier is lower in the perturbed
core region than in the perfect crystal.

In Sec. II we present the model and the procedures we
used for its validation as well as those which served to
study the core structure. Section III displays the ob-
tained results whereas Sec. IV is devoted to a brief discus-
sion and some conclusive remarks.
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II. MODEL AND COMPUTATIONS

A. Potential

The interatomic potential used in the present work was
derived by Dagens from first principles using the pseudo-
potential theory.!! A physically motivated fit of this po-
tential to an analytical expression which reproduces the
long-r?znge Friedel oscillations has been realized by Lam
et al.

Ur)=| I‘CXP[_OC(" N )Z]Efosc(r)

+fc(r)+fBM(r) ’ (1)
where
c s
Sosc(P)= co+—; —%cos)(+—15sin)(, (2)
r r r
3 )
fin=3 B, 2P 3)
n=0 r
fem(r)=Cexp(—yr), )
X=¢+2k1-‘r y (5)

fem(r) is a Born-Meyer repulsive term, and the values of
parameters adapted to copper are given in Table I. Ex-
pression (1) is the most convenient for MD simulations
and was used throughout this work instead of using tabu-
lated values of the potential.

At each temperature the system density has been fixed
to fit the experimental lattice parameter a,'> and the po-
tential has been modified according to the prescriptions
given by Dagens.!* Let a, be the value of the lattice con-
stant at T,=300 K, used for the calculation of the poten-
tial parameters listed in Table I, and a (T)=ay(1+¢), its

TABLE 1. Interaction potential parameters for copper ex-
pressed in units of (Ref. 12). g, represents the lattice constant
value at T, =300 K, used in the calculation of these parameters.

a 0.2

P 3

co 0.265
c, —0.252
) 20.85
1’4 1.429
B 0.163
B, 16.55
B, —0.0033
B, 0.0825
B, —0.1576
Y1 0.74
C 0.1246
Q. 2.5
ag 3.615
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value at a temperatures T > T, then

1
fosc(r,E):meSC(r/(1+E),0) , (6)
felre)=f.(r,0), M
Fom(r, €)= —— Fan(r /(1+€),0) (®)
(1+e)e

and the a, value is given in Table 1.

The necessary truncation of the potential in MD simu-
lations, imposed by the finite size of the simulation box,
may induce artifacts arising from the discontinuities
thereby introduced in the atomic forces. To reduce such
undesirable effects it is customary to apply a damping
factor to Eq. (1) and to employ the resulting effective po-
tential'®

U g(r)=exp(—8%r2)U(r) . 9)

This procedure does not affect the value of computed
physical quantities as is proven by comparing them with
values obtained using the full potential [Eq. (1)].'*!>16 In
present work we used §=0.3a ~!, where a is the lattice
parameter.

B. Model validation

Various authors have shown that the pseudopotential
derived by Dagens reproduces satisfactorily numerous
physical properties of the real material such as phonon
dispersion,!” elastic constants!"!® as well as formation
and migration energies of point defects in copper.'?
However, these quantities have been calculated at zero
temperature and therefore we cannot ascertain that the
potential will also correctly account for finite tempera-
ture properties. Therefore, the temperature dependence
of atomic mean-square displacements (MSD), {u?), has
been computed and the results directly compare with
available experimental data. Figure 1 displays the results
obtained for a perfect, bulk crystal, containing N =4000
particles, together with the experimental data by Owen
et al.,'®® Flinn et al.,'®® and Martin er al.' Our re-
sults are in excellent agreement with the experimental
values. Moreover, the choice of the system size ensures
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FIG. 1. Atomic mean-square displacements {(u?) as a func-
tion of temperature. Diamonds: Perfect crystal N =4000, solid
squares (Ref. 18), and solid circles (Ref. 19) represent experi-
mental values. Open circle: estimation of the value at the melt-
ing point, taken from Ref. 19.

that the computed MSD have already reached the ther-
modynamic limit value and do not therefore depend on
the actual size of the simulated system.?’

For materials of a given crystallographic structure the
well-known Lindemann’s empirical rule establishes that
melting occurs when the amplitude of MSD reaches a
critical percentage of the nearest-neighbor dis-
tance.'”?""?2 The perfect agreement between experimen-
tal and computed MSD we obtained strongly suggests
that the melting temperature of the model may not be
significantly different from that of real copper, T,, =1356
K. However, a free-energy calculation is required to
correctly predict the melting point of the model.

Because of the purposes of the present work the
correct prediction of the energy of the intrinsic stacking
fault is of crucial importance. Unfortunately, as we al-
ready have reported elsewhere,'® a zero value is obtained
for this quantity when the interactions are summed up to
convergence. Such a behavior is not surprising since
stacking-fault energy implies rather long-range interac-
tions (beyond second neighbors) and the pseudopotential
we used has not been derived self-consistently, thus its
precision at long distances is poor. To bypass this limita-
tion, we adopted an empirical compromise which consist-
ed in the choice of an appropriate cutoff radius for the
potential, r, =2.3a (i.e., between the 10th and 11th neigh-
bors), leading to values of the elastic moduli and
stacking-fault energy comparable with those obtained ex-
perimentally (Table II).

C. Geometrical model and border conditions

The geometrical model we used consisted in a paral-
lepipedic box with sides parallel to the X:[110], Y:[111],
and Z :[112] crystallographic axes, respectively, and with
periodic-boundary conditions acting along the [112]
direction. Two Schockley partials, L[12T](T11),
1[211](111), separated by a distance D, are then intro-
duced into the model by imposing to all atoms displace-
ments, according to the prescriptions of the isotropic
elastic theory of dislocations.® Overlapping atoms gen-
erated during this operation are removed. To eliminate
unrealistic effects which will unavoidably rise if periodic-
boundary conditions are also applied along the directions
[110] and [T11], we used instead fixed-border conditions:
atoms are kept fixed in the outer atomic layers of the
crystallite. The simulated system has therefore the form
of a pseudoinfinite parallelpipedic slab along the direction
parallel to the dislocation lines and contains an external

TABLE II. Experimental and calculated values (. =2.3a) of
elastic constants and stacking-fault energy expressed in units of
GPa and mJ/m?, respectively.

Experiment This work
C'=%(C,1~C12) 25.6* 17
Cyu=Cyp, 81.8% 86
4 55.0° 73

*Reference 23.
"Reference 24.
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static mantle surrounding the inner dynamical region
where the dislocation lines are located. The thickness of
the rigid lattice, d,, has been chosen in order to avoid
that atoms of the inner region feel the finiteness of the
system, i.e., d, >r,, where r, represents the cutoff radius
for the interatomic forces. This procedure resulted in a
system of N, =7680 dynamical particles, having lateral
dimensions 4X([112])X8 ([111]) and containing, re-
spectively, 81 and 79 (110) atomic planes above and
below the “slip” plane. On the other hand, the static
mantle contained N, =4352 particles for the cutoff radius
used throughout this work, r.=2.3a, where a is the lat-
tice constant.

D. Computations

The newtonian equations of motion were integrated by
the usual central-difference algorithm?’ using a time step
0.25X 107" s. This algorithm, slightly modified accord-
ing to a suggestion by Bennett,?® has also been employed
to obtain a relaxed initial configuration at T=0 K by
quasidynamic energy minimization. To obtain equilibri-
um at a given temperature the system is allowed to evolve
during 5000 time steps which are excluded from the cal-
culation of the thermodynamical averages. Calculations
were made at constant volume, however, at each temper-
ature, the experimental density values'> have been used
and the potential parameters were modified as indicated
above (Sec. II B).

E. Dislocation localization and analysis of the core structure

A major problem encountered when studying linear de-
fects by MD is the localization of their position in the
simulation box. A first approach consisted in computing
the atomic density profile along the direction x, parallel
to [110] on a local basis:

P(x)=<2 &(x —x,)> , (10)

I€Ew

where the summation is made over particles pertaining to
the domain defined w by one of the atomic planes (111)
immediately above or below the glide plane and large an-
gular brackets indicate time averages. The results ob-
tained by thermal averaging over 10* time steps are illus-
trated by Fig. 2 on which the two density profiles corre-
sponding to these w definitions are superimposed. The
position of the two partial dislocations is clearly visible
thanks to the large depression of the density profile peaks
in their vicinity. The shift in the position of [112] atomic
columns above and below the glide plane, due to the local
strain caused by the two partial dislocations, is responsi-
ble for this effect.

A more precise localization of the partial dislocations,
which also allows the investigation of the core structure,

P(x)

4

0
10 x(nm)

P(x)

(b)

0 2 4 6 8

10 x(nm)

FIG. 2. Superposition of two local-density profiles above and
below the glide plane along the [110] direction. Each peak cor-
responds to the position of atomic columns parallel to the [112]
direction (a) T=400 K and (b) T =840 K. The position of the
Shockley partial dislocations coincides with the two depressed
regions visible on this figure.

is obtained by computing the local-strain-field com-
ponents €, and ¢, defined by

Exx = (dy —doy ) /doy ()

and

e, =(d, —dy,)/d,, , (12)

where d, and d,, (i =x,y) represent the distances be-
tween successive peaks of average density profiles along
the directions x||[110] and y||[111] in the defective and
perfect lattices, respectively. Figure 3(a) illustrates a
series of local strain profiles €,, computed at T =680 K

x[110]

FIG. 3. Local strain profiles at T =680 K, (a) g, (b) €,,.
The perturbation is confined in the vicinity of the stacking-fault
plane.
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for eight (111) atomic planes surrounding the slip plane.
Using a similar representation, Fig. 3(b) represents ¢,
profiles each of which has been averaged over four adja-
cent (110) planes. Data on both figures correspond to
thermal averages over 10* time steps. The maximum
values reached by ¢,, and ¢,, are 5% and <2%, respec-
tively. Clearly,the anelastic deformation is concentrated
in the core of the partial dislocations and mainly affects
the two (111) planes adjacent to the glide plane. For the
sake of simplicity we therefore consider in the following
the dislocation cores to be planar defects entirely con-
tained between these two planes. In this framework and
according to the linear elasticity theory, the deformations
in the core of the partial dislocations can be described by
a density distribution of Burgers vectors, p,(x), defined
by (see the Appendix)

p(x)=[dl(x)—d"x)]/d, , (13)

where d'(x), represent the local average spacing of [112]
atomic columns pertaining to the two (111) planes just
above (i =h) and below (i =/) the glide plane and d, the
ideal perfect lattice value. A similar expression can be
obtained for p,(x). Figure 4 illustrates the profiles of the
edge and screw compounds of the dislocation density dis-
tribution obtained at low, T =107 K and high, T =1309
K, temperatures. The position of the partial dislocations
is identified by locating the position of the maxima on
these graphs.

At increasing temperature the profiles are affected by
an increase in amplitude statistical noise and the localiza-
tion of the partial dislocations becomes more difficult.
We therefore systematically fitted the p,(x) profiles on
two shifted Gaussian distributions which help in deter-
mining the position and the separation between the par-
tial dislocations.?’

A more global representation of the core structure is
finally obtained by computing both the structure-factor
component with a wave vector k=(27/a)[111] and the
radial distribution function g(7) on a local basis.?® The
domain o used for this local analysis is a cylinder sur-
rounding each partial dislocation whose radius R , equals
the half-width of the above shown dislocation density dis-
tributions (Fig. 4).

F. System setup at a given temperature and border conditions

Since fixed-order conditions are used along the [110]
and [111] directions, the preparation of the initial
configuration at each temperature needs careful prepara-
tion in order to avoid undesirable mismatches between
the static and the dynamical parts of the system. Thus,
the equilibrium separation between the two partial dislo-
cations was determined by a MD procedure, similar in
spirit to that suggested by Perrin et al.?’ for static calcu-
lations and is illustrated by Fig. 5. The initial separation,
D, of the partial dislocations was first chosen using the
elasticity theory> and the value of the stacking-fault ener-
gy, ¥y=73 mJm 2, corresponding to the cutoff radius
value.!® Relaxations in the inner region of the model at a
given temperature lead to new positions for the partial

5499

dislocations now separated by a distance D,. These re-
laxations enhance mismatches between the static and the
dynamical parts of the system which should be mini-
mized by iterating the aforementioned procedure, i.e., by
ascribing new positions to the atoms pertaining to the
static and dynamical parts of the system, using as input
the value of the separation distance D ;. The equations of
motion are then integrated for a number of time steps
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FIG. 4. Burgers vector density distributions at 7 =107 K [(a)
and (c)] and T=1309 K [(b) and (d)]. (a) and (b) edge com-
ponents, p,(x), (c) and (d) screw components p,(x). The fault
ribbon is entirely invaded by the relaxed cores of the partial
dislocations. Solid lines correspond to MD results and dashed
lines in (a) and (b) to the fit by two Gaussians shifted with
respect one to another by 7y, the dissocation distance.
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FIG. 5. Schematic illustration of the procedure used to set up
the system at each temperature. Convergence is assumed to
occur when the separation of the partial dislocations remains
stable within a [110] coincidence distance.

long enough to stabilize the partial dislocations at their
new equilibrium distance. This iterative scheme was re-
peated until the final separation between the partial dislo-
cations becomes practically identical to the input value.

Finally, the influence of the static boundaries on the
dynamical behavior of atoms pertaining to the inner re-
gion provided a criterion upon the adequency of the
linear dimensions chosen for our mode. From Fig. 2 it
can be seen that the values of the maxima of local-density
profiles near the static walls differ from those in the bulk
of the dynamical region. However, the perturbation ex-
tends only over about 4 A, near the boundaries and there-
fore it should not affect our results because of the overall
spatial extension of the dynamical region L =103 A.

Despite all these precautions one may doubt on wheth-
er or not the partial dislocations are in an unconstrained
equilibrium position. We therefore studied, for reference
purposes, a system consisting in N =11328 point parti-
cles and containing a tilt 6=5°84 sub-boundary made up
of perfect %[110](T1 1) dislocations. Full periodic-
boundary conditions were applied to the system which
impose the presence of a mirror image sub-boundary into
the system. For this reason we adopted linear dimensions
large enough, approximately equal to those of a perfect
crystal: 118X ([110])X 4 ([112])X2([111]) to avoid un-
desirable interaction effects between the two boundaries.
By relaxing or heating up this system the dislocations
spontaneously dissociate and finally adopt their equilibri-
um separation. For low misorientations the dissociation
distance is not affected from the fact that the dislocations
are organized in a boundary.*® The dissociation distance
we determined equals the value of the separation distance
between the partial dislocations we found for the model
in the center of the present study (cf. Sec. II C) and thus
establishes that the precautions taken during the system
preparation are sufficient.

III. RESULTS

A. Core structure

By comparing the local-density distributions shown in
Fig. 2 for two different temperatures, one can qualitative-
ly deduce that the core of the partial dislocations is not
localized and that their extension increases at increasing
temperature. This is more precisely quantified by exam-
ining the evolution of the Burgers vector density distribu-
tions, p,(x) [Figs. 4(a) and 4(b)] and p,(x) [Figs. 4(c) and
4(d)] as a function of temperature. The fault ribbon is en-
tirely invaded by the anelastic displacements associated
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with the cores even at low temperature. This feature be-
comes more pronounced at high temperature as can be
seen by comparing Figs. 4(a) and 4(b). The fault ribbon
structure is therefore different from that of a perfect
stacking fault and deviates increasingly from it on in-
creasing the temperature.

The area under the two Gaussians fitting the disloca-
tion density profile, is temperature independent, as ex-
pected, since it represents the total Burgers vector which
is of course conserved. This result gives confidence to the
fitting procedure and also indicates that the size of the
system is large enough to minimize the influence of the
boundary conditions on the core properties.

An alternative method to investigate the core structure
is provided by calculating the spherical pair distribution
function g (r) on a local basis. This is obtained (Sec. IL E)
by forcing at least one of the atoms of the considered
atom pairs to lie within a narrow cylinder, the pipe, sur-
rounding the dislocation lines. The pipe radius equals the
half-width of the density distribution of Burgers vectors
deduced from Fig. 4. The results shown in Fig. 6
represent time averages over 2000 time steps and allow
for a comparison between local distribution functions at
T=100 and T =1200 K as well as with the perfect crys-
tal at T=100 K. At the highest temperature (dashed
line) the local distribution function displays liquidlike
features since many of the crystalline structure peaks are
absent. This bears witness of the existence of premelting
effects in the dislocation cores and raises the question of
whether or not the liquid germinates therein below the
bulk melting temperature. This result is somewhat simi-
lar to those obtained by MD simulations of the high-
temperature structure in high-angle-tilt grain boun-
daries®' for which it has been firmly established, both ex-
perimentally®> and by MD,*® that although disordered
they remain crystalline up to a temperature very close to
the melting point. To clarify this point we computed the
static structure-factor component S (k) in the pipe as a
function of the temperature with k=(27/a)[111]. As
can be seen from Fig. 7 the S (k) value remains solidlike
up to the highest temperature we studied thus suggesting
the same conclusion to be valid as the one drawn in the
case of grain boundaries. Indeed, the core region is not
only statically disordered but in addition, at high temper-
ature, the atoms in the pipe exhibit high vibrational am-

g(r)

A0
0 =
06 1.0 1.4 1.8 r/a

FIG. 6. Radial distribution function g(r) computed in the
pipes. Solid line, T =100 K; dashed line, T =1200 K; dotted
line, perfect crystal at 7=100 K. Thermal averages are per-
formed over 2000 time steps.
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Sk)
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FIG. 7. Local structure factor S(k) component

k=(2m/a)[111] computed as a function of temperature, in the
dislocation core (solid circles). Crosses represent the value S (k)
would have, if only Debye-Waller effects were present and
squares are the values for the perfect crystal, displayed for refer-
ence purposes.

plitudes which contribute to the vanishing of the peaks of
g (r) through enhanced Debye-Waller effects. This is il-
lustrated by Fig. 8(a) which displays profiles of atomic
MSD along the direction [110] for atoms pertaining to
the two (111) atomic planes in the immediate vicinity of
the glide plane at different temperatures. Figure 8(b) at-
tests that MSD in the pipes, averaged over the three

0.08 o)
o a
E 0.06
Z 0.04 | /

A J\ M
v 0.02

<u®> (107 nm?)

0.06 1
0.04 1
0.02
- I Texpt
. . I
0 500 1000 T(K)

FIG. 8. (a) Atomic mean-square-displacement profiles along
the [110] direction at different temperatures. The peaks identify
the position of the partial dislocations. Dashed-dotted line,
T =107 K; dashed line, T =400 K solid line, T'=_840 K; dotted
line, T=1309 K. (b) Isotropic atomic mean-square displace-
ments {u?) in the core region as a function of temperature
(solid circles). The dashed line is given for comparison purposes
and corresponds to the values obtained for the perfect crystal
(Fig. 1). The bulk value at the melting point (diamond) is
reached in the pipes at T~ 1125 K.
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space directions, rise more rapidly than in the bulk. The
bulk value at T,, is indeed reached at T'=0.83T,, inside
the pipes. Using the MSD values obtained in the disloca-
tion cores of the Debye-Waller attenuation of S (k) has
been computed and is also reported in Fig. 7 as well as
the value obtained for the perfect crystal. By comparing
these curves and since we carefully verified that in our
system point defects are not spontaneously created, we
deduce that thermal attenuation effects are mainly at the
origin of the above reported results.

B. Dissociation distance and stacking-fault energy

At each temperature the equilibrium dissociation dis-
tance can be easily deduced from the Burgers vector den-
sity distributions as these given in Fig. 4. Its value is
practically temperature dependent, r, =23 A, and is com-
parable with the lower limit of available experimental re-
sults.>*3> However, no special attention should be given
to this apparent agreement being this result related to the
specific choice we made for the potential cutoff radius
(r,=2.3a,y=73ml/ m?, see Sec. IT A).

An estimation of the ribbon fault energy can be easily
obtained using the density distributions of Burgers vec-
tors we determined in the framework of the linear, isotro-
pic elasticity approximation:> 3¢

Y=v.tvs, (14a)
_ 1 plx(xl )sz(x/)
Ye= 277(1—1/)% =% Ax; Ax; , (14b)
N plx(xi)pZZ(xj)
Ys— szTAxi ij ’ (14¢)

] !

where p is the shear modulus the value of which at each
temperature has been fixed to the experimental one,?’
Pix(x;), paxc(x;), py,(x;), and py,(x;) the density distribu-
tions of Burgers vectors in the core of the partials for the
edge and screw components and v the Poisson modulus.
On the other hand, vy, and ¥, are the respective contribu-
tions to the fault ribbon energy of the edge and screw
components of the partial dislocations and the value
v=0.25, universal for pair potentials, has been used. The
temperature dependence of the ribbon fault energy is, as
expected, entirely due to the elastic-shear modulus varia-
tion, u=pu(T), as can also be seen by plotting the normal-
ized quantity F =yu(T =0 K)/u(T) versus the tempera-
ture (Fig. 9).

The value of the fault ribbon energy at T =0 K, de-
duced from Eqgs. (14), y'=122 erg/cm?, turns out to be
larger than that of an infinite extension perfect stacking
fault at the same temperature, ¥ =73 erg/cm? (Table II).
This difference should be attributed to the extension of
the cores, visible in Figs. 2 and 4, and is not surprising
since the atomic structure of the fault ribbon differs
significantly from that of the perfect stacking fault.

In order to ascertain that the fixed boundary condi-
tions we used do not maintain an artificial constraint on
the partial dislocations which may affect the results we
also studied the low angle, 6=5°84 tilt sub-boundary
made up by introducing in a three periodic system the
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FIG. 9. Stacking-fault energy y vs temperature (crosses).
Open squares represent the temperature dependence of
F=yu(T =0)/u(T); the fault ribbon was energy corrected to
remove the elastic-shear-modulus variation. Solid and dashed
lines are linear best fits to the data.

adequate number of perfect %a[llO](Tll) dislocations
(Sec. II F). In this case the dissociation distance of the in-
dividual dislocations in the boundary remains
unaffected®® and a comparison can be made with the
above reported results. Figure 10 displays a typical
atomic density profile realized by adding local densities
taken in the vicinity of the slip plane of one of the sub-
boundary dislocations. These dissociate spontaneously
and when the system is equilibrated lead to the same dis-
sociation distance as that we found for the isolated dislo-
cation.

C. Melting

As has been reported above, despite the existence of
premelting phenomena in the core region no local melt-
ing has been found to occur in it. This however does not
imply that local melting should not take place. Indeed,
in addition to metastability effects which may immo-
derately delay such a phenomenon to occur on the time
scale typical of MD calculations (<1 ns), the large fluc-
tuations existing in small systems, such as the one we em-
ployed in present study, do not allow us to fix the temper-

P(x)

x(nm)

0 4 8 12

FIG. 10. Local-density-profile along [110] in a system con-
taining a #=5°84 tilt boundary. The boundary consists in a
pileup of %[110](T11) dislocations which split spontaneously
into Shockley partial dislocations. A second image boundary is
introduced by the periodic limit conditions. The figure is ob-
tained by subtracting the local-density profiles computed for the
two (111) planes surrounding the glide plane. The dissociation
distance computed in this system equals that of the isolated
dislocation we studied.
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ature at a value arbitrarily close to the bulk melting
point. Therefore, local melting cannot be studied using
MD. Instead, one can ask the question on whether or not
the nucleation barrier of the liquid is lower in the vicinity
of the dislocation lines than in the bulk. We tried to
qualitatively address this question by observing the melt-
ing of the system settled up in a superheated state as fol-
lows: starting from an initial equilibrium configuration at
T =1337 K, the atomic velocities are increased every 200
time steps by a multiplicative factor until the total energy
of the system becomes high enough to initiate melting.
Among the resulting configurations a few only have melt-
ed during an additional trajectory lasting 10*-2X10*
time steps. The observed behavior in those cases displays
the common feature that melting is systematically initiat-
ed in the vicinity of the dislocation cores and of the fault
ribbon. This is, qualitatively illustrated by the series of
trajectory plots at T =1605 K, shown in Fig. 11, each of
which represents the atomic trajectories in the plane im-
mediately below the glide plane during 10° time steps.
Melting starts in the defective region and propagates into
the bulk. Our results suggest that the nucleation barrier
for the liquid is smaller near the dislocation cores and the
fault ribbon than in the bulk, although statistics need to
be improved in order to ascertain this qualitative con-
clusion (only three different superheated configurations
among those produced led to melting). Moreover, the
lowest temperature for which melting has been observed
to occur, T=1605 K, provides an upper limit for the
melting point of our system (TP~ 1356 K).
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FIG. 11. Trajectories of atoms belonging to the plane im-
mediately below the slip at 7=1605 K. The disordered region
indicates enhanced diffusion corresponding to the nucleation of
the liquid. (a) Trajectories of the system recorded during 5000
time steps and projected onto a (112) atomic plane. (b), (c), and
(d) growth of the liquid nucleus; trajectories are recorded during
1000 time steps starting at 2000, 7000, and 14000 time steps, re-
spectively, and are projected onto a (111) atomic plane.
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IV. DISCUSSION AND CONCLUSIONS

The central result of the present study sheds light on
the increasing extension of the cores of Shockley partial
dislocations when the temperature increases while their
separation distance remains constant. A natural conse-
quence of this behavior is the resulting variation of the
atomic structure of the fault ribbon and of its energy with
respect to that of a perfect stacking fault. Although old**
and also recent studies®’ have suggested the existence of
such effects and examined the possible causes, this is the
first time at which the role of the core structure is undou-
btedly identified at the atomic scale. Our study, though
willingly devoted to a model system which mimics real
copper, should be essentially considered from a generic
point of view and thus we believe our results to be applic-
able to a wide class of fcc structure metals. An important
question which unavoidably arises concerns the meaning
of experimental determinations of the stacking-fault ener-
gy by electron microscopy measurements of the dissocia-
tion distance between partial dislocations. Indeed, our
study strongly suggests that these should be seriously
questioned when the dissociation distance is comparable
to the length scale of the cores extension.

As we already mentioned, in metals with the hexagonal
structure the extended cores model explains exhaustively
the variety of easy-glide planes, basal or prismatic, ob-
served experimentally.* On the other hand, recent exper-
imental investigations of the anomalous elastic limit in
beryllium attributed this phenomenon to a possible in-
trinsic (not shear modulus dependent) variation of the
stacking-fault energy.’’” Based on the results of the
present study, work in progress is devoted to the study of
the core structure of dislocations in beryllium, of its tem-
perature dependence, and its relation with the elastic lim-
it of this material.

In conclusion, we investigated the temperature depen-
dence of the core structure of the Shockley partial dislo-
cations resulting from the dissociation of a perfect, easy-
glide dislocation in copper. Our results show that the
cores of the partial dislocations become increasingly ex-
tended at increasing the temperature while the dissocia-
tion distance remains constant. This effect leads to a pro-
gressive change in the structure of the fault ribbon which,
therefore, fundamentally differs from the perfect stacking
fault of infinite extension. In the framework of linear,
isotropic elastic theory of dislocations our results indicate
that the energy of the fault ribbon decreases on increas-
ing temperature, yet this behavior is entirely due to the
elastic shear modulus decrease. Moreover, at high tem-
peratures the atomic structure inside the pipes is highly
disordered but no point defects were observed to nucleate
spontaneously. The disorder is related to amplitudes of
atomic vibrations in the cores which are much larger
than those of bulk atoms. Finally, we observed that in
the superheated state, melting is initiated in this system
systematically in the region near the cores and the fault
ribbon. Thus, we concluded in favor of a nucleation bar-
rier for the liquid being lower near the defect than in the
bulk. Our study of dislocation initiating melting con-
cerned only the qualitative aspects of this phenomenon.

5503

Therefore, we have not attempted to develop a compar-
ison with existing work devoted to a quantitative investi-
gation of how melting occurs in presence of defects. It
should be mentioned however that similar to dislocations
grain boundaries are preferential sites for the nucleation
of the liquid. This is the conclusion of recent MD simu-
lations of melting in silicon and copper bicrystals.’®
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APPENDIX

The dislocation core structure may be conveniently de-
scribed by a density distribution of infinitesimal disloca-
tions, which is given by the spatial derivatives of the
disregistry in the direction [110] parallel to the Burgers
vector:*

&
Prlx;)= Ax [6u,(x))],

i

(Ala)

__A
p,(x;)= Ax [6u,(x,)], (Alb)

where u,(x) represent the i =x,z components of relative
displacements above and below the glide plane along the
[110] and [112] directions, and p, (x),p,(x) verify the fol-
lowing conditions:

+

S p(x)Ax;=b , (A2a)

i=—

+ o
> p.(x)Ax,=0,

i=—

(A2b)

expressing the conservation of the Burgers vector.

From Eq. (Ala) we deduce the relationship between
the distribution density, say p,(x), and the local deforma-
tions

A h
Pxlx;) Ax, [y (x;)—u(x;)]
d'—d, d"—d 1_gh
o o h — o _ 0o_d—d
Exx T Exx d, 4, dy (A3)

where the indexes h (high) and / (low) stand for quantities
computed above and below the glide plane and d',d,
represent the spacing of [112] atomic columns in the
dislocated and in the perfect lattice, respectively. A simi-
lar expression holds for p,(x). The determination of
average values for d',d,, allows us to plot the curves
displayed in Fig. 4.
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