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Interface roughening in the three-dimensional Ising model
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Using Monte Carlo simulations, we determine the roughening temperature of a (100) interface in

the three-dimensional Ising model to be at about 0.542+0.005 in units of the critical temperature.

For higher temperatures, the squared interface thickness is found to increase logarithmically with

system size. These results agree well with theoretical predictions as well as previous numerical

determinations.

In three dimensions, a two-dimensional liquid-vapor
interface has a finite thickness W which diverges logarith-
mically if the area of this interface goes to infinity. ' In
the lattice-gas approximation (Ising model}, this roughen-
ing is seen only above some roughening temperature TR.
Previous Monte Carlo simulations ' found a ratio Ttt /T,
of 0.56+0.03 and 0.54+0.02, and series expansions gave
0.55+0.02. While that agreement is satisfactory, it is not
impressive since a very simple approximation identifies
the roughening transition with that of the two-
dimensional lattice gas and then gives 0.503 for this ratio,
using the known Curie temperatures of square and sim-
ple cubic lattices. Thus, the estimates for the deviation
from this trivial approximation vary appreciably, if one
also considers the maximum values that lie within the er-
ror bars.

Therefore, the present paper tries to reexamine the old-
est of these estimates using the same definitions but
larger lattices simulated over longer times on a better
computer (ETA 10Q and Cyber 205) with a vectorized
multispin coding program (64 spins per word). As in
Ref. 2, we used a simple cubic lattice of size L XL X26,
with periodic boundaries in horizontal directions, i.e.,
parallel to the L XL initial interface, with L now up to
960 instead of 300. Also, boundary eft'ects were reduced
by antiperiodic instead of fixed boundary conditions at
the top and bottom. That means the uppermost plane
was regarded as the lower neighbor of the lowermost
plane after all its spins were reversed. Thus, interface
motion was less restricted and the full height of the lat-
tice could be used to study the interface profile; fixed
boundaries as in Ref. 2 make the top layers and the bot-
tom layers near the boundary quite useless.

We used a vectorized shift-register random number
generator with an array of 250 (Cyber 205) or 1279 (ETA)
random integers. The next integer is then produced by a
bit-per-bit exclusive —or of integers 1 and 148 for the
short array and of integers of elements 1 and 217 for the
long array on the ETA, after which the first integer ele-
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FIG. 1. Variation of squared width vs T/T, for various I..

ment is omitted from the array and the new integer is
added to it. (The longer array was needed on the faster
ETA since otherwise the vectorization caused problems. )

As in Ref. 3, we reached a speed of about 40 million
Monte Carlo steps per second and per processor (slightly
slower on the Cyber 205). Up to eight runs with typically
40000 Monte Carlo steps (MCS} per site were made to
ensure thermal equilibrium in this kinetic Glauber model;
the interface thickness fluctuated with a characteristic
time of order 10 MCS. (For L=512 and T/T, =0.56 we
made one run up to 200000 MCS but found no long-time
trends. )
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FIG. 4. Test of Kosterlitz-Thouless theory: (dW'/dT)
vs T/T, [left scale, Eq. 1(a)] and [dW /d lnL) —1/m ]2 vs T/T,
[right scale, Eq. 1(b)]. The theory predicts straight lines asymp-

totically.

FIG. 2. Squared width vs ln(L) at T/T, =0.8.

We primarily used the standard definition of the width
W even though fits by error functions might be better:
The magnetization profile M(z) was determined for each
plane at height z parallel to the initial interface. The nor-
malized gradient is

g (z) = [M(z+ 1)—M(z)]/[M(26) —M(1)] .

The average position (z ) of the interface is determined
as the integral over z g (z) and the average squared posi-
tion (z ) as the integral over z g(z). Then the squared
width is W =(z ) —(z) . We also used a different
definition of W as the integral over [Mo —~M(z)~]/Mo
where Mo is the positive spontaneous magnetization; re-
sults and fluctuations for these two definitions were com-
parable.

Figure 1 shows the squared width (standard
definition ' ) versus T/T, for different linear dimensions
L. While for temperatures below about 0.53T, different
L give the same width, the results branch out for T/T,
above about 0.54. Far above this transition, at

T/T, =0.8, a plot of W versus lnL (Fig. 2) gives a good
straight line. (Similar behavior was found near
T/T, =0.6.) For percolation, W instead of W2 was
found to vary as lnL; such a law agrees less well with our
present data but cannot be excluded. Figure 3 shows the
slope of W versus lnL as a function of temperature for
two size ranges. Again, these slopes vary drastically near
T/T, =0.54. We cannot determine whether a jump actu-
ally occurs in the infinite system, but if it does it is con-
sistent with the Kosterlitz-Thouless value (arrow in Fig.
3). Effective roughening temperatures can be identified
with the inAection points in these curves; from these we
estimate T„ /T, =0.540+0.005 for infinite systems. If we
analyze our data assuming Kosterlitz-Thouless theory'
to be true,

W ~c nost+(T —
tt T)

for T& T„,and

W /ln(L) =n +const(T —TR )'/2

for T & T~, we find reasonable agreement, Fig. 4, for
Ttt /T, =0.543+0.003.

Our final estimate (i.e., using all information but em-
phasizing Fig. 4)

T„ /T, =0.542+0.005
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is consistent with earlier results and shows that their rela-
tively large error bars were realistic. (We note that our
calculations used much more than one hundred times the
number of spin fiips compared with Burkner. ) In abso-
lute units this corresponds to kTtt /J=2. 445. The varia-
tion with 1nL is compatible with the logarithmic growth
law, W ~ In(t), for not too long times in three dimension.
These data are also compatible with 8'~ t

Although our asymptotic value of W /ln(L) is compa-
tible with the prediction 0.1(=1/rr ) at the roughening
transition for models with a we11-defined local interface
position, ' the power-law behavior above T~ is less we11

supported.

T/Tc

FIG. 3. Roughening amplitude vs temperature; the roughen-
ing amplitude is determined as the slope of $Y vs ln(L). (+) fits
for 32~L ~96, ( X) fits for 96~L ~960.
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